INVITED REVIEW

Jonathan A. Roberts · Catherine Vial · Helen R. Digby · Kelvin C. Agboh · Hairuo Wen · Amelia Atterbury-Thomas · Richard J. Evans

Molecular properties of P2X receptors

Received: 8 March 2006 / Accepted: 10 March 2006 / Published online: 11 April 2006 © Springer-Verlag 2006

Abstract P2X receptors for adenosine tri-phosphate (ATP) are a distinct family of ligand-gated cation channels with two transmembrane domains, intracellular amino and carboxy termini and a large extracellular ligand binding loop. Seven genes ($P2X_{1-7}$) have been cloned and the channels form as either homo or heterotrimeric channels giving rise to a wide range of phenotypes. This review aims to give an account of recent work on the molecular basis of the properties of P2X receptors. In particular, to consider emerging information on the assembly of P2X receptor subunits, channel regulation and desensitisation, targeting, the molecular basis of drug action and the functional contribution of P2X receptors to physiological processes.

Keywords ATP · P2X receptors · Regulation · Transgenic mice · Mutagenesis

Introduction

P2X receptors for adenosine tri-phosphate (ATP) are ligand-gated cation channels. The receptors were initially classified based on their pharmacological properties and subsequently recordings of P2X receptor channel activity leading to depolarisation of neurons and smooth muscle were described. P2X receptors are expressed throughout the body and have been shown to be involved in a wide range of physiological processes from sensory perception to the control of smooth muscle. Genes encoding P2X receptors were first identified by expression cloning from rat vas deferens [1] and phaeochromocytoma PC12 cells [2], subsequent endeavours revealed a family of seven P2X

J. A. Roberts · C. Vial · H. R. Digby · K. C. Agboh · H. Wen · A. Atterbury-Thomas · R. J. Evans (⊠) Department of Cell Physiology & Pharmacology, Medical Sciences Building, University of Leicester, Leicester, LE1 9HN, UK e-mail: RJE6@le.ac.uk Tel.: +44-116-2523032 receptor subunits (P2X₁₋₇) [3]. These subunits form multimeric channels and a range of P2X receptor phenotypes have been described resulting from the homo- and heteromeric assembly of channels, regulation by alternative splicing, phosphorylation and interaction with other proteins. There have been several reviews on the molecular properties of P2X receptors [4–9]. The aim of this article is to give an overview of the receptors and an update on recent work identifying the molecular basis of their properties.

Stoichiometry and the emergence of structural information

The P2X receptor subunit has two transmembrane domains, intracellular amino and carboxy termini and a large extracellular ligand-binding loop [1, 2, 10, 11]. It seemed unlikely that the two transmembrane domains would be able to form an ion-conducting pore on their own and this suggested that subunits associate to form multimeric channels. The first direct support for the multi-meric assembly of P2X receptor subunits came from co-expression studies of P2X₂ and P2X₃ receptors that assembled to form $P2X_{2/3}$ heteromeric channels with a novel phenotype [12]. A major advance in our understanding of the number of P2X receptor subunits that are required to form a functional channel was shown in cross-linking studies, where the receptors were detected as trimers [13, 14]. Trimeric assembly has also been supported by work on concatenated $P2X_2$ receptor channels [15, 16] and is consistent with a model of three ATP molecules binding to describe channel opening at native bullfrog sensory neuron P2X receptors [17], and recombinant P2X₂ receptor channels [18].

High-resolution microscope studies and crystal structures of ligand-binding domains have been important in visualising 3D structural information and the subunit stoichiometry of many ligand-gated ion channels. For example, the extracellular ligand-binding domain of glutamate receptors has been crystallised and solved as a tetramer (for a review, see [19]). When just the extracellular loop of P2X₂ receptors was expressed, it formed as a tetrameric structure [20]. This is at odds with cross-linking studies (and microscopy; see below) and suggests that the extracellular domain may not multimerise correctly without the transmembrane domains that act to anchor the extracellular loop. Recent studies using atomic force microscopy (AFM) and electron microscopy of purified P2X₂ receptors have given us the first pictures of the receptors. AFM allows single isolated uncrystallised proteins to be studied and Barrera et al. used this technique to estimate the dimensions of the P2X₂ receptor (volume 409 nm³). In addition, by using antibodies against introduced epitopes at the amino termini, they determined the bond angle of ~ 120° between the subunits consistent with a trimer [21]. AFM has also been performed on recombinant P2X₂ channels isolated from insect cells and imaged in an aqueous environment [22]. Electron microscopy has been used to image nicotinic acetylcholine receptors and resolve their pentameric structure [23] and a similar approach was utilised by Mio et al. to look at recombinant P2X₂ receptors purified from insect cells [24]. They showed that the $P2X_2$ receptor forms as a crowncapped inverted three-sided pyramid.

Heteromeric channels

The initial $P2X_2$ and $P2X_3$ receptor co-expression studies demonstrated that the receptors can form as heteromeric channels [12] and, subsequently, the rules governing what channels can associate and their resultant properties have been revealed. An extensive study looking at the coimmunoprecipitation of epitope-tagged P2X receptor subunits, provided the initial benchmark of possible subunit combinations [25] and further studies have indicated that the cellular environment may also contribute to what combinations are possible [26]. $P2X_{1,2,3,4}$ and 5 receptor

 Table 1
 A table summarising the properties of P2X receptors

subunits can form as part of either homo- or heteromeric assemblies [25] and the second transmembrane domain may contribute to the likelihood of subunit association [27]. In contrast, $P2X_6$ receptors seemed only to assemble in heteromeric channels and $P2X_7$ receptors did not heteropolymerise with other P2X receptor subunits. In the majority of functional studies, $P2X_6$ receptors fail to form functional channels and it appears that the inability to form functional homomeric channels may arise from the incorrect processing of the receptor in the ER or the absence of a particular auxillary subunit/protein required for efficient assembly and trafficking.

In recombinant systems, several novel P2X receptor phenotypes have been described that are composites of the constituent subunits: P2X_{1/2} [28], P2X_{1/4} [26], P2X_{1/5} [29, 30], P2X_{2/3} [12], P2X_{2/6} [31], P2X_{4/6} [32] (for properties, see Table 1). Co-expression studies indicate the production of a heteromeric channel but give no indication of the subunit stoichiometry. In a study using substituted cysteine residues in P2X₂ and P2X₃ receptor subunits, Jiang et al. showed that the $P2X_{2/3}$ receptor is likely to form with the stoichiometry of one P2X₂ receptor subunit and two P2X₃ subunits; he also gave insight into the proximity of the residues at the outer vestibule of the P2X receptor pore [33]. In addition, developments of the AFM technique should allow for the determination of the stoichiometry of heteromeric P2X receptor assemblies to further our understanding of the contribution of individual subunits to heteromeric channels. So far, heteromerisation has only been described when two different subunits associate, and it remains to be seen whether three different subunits can form a functional channel.

Given that several P2X receptor subunits can be expressed in some cells, this indicates that multiple P2X receptor sub-types may be produced. For example, in sensory neurons, phenotypes corresponding to homomeric $P2X_2$ and $P2X_3$ as well as heteromeric $P2X_{2/3}$ channels have been described in a single neuron [34–36]. How the

	ATP EC ₅₀ (μ M)	α,β -meATP sensitivity	Current decay	Effect of High Ca ²⁺	Effect of High pH	Effect of Zn^{2+} (10 μ M)
P2X ₁	1	Yes	Fast	No effect	No $effect^{\dagger}$	Decrease
$P2X_2$	10	No	Slow	Decrease	Decrease	Increase
$P2X_3$	1	Yes	Fast	No effect	No effect [†]	Increase
P2X ₄	7	No	Slow	_	No effect [†]	Increase
$P2X_5^a$	0.5	No	Slow	Decrease	No effect	Increase
P2X ₆ ^b	0.5	Yes	Slow	_	_	_
P2X ₇	>100	No	Slow	Decrease	_	Decrease
$P2X_{1/2}^{c}$	0.6	Yes	Fast / slow	_	Increase	_
$P2X_{1/4}^{d}$	_	Yes	Slow	_	_	_
$P2X_{1/5}$	~ 5	Yes	Fast / slow	No effect	Decrease	_
$P2X_{2/3}$	1	Yes	Slow	Decrease	Decrease	Increase
$P2X_{2/6}$	32	No	Slow	_	Decrease	Increase
P2X _{4/6}	6	Yes	Slow	_	_	Increase ^{††}

A dash signifies that these conditions have not been studied for that receptor (data taken from [4, 163; ^a57; ^b147; ^c28; ^d26; [†]164; ^{††}32;]

association of the subunits is regulated and whether coexpression may result in differential targeting of the receptors remain to be determined.

Basic properties of the channels

The properties of P2X receptor are dependent on the subunit composition of the channel, and studies on recombinant receptors have characterised their profiles [4]. The different channels can be discriminated to some extent based on their time-course, agonist and antagonist profile and sensitivity to regulation by extracellular calcium, protons and zinc (see Table 1). In many cases, the properties of native P2X receptors correspond closely with those of recombinant channels, and these have been substantiated by studies with knockout mice. However, in native preparations multiple P2X receptor sub-types may be expressed complicating the attribution of the functional molecular subtypes.

Time-course of the response

P2X receptor channels open rapidly following ATP binding. The subsequent time-course of the response is dependent on the receptor in question and can be subject to regulation. In general, $P2X_1$ and $P2X_3$ receptors are classified as those showing rapid desensitisation with responses to sustained application of maximal agonist concentration decaying by >90% within 1-2 s. The rest of the homomeric and heteromeric $P2X_{2/3}$ receptors show relatively sustained responses to 1-2 s applications of agonist, and other heteromeric channels have responses with fast and slow components (see Table 1). There are some reported differences in the time-course between different studies and expression systems, suggesting that the time-course may be subject to regulation by expression level, cell type or local environment. The molecular basis of the time-course of P2X responses has been addressed in a range of studies. Initial work with chimaeric P2X receptors demonstrated that both the transmembrane domains could contribute to the time-course [37]. Subsequently, analysis of splice variants of P2X₂ receptors indicated that the intracellular C-terminal tail regulated the time-course [38–40]. Recent work has shown that part of the C-terminal tail is involved in the formation of the dilating pore of rat $P2X_2$ receptors [41], and the mutation Y378A in the P2X₄ receptor leads to instantaneous opening of a dilated state following activation by ATP [42]. The contribution of the intracellular amino terminus was shown following mutation of a protein kinase C site that is present in the amino terminus and conserved throughout the P2X receptor family. This mutation leads to a reduction in peak current amplitude and a speeding in the time-course of a range of P2X receptors [43–45]. Mutations in the extracellular domain of P2X₁ receptors can also significantly change the time-course of the response as well as ATP potency [46]. Chimaeras swapping portions of the extracellular domain have suggested that the amino terminal half of the extracellular domain contributes to desensitisation and the C terminal half to the stability of the open channel [7, 47]. Taken together, these studies show that regulation of the time-course of P2X receptor channels is a multicomponent process involving interactions of several regions of the receptor.

Desensitisation and recovery

Desensitisation is a way of modifying the responsiveness to sustained/repeated applications of ATP and consists of a cycle of (1) transition into the desensitised state corresponding, most likely, to a ligand-bound closed form of the receptor and then (2) a process of recovery from desensitisation (agonist unbinding and, possibly, a recovery step from the agonist-free desensitised to recovered state) when the channel can be activated again. For example, at P2X₁ and P2X₃ receptors, desensitisation (decay of current in the continued presence of agonist) takes ~ 1–2 s and then following washout of agonist, there is a recovery period (≥ 5 min) before a subsequent equivalent response can be evoked.

In studies on recombinant rat $P2X_1$ receptors expressed in Xenopus oocytes, Rettinger and Schmalzing characterised the desensitisation and recovery of the receptor [48]. They showed that the channel needs to open before it can go into a desensitised state, and although the EC_{50} for the peak current response is ~ 0.7μ M, sustained stimulation with low nanomolar concentrations of agonist can desensitise the receptor. This would be expected from the cumulative activation of receptors and then passing into the desensitised state, making them unavailable for subsequent activation and the long time required for recovery from desensitisation [48]. Modelling of these effects gives an EC₅₀ of steady state response of <100 nM and indicates that agonist unbinding from the receptor contributes to recovery from desensitisation. Support that the rate-limiting step for recovery from desensitisation is the unbinding of the agonist from the ligand-bound desensitised receptor comes from further studies on $P2X_{1/2}$ chimeras with the intracellular amino terminus and first transmembrane domain of P2X₂ and the extracellular, TM2 and intracellular carboxy terminal from the rat $P2X_1$ receptor [49]. In this chimera, the EC_{50} for ATP is ~ 3 nM (consistent with previous modelling studies). The rate of decay of the current on removal of the agonist is slow for ATP and for a range of agonists, there is an inverse relationship between the EC_{50} value and the wash-off rate of the response. But even under these conditions, the time constant for ATP unbinding of 63 s of the chimera is much faster than the time taken for the $P2X_1$ receptor to recover from desensitisation, suggesting that there is an additional regulatory process in recovery.

At $P2X_3$ receptors recovery from desensitisation seems to be dependent on the agonist used to activate the receptor [50, 51]. For example, at recombinant human $P2X_3$ receptors, the EC₅₀ value and time-course of desensitisa-

tion are essentially the same for ATP and $\alpha\beta$ -meATP; however, recovery from desensitisation of ATP responses is three times slower than for those to $\alpha\beta$ -meATP [51]. This clearly shows that the recovery from desensitisation is a separate process from the inactivation/desensitisation in the continued presence of agonist. In radioligand binding studies, Pratt et al. [51] showed that the rate of unbinding of [³²P]-ATP was similar to that of recovery from desensitisation, this suggests that the agonist remains bound to the desensitised receptor and once the agonist is unbound the receptor can recover quickly and be available once again for activation. This seems different from P2X₁, where recovery from desensitisation is slower than the estimate of ATP unbinding from chimaeric receptors.

Pratt et al. went on to show that in the desensitised state low nanomolar concentrations of ATP had a marked desensitising effect; however, the same concentration, when applied to fully recovered receptors, was ineffective at desensitising subsequent responses [51]. These results suggested that the desensitised state of the receptor shows increased affinity for ATP and that the long-time taken/rate limiting step for recovery results from the requirement for the agonist to dissociate from the high affinity site on the desensitised receptor. The time-course of radiolabelled ATP unbinding and that of recovery from desensitisation are similar. This suggests that agonist unbinding is ratelimiting; however, there must also be an agonist-independent recovery step to allow re-binding of agonist. A similar change in drug affinity at the P2X₃ receptor following receptor desensitisation comes from studies using the P2X₁ and P2X₃ receptor antagonist P¹,P⁵-di[inosine-5']pentaphosphate (Ip_5I) [52]. Ford et al. showed that Ip_5I is only effective as an antagonist at rat dorsal root ganglion P2X₃ receptors when the receptor has been activated/passed through the desensitised state [53]. These results suggest that P2X₃ receptor desensitisation results not only in a closed form of the channel but also in a change in ligand binding. This indicates that the conformational change associated with closing of the channel in the presence of ligand involves not only closing of the ionic pore but also a change in the extracellular ligand-binding domain to account for the increased affinity of some ligands.

Recovery of P2X₃ receptors from desensitisation can also be regulated by the ionic composition. Calcium can play a role in speeding the recovery of native transient $P2X_3$ -like responses [54–56]. Cook et al. reported that an increase in extracellular calcium speeds the time-course of recovery from desensitisation, and that barium (as effective as calcium), spermine and gadolinium are also effective (magnesium appears ineffective) [55]. One possibility coupled with the above studies is that calcium could be acting to increase the rate of unbinding [51]. Mutagenesis studies on the extracellular domain of the P2X₃ receptors suggest that some non-conserved negatively charged residues contribute to the regulatory role of calcium and the speed of recovery from desensitisation [56]. The faster rate of recovery for some of the mutants (of non-conserved negative charge) is associated with a decrease in agonist potency, and one explanation is that the speeding could

result from a change in the rate of agonist unbinding from the receptor.

Calcium can also play a role in the responsiveness of recombinant $rP2X_5$ receptor-mediated responses [57]. Prolonged (~ 15 min) exposure to calcium resulted in a 50% run-down of responses; however, the amplitude of $rP2X_5$ receptor current was greater when calcium was present at the time of ATP application, indicating that calcium has a complex role in the regulation of responsiveness at this receptor [57]. In contrast, native rat P2X₁ receptors in mesenteric arteries appear to be insensitive to changes in calcium levels [58]. Taken together, these results suggest that there are no common unifying mechanism(s) for the desensitisation and recovery of P2X receptor subtypes.

lonic pore

For a full account of ionic permeation through P2X receptors, see "Biophysics of P2X receptors" by Terrance Egan in this issue.

Regulation

The activity of P2X receptors can be regulated by a variety of signalling events, and early work by Ken Nakazawa showed the regulation of native neuronal P2X receptor channels by G-protein-coupled serotonin receptors [59] and nicotinic ion channels [60, 61]. In recombinant studies, $P2X_1$ receptors can be potentiated by mGluR1a, $P2Y_1$, $P2Y_2$ [62] and 5-HT2A receptors [63], and both $P2X_3$ and $P2X_{2/3}$ receptor currents are increased by stimulation of substance P and bradykinin [44]. One common feature of these recombinant studies is that they are all mediated by $G\alpha q$ -coupled receptors; this signalling pathway is primarily associated with the release of calcium from intracellular stores and the activation of protein kinase C. In addition, Gprotein-coupled potentiation of P2X responses can also be mimicked by phorbol ester stimulation and can be blocked by kinase inhibitors, e.g. [43], suggesting that direct phosphorylation of the channel by protein kinase C may regulate function.

The intracellular domains of the P2X receptor family show a high degree of variability in amino acid composition and length of the C-terminal tail. However, throughout the family, there is a conserved protein kinase C site in the amino terminal domain (preceded two residues by a conserved tyrosine residue). Mutation to remove the threonine residue or other disruptions of the conserved protein kinase C site led to a reduction in the peak amplitude of P2X₁ and P2X₂ receptor-mediated responses and a speeding in the time-course of the response [43, 45] or, in the case of P2X₃ receptors, abolished functional responses [44]. P2X₁ receptors are basally phosphorylated [62], and phosphorylation of T18 in the P2X₂ receptor can be detected with an anti-phosphothreonine antibody [43]. It is interesting that the effects of phorbol esters are dependent on the length of the C-terminal tail of the $P2X_2$ receptor; with no effect on the full-length receptor that gives relatively sustained responses but, in contrast, prolongation of the time-course of the desensitising truncated receptor [43]. These results and those of chimeras of the P2X₂ and P2X₃ receptor suggest that the C terminal domain of the P2X₂ receptor can regulate the contribution of the protein kinase C (PKC) site [44]. At P2X₂ receptors, the mutant K20T that removes the consensus PKC site was not potentiated by phorbol 12-myristate 13-acetate (PMA) [43], indicating that PKC phosphorylation can regulate the channel. However, in contrast, at P2X1 receptors, a series of mutants to disrupt either of the components of the PKC site were still potentiated by G-protein-coupled receptor stimulation or phorbol ester treatment [62]. These results suggest that the conserved PKC site plays different roles in the regulation of $P2X_1$ and $P2X_2$ receptors. The $P2X_1$ receptor is likely to be phosphorylated at a number of sites; however, any change in the phosphorylation status of the receptor in response to phorbol ester stimulation was below the limit of detection and suggests that the receptor may be regulated by phosphorylation of an accessory protein [62], as has been described for example for the P2X₇ receptor **[64]**.

Phosphorylation at sites other than the conserved PKC site has also been shown to regulate the activity of P2X receptor channels. Protein kinase A activation inhibits $P2X_2$ receptor-mediated responses through phosphorylation at serine 431 [65] and calcium/calmodulin-dependent protein kinase II has been shown to potentiate ATP responses by increasing trafficking of the receptor [66]. Recent studies have suggested that phosphorylation may not be restricted only to the intracellular domains and that $P2X_3$ receptors can be regulated by an ecto-protein kinase C [67].

In addition to modulation by phosphorylation, P2X receptor channels can be regulated by interaction with other proteins. Cross-talk with other ion channels has been described for native P2X₂ like receptors. For example P2X receptor and nicotinic receptor-mediated currents were non-additive in sympathetic [61, 68] and enteric neurons [69, 70], and similar results were described for recombinant P2X₂ receptors and $\alpha_3\beta_4$ nicotinic receptors [71]. It is now clear that P2X₂ receptors can also interact with 5-HT₃ [72, 73] and GABA channels [74–76].

Cross-regulation of the channels appears to be a complex process with several regulatory factors having been described. Evidence that the channels are physically associated comes from co-immunoprecipitation studies that indicated a direct interaction of the P2X₂ receptor with the 5-HT₃ receptor, $\alpha_3\beta_4$ nicotinic channels [73] and GABA_{A&C} receptor channels [75, 76], and fluorescence resonance energy transfer (FRET) studies have shown that P2X₂ and $\alpha_4\beta_2$ nicotinic channels are ~ 80 Å apart [77]. Co-localisation and FRET between P2X₂ and $\alpha_4\beta_2$ nicotinic channels can be measured in hippocampal neurons but not in ventral midbrain somata [77], suggesting that some factor is required to facilitate the interaction of the subunits. However, the molecular basis of the association of the channels remains to be determined.

A molecular basis of the cross-talk has been determined in co-expression studies of P2X₂ and 5-HT₃ or GABA ionotropic receptors. Boue-Grabot et al. showed that P2X₂ receptors and either $\alpha_3\beta_4$ nicotinic, 5-HT₃ or ionotropic GABA receptors showed cross-inhibition; however, truncation of the C-terminal tail of the P2X₂ receptor abolished the cross-talk, but did not affect the co-assembly of the channels [73, 75, 76]. Similarly, cross-talk could be inhibited by expression of a mini-gene encoding the distal C-terminal portion of the P2X₂ receptor and intracellular portions of the interacting channels, e.g. the large intracellular loop between the third and fourth transmembrane domains of the 5-HT₃ receptor [73, 75, 76]. These results suggest that the intracellular domains of the channels contribute to the cross-talk between P2X₂ and other ligandgated ion channels, but that their physical association, as shown by immunoprecipitation, is regulated by another mechanism. Studies on chimaeric P2X receptor subunits have shown that the second transmembrane domain is important for determining the heteromeric assembly of P2X receptor subunits [27], and it is possible that this region may also play a role in the association of $P2X_2$ receptors with other ligand-gated channels.

Most of the research has focused on the interactions of native and recombinant $P2X_2$ receptors, and the extent to which other P2X receptor subunits may show cross inhibition is unclear. Work on dorsal root ganglion neurons showed that fast (P2X₃), slow (P2X_{2/3}) and mixed desensitising P2X receptor currents showed occlusion with GABA currents [74]; this was dependent on calcium and chloride flow [74]. This contrasts with the recombinant studies of P2X₂ and GABA channels, where cross-talk was independent of ionic flow [75, 76]. Further studies will be required to determine the extent of interaction of different P2X receptor subunits with other ligand-gated ion channels.

In addition to cross-talk with other ligand gated channels, P2X receptor subunits may also interact with other regulatory proteins, and this is an emerging area. Affinity purification, mass spectroscopic analysis and yeast two-hybrid screens were used to analyse partner proteins for the $P2X_7$ receptors and showed that the $P2X_7$ receptor exists as a signalling complex that, by changes in phosphorylation, can regulate channel function [64, 78, 79]. Mass spectroscopic analysis of extracts of rat brain synaptosomes that bound to GST fusion proteins of the C terminal tails of $P2X_{2.5 \text{ and } 7}$ receptors have also been used to identify interacting proteins [80]. This showed that P2X_{2.5 and 7} receptors all bound to myelin basic protein, but that β III tubulin bound selectively to a proline-rich region of the C-terminal tail of the P2X₂ receptor and suggests that microtubules may be involved in the localisation and possible regulation of P2X₂ receptors. Yeast two-hybrid screening of the C-terminal domain of the P2X₂ receptor identified an interaction between the channel and the β amyloid precursor protein interacting with protein Fe65; this co-immunoprecipitates with the full-length $P2X_2$

receptor but not C-terminally truncated splice variant $P2X_2$ (b) [81]. In addition, $P2X_2$ receptors and Fe65 were colocalised at postsynaptic specialisations of excitatory synapses, and in recombinant studies, binding of Fe65 reduced the permeability change of the $P2X_2$ receptor associated with prolonged receptor activation [81]. $P2X_4$ receptors can also be regulated by protein interactions and the C-terminal domain (sequence YEQGL) of the receptor associates with the adaptor protein complex 2 (AP2) and this regulates $P2X_4$ receptor surface expression and internalisation [82, 83].

These studies show that, like other classes of ion channels, P2X receptors may be subject to regulation by a variety of mechanisms, including interactions with other ligand-gated ion channels, G-protein-coupled receptors and a range of other signalling proteins and pathways. This provides a variety of mechanisms for the dynamic regulation of P2X receptor channel function in response to a range of stimuli.

Targeting

The cell-surface expression of P2X receptors appears to be a regulated process, and recent studies have demonstrated conserved and subunit specific mechanisms associated with the C-terminal domain in the regulation of membrane targeting. Sequence analysis reveals a conserved C-terminal motif (YXXXK close to the second transmembrane domain) that is involved in P2X receptor trafficking and stabilisation of the receptor at the cell surface [84]. Mutation of this sequence decreases surface expression of a range of P2X receptors and is thought to be a general mechanism of regulation. In addition to this motif, other regions of P2X receptor subunits have been shown to regulate channel expression, and targeting. P2X₄ receptors may be selectively targeted for internalisation through clathrin-coated vesicles (see above) [82, 83]. This regulatory mechanism for P2X₄ receptors can be further modulated by the drug ivermectin that acts to increase the surface expression of P2X₄ receptors that can account, in part, for its action to potentiate ATP-evoked responses [42, 85, 86]. A C-terminal polymorphism (resulting in I568N) in the human P2X₇ receptor results in reduced cell-surface expression [87] and surface expression may also be regulated by a C-terminal dibasic lipid interaction motif [88].

Changes in the surface expression can regulate the responsiveness of cells to ATP. For example, the surface expression of $P2X_2$, $P2X_{2/6}$ and $P2X_5$ receptors and the peak amplitude of current were increased following coexpression with epithelial sodium channels [89]. In addition, changes in receptor density may not only change the number of available channels but also regulate their properties as shown for $P2X_2$ receptors, where ATP potency, rectification and pore-forming properties are modified by the expression level [90–92], suggesting that receptor clustering or interaction with other proteins can regulate their properties.

P2X receptors are unlikely to be randomly inserted into the cell membrane and can show clustering or may be targeted to different parts of the cell; for example, hippocampal interneuron P2X₂ receptor-mediated responses are recorded from pre-synaptic nerve terminals but not the cell body [93]. As the cell membrane is not homogenous, membrane proteins may be organised into signalling micro-domains. One mechanism for bringing proteins and signalling molecules together can be the inclusion in lipid rafts. These are rich in cholesterol and glycerosphingolipid and result in liquid-ordered microdomains within the liquid-disordered glycerophospholipid membrane bilayer [94]. Recent studies indicate that $P2X_1$ and $P2X_3$ receptors can localise to lipid rafts [95, 96]. For the $P2X_1$ receptor, it appears that inclusion in lipid rafts is essential for the regulation of the receptor as cholesterol depletion and disruption of the lipid rafts inhibits $P2X_1$ receptor-mediated responses [95]. P2X_{2,4 and 7} receptors in cerebellar granular neurons were not localised to lipid rafts [96]. These results suggest that P2X receptor subtypes can be differentially targeted to lipid raft domains; however the molecular basis of these and other trafficking signals to particular regions of the cell membrane remain to be determined.

Drug action at P2X receptors

ATP binds to the large extracellular loop of P2X receptors and results in channel activation. An understanding of the molecular basis of binding sites on the receptor will be useful in the development of models of the receptor for rational drug design. ATP binding to a range of enzymes and other proteins has been studied extensively and amino acids involved in forming the binding sites have been identified at the structural level. P2X receptors, however, do not contain common consensus ATP binding motifs, e.g. the Walker motif [97], and a mutagenesis approach has been used to develop and test models of the ATP binding site. A model of the P2X₄ receptor has also been proposed based on the similarity of the second half of the extracellular domain of P2X receptors with the catalytic domain of class II aminoacyl-tRNA synthetases [98] and mutagenesis [99]. This model suggests that asparagine 280 coordinates binding of the magnesium ion complexed with ATP, the adenine ring binds to phenylalanine 230 and lysine 190, histidine 286 and arginine 278 coordinate the binding of the phosphate groups and this is supported by decreases in ATP potency for the mutants K190A, F230A and D280A [99]. The mutants equivalent to lysine 190 results in a decrease in ATP potency at $P2X_1$ and $P2X_2$ receptors supporting a role of this conserved amino acid in ATP action. However, there are also differences between the $P2X_4$ receptor model and the $P2X_1$ receptor, where the equivalent mutation to phenylalanine 230 was without effect on ATP action [100]. The contribution of the first half of the receptor to this model remains to be elucidated, and this region also includes a conserved lysine residue that has been shown to have a major effect on ATP potency at $P2X_1$ and $P2X_2$ receptors [46]. In addition, residues corresponding to K309 in the $P2X_1$ receptor, when mutated in $P2X_2$ and $P2X_7$ receptors, produced a large decrease in ATP potency [46, 101, 102], and the nearby residue R307 in the $P2X_7$ receptor that has been shown to regulate ATP potency [103], are not predicted to interact directly with ATP in the class II aminoacyl-tRNA synthetase model. One possibility is that these discrepancies between the receptors may reflect the differences in pharmacology between the subtypes.

It seems likely that residues important for ATP action at the receptor would be conserved in the family and in the extracellular loop of the P2X receptors >90 of the ~280 amino acids identical in at least five of the seven P2X receptor subunits. Alanine-scanning-based mutagenesis has been used to look at the role of these conserved amino acids, and a picture has emerged of residues and regions that can play an important role in mediating the action of ATP and has led to the development of a model of the agonist binding site. The P2X receptor is a dynamic protein with changes in its structural conformation associated with ATP binding and subsequent opening of the receptor channel. Mutations could, thus, result in changes in ATP potency through an effect on the ATP binding site or conformational changes associated with the opening of the channel. Comparison with residues involved in ATP binding at solved crystal structures has been used to substantiate contributions to the binding site of $P2X_1$ receptors. Changes in gating of the channel may also regulate the potency of agonists at the receptor, and residues in the pore lining transmembrane domains can regulate ATP potency [104].

ATP is a charged molecule with negative charge on the phosphate groups and in physiological solutions positive charge associated with the magnesium complexed with ATP. Thus, it seemed likely that as for other ATP binding proteins, conserved charged residues in the P2X receptor could be important in coordinating the action of ATP. The contribution of conserved charged residues was determined in both human P2X₁ and rat P2X₂ receptor backgrounds [46, 101, 105]. These showed that mutation of positively charged lysine (K) and arginine (R) residues K68, K70, R292 and K309 (P2X₁ receptor numbering) resulted in a large decrease (up to a 1,000-fold decrease for K68A) in ATP potency at the receptor, suggesting that these residues play a role in the coordination of the negatively charged phosphate group of ATP.

In addition, mutation of K188 in the P2X₂ receptor resulted in an ~ 100-fold decrease in ATP potency (the equivalent mutation K190A had a small effect at the P2X₁ receptor, and nearby residues decreased potency at the P2X₁ receptor, indicating a contribution of this region to ATP action). At P2X₇ receptors, mutagenesis [102] and characterisation of polymorphisms in the receptor support the role of these charged amino acids in the ATP function at the receptor [102, 103]. Little or no change in ATP potency was seen at individual point mutants to replace negatively charged glutamate (E) or aspartate residues (D) at P2X₁ receptors; a similar pattern was seen on a P2X₂ receptor background with the exception of an \sim 100-fold decrease in ATP potency at the D259A mutant and no response were detected for E85A and D261A mutant P2X₂ receptors.

These results show that there is consensus within the P2X receptors of conserved core residues that make an important contribution to ATP action consistent with the likely evolution of the family of P2X receptor subunits from a common ancestor. In addition, these studies on the charged amino acids also demonstrate that there are some differences between subunits. This may reflect the different pharmacological properties of the channels and may indicate that the interaction of conserved and non-conserved amino acids may play a role in regulation or fine-tuning of the properties.

Uncharged polar amino acids can also contribute to ligand action at receptors either by hydrogen bonding with the agonist or stabilising structural changes. Alanine mutants of conserved uncharged polar amino acids demonstrated a contribution of T186 and N290 (P2X1 receptor numbering) at both $P2X_1$ and $P2X_2$ receptors [101, 106] and associated with the decrease in ATP potency was a loss of function of the partial agonists BzATP and Ap₅A at the $P2X_1$ receptor [106]. Aromatic amino acids have also been shown to be involved in ATP binding at a range of proteins. Alanine replacement mutagenesis of conserved aromatic amino acids in a $P2X_1$ receptor background showed that phenylalanine (F) at positions 185 and 291 reduced ATP potency. These residues are adjacent to T186 and N290-R292 and suggest that the motifs F185T186 and N290F291R292 could be involved in coordinating the binding of the adenine ring of ATP [100]. Similar contributions of aromatic residues have been described for the dead-box helicases [107].

Conserved cysteine, proline and glycine residues are also of interest, as these may give some structural constraint to the receptor through the formation of disulphide bonds, introduction of kinks/tight turns in the protein or introduction of flexibility, respectively. The ten conserved cysteine residues in the extracellular domain of the P2X receptors are likely to form disulphide bonds constraining parts of the receptor [108, 109]. The introduction of cysteine residues and the formation of disulphide bonds has also proved useful in defining the proximity of residues that can be incorporated into models; at the P2X₂ receptor, close proximity between residues in adjacent subunits has been shown for residues V48-I328 and H120-H213 [16, 33, 110]. The unique properties of individual conserved proline and glycine residues in the extracellular loop do not appear to play an essential role in ATP action at the $P2X_1$ receptor [111, 112].

Mutation of the majority of conserved amino acids in the extracellular loop of the $P2X_1$ receptor has little or no effect on the response to ATP, indicating that they do not play an essential role, and this adds weight to mutants where a substantial change is seen (Fig. 1). The results from systematic alanine scanning of conserved residues in the extracellular loop give rise to a model of the site of ATP action at the $P2X_1$ receptor, with K68 and K309 binding to the phosphate tail and the motifs F185T186 and

N290F291R292 coordinating the binding of the adenine ring (Fig. 2). A similar binding environment has been described for the crystal structure of rat synapsin II (PDB code 1i71) [113], and a molecular model of the P2X₁ receptor binding site based on this is shown in Fig. 3. At the receptor, three molecules of ATP appear to be required to open the channel; however, it remains to be determined whether these ATP binding sites are contained within individual receptor subunits or form at the interface between subunits.

Molecular manipulations define functional roles

P2X receptors are expressed widely throughout the body, and functional responses have been described in many cell types (for an extensive review, see [4]). ATP can be released from a variety of sources including neurons (coreleased with other neurotransmitters, e.g. noradrenaline or acetylcholine), damaged cells, platelets, in response to an increase in pO₂ [114], and recent studies show that connexin gap junctions may be involved in ATP release [115, 116]. In many cases, the properties of recombinant channels correspond well with those of native receptors; however, often due to the expression of multiple P2X receptor subtypes within a cell, splice variants, heteromerisation of subunits, and the lack of a full range of

а

selective drugs, the attribution of the molecular basis of native P2X receptors is not always possible. Molecular approaches, such as knockout mice, anti-sense, interference RNA and dominant negative mini-genes, have been used to substantiate the role of particular P2X receptor subunits in native responses.

 $P2X_1$ receptors The contribution of $P2X_1$ receptors to a range of physiological responses has been supported by studies on receptor deficient and transgenic mice. Native responses corresponding to homomeric $P2X_1$ receptors have been described in arterial, vas deferens and bladder smooth muscle [1, 117–119]. P2X-receptor-mediated currents and nerve-evoked contractions are abolished in P2X₁-receptor-deficient mice supporting a role for homomeric $P2X_1$ receptor channels in these tissues [120–122]. In addition, these mice have established a role for the P2X₁ receptor in the autoregulatory control of renal blood flow [123, 124]. $P2X_1$ receptors are also expressed in platelets and mediate changes in intracellular calcium [125]. Regulation of $P2X_1$ receptors, however, has a large effect on the thromboembolism with $P2X_1$ receptor deficiency providing protection [126] and overexpression of $P2X_1$ receptors promoting mortality [127]. It seems likely that the $P2X_1$ receptor can play a priming role in the responsiveness to thrombotic stimuli [126, 127]. In the nervous system, the P2X1 receptor subunit contributes $\alpha\beta$ -meATP sensitivity to neuronal P2X receptors in

	<u>TM1</u>					
41	LVYVIGWVFL	YEKGYQTSSG	LISSVSVKLK	G LAVTQLPGL	GPQV WD VA DY	
91	VFPAQGDNSF	VVMTNFIVTP	KQTQGYCAEH	PEGGI C KE D S	G C TP G KAKRK	
141	AQGIR TG KCV	AFNDTVK TCE	IFG WCP V E VD	DDIPRPALLR	EAE NFT LFI K	
191	NSISFPRFKV	NRRNLVEEVN	AAHMKTCLFH	KTLHPLCPVF	QL G YVVQES G	
241	QNFSTLAEKG	GVVGITIDWH	CDLD WHVRH C	R PIYEF HGLY	EEKNLSP GFN	
291	FRFARHFVEN	GTNYRHLFKV	FGIRFDILVD	GKAGKFD <u>IIP</u>	TMTTIGSGIG	
	TM2					
b	<u>TM1</u>					
b 41	TM1 LVYVIGWVFL	YE-GTSSG	LISSVSV <u>K</u> L <u>K</u>	G LAVTQLPGL	GPQVVA	
b 41 91	TM1 LVYVIGWVFL VF P A-GDNS-	YE-GTSSG VVM-NFIV-P	LISSVSV <mark>K</mark> L <mark>K</mark> K-TQ-Y C A-H	<u>G</u> LAVTQLPGL PEGGI C KE-S	GPQVVA G C T-AKAKRK	
b 41 91 141	TM1 LVYVIGWVFL VF <u>P</u> A-GDNS- AQ-IRK C V	YE-GTSSG VVM-NFIV-P AFNDTVK-C-	LISSVSV <mark>K</mark> L <mark>K</mark> K-TQ-Y C A-H IFG -C- V-VD	G LAVTQLPGL PEGGI C KE-S DDIPRPALLR	GPQVVA GCT-AKAKRK EAE- <u>FT</u> LFI-	
b 41 91 141 191	TM1 LVYVIGWVFL VF <u>P</u> A-GDNS- AQ-IRK C V -SISF-R-KV	YE-GTSSG VVM-NFIV-P AFNDTVK-C- V N-R-LVEEVI	LISSVSV <mark>K</mark> L <mark>K</mark> K-TQ-Y C A-H IFG-C-V-VD N AAHM-T C LFF	GLAVTQLPGL PEGGICKE-S DDIPRPALLR KTLH-LC-V-	GPQVVA G C T-AKAKRK E A E- FT LFI- - QL-YV V QES-	
b 41 91 141 191 241	TM1 LVYVIGWVFL VF P A-GDNS- AQ-IRK C V -SISF-R-KV QN-STL A EKG	YE-GTSSG VVM-NFIV-P AFNDTVK-C- V N-R-LVEEVN VV-ITIDWH (LISSVSV <mark>K</mark> L <u>K</u> K-TQ-YCA-H IFG-C-V-VD N AAHM-TCLFF C-L-WHVRHC F	GLAVTQLPGL PEGGICKE-S DDIPRPALLR H KTLH-LC-V- RPI-E-HGLY H	GPQVVA GCT-AKAKRK EAE- <u>FT</u> LFI- QL-YVVQES- EEKNLSP <u>N</u>	
b 41 91 141 191 241 291	TM1 LVYVIGWVFL VF <u>P</u> A-GDNS- AQ-IRK C V -SISF-R-KV QN-STLAEKG FR-A-H-VEN	YE-GTSSG VVM-NFIV-P AFNDTVK-C- V N-R-LVEEVN VV-ITIDWH (GTNY-HLFKV	LISSVSV <u>K</u> L <u>K</u> K-TQ-YCA-H IFG-C-V-VD N AAHM-TCLFH C-L-WHVRHC H IILVD	GLAVTQLPGL PEGGICKE-S DDIPRPALLR KTLH-LC-V- PI-E-HGLY H -KAD <u>IIP</u>	GPQVVA GCT-AKAKRK EAE- <u>FT</u> LFI- QL-YVVQES- SEKNLSP <u>N</u> TMTTIGSGIG	

Fig. 1 Contribution of conserved amino acids in the extracellular loop to ATP potency at $P2X_1$ receptors. **a** Human $P2X_1$ receptor amino acids that are conserved in at least five of the seven human P2X receptor subunits in *red* (those that have been mutated to alanine are in *bold*) and the two transmembrane domains (residues predicted to form the transmembrane domains TM1 and TM2 are in *black and underlined*). (**b**) Summary of the effects of individual alanine point mutations that resulted in a decrease in ATP potency are shown in *red* [46, 100, 106, 111, 112]. Residues where individual alanine substitution resulted in either no change or less than a fourfold change in ATP potency are shown as *grey dash* (–) [46, 100, 106, 111, 112]. Conserved cysteine residues that are

thought to form disulphide bonds are shown in *blue*; these correspond to the pairs C117-C165, C126-C149, C132-C159, C217-C227 and C261-C270 [108]. Residues where alanine point mutants were non-functional are shown in *purple*; phenylalanine 195 and tryptophan 259 were mutated to tyrosine to conserve the aromatic group. There was no effect on channel properties [100]: for proline 272 substitution with glycine, isoleucine or phenylalanine rescued channel function [111], and at glycine position 96, and 301 channel function was rescued by proline or cysteine, aspartic acid, phenylanine, isoleucine, lysine or asparagine was tolerated [112]

494

Fig. 2 Model of the $P2X_1$ receptor. The intracellular amino and carboxy termini are associated with conserved protein kinase C (PKC) and trafficking motifs, respectively. The channel has two transmembrane domains (TM1 and TM2). The large extracellular loop is the site of ATP action; residues shown highlighted in *red* correspond to conserved amino acids that when mutated to alanine resulted in a significant decrease in ATP potency. The conserved positively charged lysine (K) residues 68 and 309, as well as arginine (R) 292, may be involved in the regulation of binding of the negatively charged phosphate tail of ATP. Phenylalanines (F) 185 and 292 may coordinate the binding of the adenine ring. The proposed disulphide bonds are shown and include a highly disulphided domain between cysteine (C) residues 117–165. *Dotted lines* correspond to regions of the extracellular domain where their function remains to be determined

sympathetic superior cervical ganglion neurons [128] and presynaptic receptors in the auditory brainstem [129].

 $P2X_2$ receptors $P2X_2$ receptors were originally cloned from the rat PC12 phaeochromocytoma cell line [2] and, subsequently, have been shown to be expressed throughout the nervous system. $P2X_2$ -receptor-deficient mice have shown the role of these receptor subunits in the presynaptic regulation of transmitter release in the hippocampus [93], carotid body function and the regulatory responses to hypoxia [130], fast synaptic excitation in myenteric neurons and peristalsis of the small intestine [131]. $P2X_2$ receptors also mediate responses of sympathetic neurons [132].

 $P2X_3$ receptors These receptor subunits are found predominantly in sensory neurons and their role has been documented following molecular manipulation of receptor expression. These studies have shown a contribution of the $P2X_3$ receptor subunits to pain sensation, visceral mechanosensory transduction and gut peristalsis [133–138].

Fig. 3 A model of the P2X₁ receptor ATP-binding domain based on mutagenesis data and the crystal structure of rat synapsin II with ATP bound (PDB code 1i7l) [113]. Residues asparagine-290 (N290) [106], phenylalanine-291 (F291) [100] and arginine-292 (R292) [46] form a highly conserved motif across the P2X family, and mutagenesis studies confirm its role in ATP action. A similar motif (NWK) is found in rat synapsin II and also forms part of the ATP-binding environment. Positively charged lysine residues (K68, K70 and K309) are thought to interact with the negatively charged phosphates of ATP in the P2X₁ receptor [46]; they are also present in the ATP-binding environment of rat synapsin II. The aromatic residue phenylalanine-185 (F185) may be involved with coordinating the binding of the adenine ring of ATP, a corresponding phenylalanine residue was found in the ATP-binding site of rat synapsin II

 $P2X_{2/3}$ receptors $P2X_{2/3}$ receptors were the first described heteromeric P2X receptor channels [12] and are the first heteromeric channels to be studied following gene knockout [130, 132]. Generation of these mice by breeding of P2X₂ and P2X₃ knockouts generated fewer double knockouts than predicted and ~ 90% of double KO mice born died before weaning, suggesting that the heteromeric receptor plays an important physiological role. The 10% of $P2X_{2/3}$ knockout mice that survived to adulthood appeared normal. Using these mice $P2X_{2/3}$ receptors have been shown to be involved in mechanosensory transduction in the bladder, P2X receptor responses in nodose sensory neurons and may be involved in persistent inflammatory pain and contribute to sensitisation centrally [132]. $P2X_{2/3}$ receptors may also contribute to responses to hypoxia; following P2X₃-receptor-deletion sinus nerve activity to hypoxia is similar to WT; $P2X_2$ receptor deletion results in a decrease in responsiveness that is further reduced in $P2X_{2/3}$ knockout mice, indicating that these heteromeric channels contribute to sinus nerve discharge and the response to hypoxia [130]. Myenteric AH neurons are also likely to express functional $P2X_{2/3}$ receptors [131, 138]. $P2X_{2/3}$ receptor knockout mice have also been used to show that ATP is a transmitter involved in taste sensation [139]. Data from either $P2X_2$ or $P2X_3$ KO strains show only a modest loss in taste responses compared to abolition of taste-evoked activity in the $P2X_{2/3}$ knockout, suggesting that the heteromeric channel plays an important role in gustatory signalling.

 $P2X_4$ receptors Nerve damage can lead to normally innocuous tactile stimuli becoming painful (allodynia), and these effects can be reversed by P2X4 receptor antisense treatment [140]. Stimulation of $P2X_4$ receptors is an essential step in the induction, and maintenance of allodynia and spinal nerve injury results in an increase in P2X₄ receptor levels in the affected side of the spinal cord resulting from an increased expression of P2X₄ receptors in hyperactive microglia [140]. Subsequent work has shown that activated microglia release brain-derived neurotrophic factor. This modified anion gradients in spinal cord neurons, and changed GABAergic transmission from inhibitory to excitatory, and this removal of inhibitory signalling resulted in allodynia [141]. Recent work has also shown that P2X₄ receptors expressed on endothelial cells can contribute to the localised regulation of blood flow [142].

 $P2X_5$ receptors Polymorphisms have been described for human $P2X_5$ receptors. These single nucleotide polymorphisms can lead to truncation of the receptor due to disruption of splicing [143–145] and it is estimated that only ~ 16% of individuals may be able to produce functional full-length channels [144].

 $P2X_6$ receptors The P2X_6 receptor shows widespread expression in the central nervous system [146]; however, the functional roles of this receptor subunit remain to be determined. One interesting feature of the channel is that, in most cases, recombinant expression fails to form functional homo-trimeric channels [21, 25] possibly due to problems with glycosylation [147]. This raises the question of whether the P2X_6 receptor readily forms functional homomeric channels in vivo or if it normally functions as part of a heteromeric P2X receptor.

 $P2X_7$ receptors The P2X₇ receptor is expressed predominantly by cells of immune origin, where its activation leads the release of the cytokine interleukin-1 β (IL-1 β) and is involved in inflammatory responses [148], models of arthritis [149] and cell death [150]. In a partial nerve ligation model of neuropathic hypersensitivity, thermal and mechanical hyperalgesia was absent in P2X₇ receptor KO mice implicating this receptor, and the subsequent release of IL-1 β , in the induction and maintenance of pain states [151]. This suggests that P2X₇ receptor antagonists may be effective analgesics. Knockout mice have also identified a role for the P2X7 receptor in osteoclasts and bone formation showing reduced bone thickening and increased resorption [152–154] possibly as a result of reduced skeletal mechanotransduction [155]. The contribution of P2X₇ receptors in mice may also have been underestimated as in some mouse strains, in which a mutation in the cytoplasmic domain decreases sensitivity to activation [156]. The function of human $P2X_7$ receptors can also be affected by a range of polymorphisms that have proved useful in demonstrating the contribution of these receptors [87, 103, 157–159]. The P2X₇ receptor KO mice have also proved to be useful in the assessment of antibody selectivity and have shown that a number of commonly used antibodies that are useful in peripheral tissues show non-selective activity in CNS tissues. This is consistent with in situ hybridisation work and reporter studies with the LacZ transgene, which suggest that $P2X_7$ receptor expression is absent or below the limit of detection in neuronal tissues [160, 161]. These studies show that it is important, wherever possible, to verify the selectivity of antibodies in KO models and, for example, studies with anti-P2X₁ receptor antibodies, have shown them to be effective in a range of peripheral cell types, including smooth muscle, but are non-selective in neuronal tissues [162].

Concluding remarks

In the 12 years since the cloning of the first P2X receptors, our understanding of the molecular basis of their properties and their physiological roles has come a long way. The future challenges include understanding (1) how cells that express multiple P2X receptor subunits regulate the assembly and trafficking of different functional trimeric receptors, (2) the contribution of P2X receptors to localised signalling domains/complexes that can be involved in cross-talk and regulation and (3) the sites of drug action at P2X receptors.

Acknowledgements We thank the Wellcome Trust for support and Dr. Jurgen Rettinger for discussion on the time-course and modelling of desensitisation of P2X-receptor-mediated responses.

References

- Valera S, Hussy N, Evans RJ, Adami N, North RA, Surprenant A, Buell G (1994) A new class of ligand-gated ion channel defined by P2X receptor for extraxcellular ATP. Nature 371:516–519
- 2. Brake AJ, Wagenbach MJ, Julius D (1994) New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371:519–523
- 3. Khakh BS, Burnstock G, Kennedy C, King BF, North RA, Seguela P, Voigt M, Humphrey PPA (2001) International Union of Pharmacology, XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits. Pharmacol Rev 53:107–118
- North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067
- Burnstock G (2002) Potential therapeutic targets in the rapidly expanding field of purinergic signalling. Clin Med 2:45–53
- Egan TM, Cox JA, Voigt MM (2004) Molecular Structure of P2X Receptors. Curr Top Med Chem 4:821–829
- Stojilković SS, Tomić M, He ML, Yan Z, Koshimizu TA, Zemkova H (2005) Molecular dissection of purinergic P2X receptor channels. Ann N Y Acad Sci 1048:116–130
- Khakh BS (2001) Molecular physiology of P2X receptor and ATP signalling at synapses. Nat Rev Neurosci 2:165–174
- Vial C, Roberts JA, Evans RJ (2004) Molecular properties of ATP-gated P2X receptor ion channel. Trends Pharmacol Sci 25:487–493
- Surprenant A, Buell G, North RA (1995) P2X receptors bring new structure to ligand-gated ion channels. Trends Neurosci 18:224–229

- Newbolt A, Stoop R, Virginio C, Surprenant A, North RA, Buell G, Rassendren F (1998) Membrane topology of an ATP-gated ion channel (P2X receptor). J Biol Chem 273:15177–15182
- Lewis C, Neidhart S, Holy C, North RA, Buell G, Surprenant A (1995) Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 377:432–435
- Nicke A, Baumert H, Rettinger J, Eichele A, Lambrecht G, Mutschler E, Schmalzing G (1998) P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels. EMBO J 17:3016–3028
- Aschrafi A, Sadtler S, Niculescu C, Rettinger J, Schmalzing G (2004) Trimeric architecture of homomeric P2X2 and heteromeric P2X1+2 receptor subtypes. J Mol Biol 342:333–343
- Stoop R, Thomas S, Rassendren F, Kawashima E, Buell G, Surprenant A, North RA (1999) Contribution of individual subunits to the multimeric P2X(2) receptor: estimates based on methanethiosulfonate block at T336C. Mol Pharmacol 56:973–981
- Nagaya N, Tittle RK, Saar N, Dellal SS, Hume RI (2005) An intersubunit Zn2+ binding site in rat P2X2 receptors. J Biol Chem 280(28):25982–25993
- Bean BP (1990) ATP-activated channels in rat and bullfrog sensory neurons: concentration dependence and kinetics. J Neurosci 10(1):1–10
- Ding S, Sachs F (1999) Single channel properties of P2X2 purinoceptors. J Gen Physiol 113:695–720
- Gouaux E (2004) Structure and function of AMPA receptors. J Physiol 554:249–253
- Kim M, Yoo OK, Choe S (1997) Molecular assembly of the extracellular domain of P2X2, an ATP-gated ion channel. Biochem Biophys Res Commun 240:618–622
- Barrera NP, Ormond SJ, Henderson RM, Murrell-Lagnado RD, Edwardson JM (2005) AFM imaging demonstrates that P2X2 receptors are trimers, but that P2X6 receptor subunits do not oligomerize. J Biol Chem 280:10759–10765
- 22. Nakazawa K, Yamakoshi Y, Tsuchiya T, Ohno Y (2005) Purification and aqueous phase atomic force microscopic observation of recombinant P2X2 receptor. Eur J Pharmacol 518:107–110
- Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol 346:967–989
- 24. Mio K, Kubo Y, Ogura T, Yamamoto T, Sato C (2005) Visualization of the trimeric P2X(2) receptor with a crowncapped extracellular domain. Biochem Biophys Res Commun 337:998–1005
- Torres GE, Egan TM, Voigt MM (1999) Hetero-oligomeric assembly of P2X receptor subunits. J Biol Chem 274:6653–6659
- Nicke A, Kerschensteiner D, Soto F (2005) Biochemical and functional evidence for heteromeric assembly of P2X1 and P2X4 subunits. J Neurochem 92:925–933
- Torres GE, Egan TM, Voigt MM (1999) Identification of a domain involved in ATP-gated ionotropic receptor subunit assembly. J Biol Chem 274:22359–22365
- Brown SG, Townsend-Nicholson A, Jacobson KA, Burnstock G, King BF (2002) Heteromultimeric P2X(1/2) receptors show a novel sensitivity to extracellular pH. J Pharmacol Exp Ther 300:673–680
- 29. Haines WR, Torres GE, Voigt MM, Egan TM (1999) Properties of the novel ATP-gated ionotropic receptor composed of the P2X1 and P2X5 isoforms. Mol Pharmacol 56:720–727
- 30. Surprenant A, Schneider DA, Wilson HA, Galligan JJ, North RA (2000) Functional properties of heteromeric P2X(1/5) receptors expressed in HEK cells and excitatory junction potentials in guinea-pig submucosal arterioles. J Auton Nerv Syst 81:249–263
- King BF, Townsend-Nicholson A, Wildman SS, Thomas T, Spyer KM, Burnstock G (2000) Coexpression of rat P2X2 and P2X6 subunits in *Xenopus* oocytes. J Neurosci 20:4871–4877
- Le K-T, Babinski K, Seguela P (1998) Central P2X4 and P2X6 channel subunits coassemble into a novel heteromeric ATP receptor. J Neurosci 18:7152–7159

- 33. Jiang LH, Kim M, Spelta V, Bo X, Surprenant A, North RA (2003) Subunit arrangement in P2X receptors. J Neurosci 23:8903–8910
- Cook SP, Vulchanova L, Hargreaves KM, Elde RP, McCleskey EW (1997) Distinct ATP receptors on pain-sensing and stretchsensing neurons. Nature 387:505–508
- 35. Thomas S, Virginio C, North RA, Surprenant A (1998) The antagonist trinitrophenyl-ATP reveals co-existence of distinct P2X receptor channels in rat nodose neurons. J Physiol 509:411–417
- Grubb BD, Evans RJ (1998) Characterization of cultured dorsal root ganglion neuron P2X receptors. Eur J Neurosci 11:149–154
- Werner P, Seward EP, Buell G, North RA (1996) Domains of P2X receptors involved in desensitization. Proc Natl Acad Sci U S A 93:15485–15490
- 38. Brandle U, Spielmanns P, Osteroth R, Sim J, Surprenant A, Buell G, Ruppersberg JP, Plinkert PK, Zenner H-P, Glowatzki E (1997) Desensitisation of the P2X2 receptor controlled by alternative splicing. FEBS Lett 404:294–298
- 39. Simon J, Kidd EJ, Smith FM, Chessel IP, Murrell-Lagnado R, Humphrey PPA, Barnard EA (1997) Localization and functional expression of splice variants of the P2X2 receptor. Mol Pharmacol 52:237–248
- 40. Smith FM, Humphry PPA, Murrell-Lagnado RD (1999) Identification of amino acids within the P2X2 receptor Cterminus that regulate desensitisation. J Physiol 520:91–99
- Eickhorst AN, Berson A, Cockayne D, Lester HA, Khakh BS (2002) Control of P2X(2) channel permeability by the cytosolic domain. J Gen Physiol 120:119–131
- 42. Toulme E, Soto F, Garret M, Boue-Grabot E (2005) Functional properties of internalization-deficient P2X4 receptors reveal a novel mechanism of ligand-gated channel facilitation by ivermectin. Mol Pharmacol 69(2):576–587
- 43. Boue-Grabot E, Archambault V, Seguela P (2000) A protein kinase C site highly conserved in P2X subunits controls the desensitisation kinetics of P2X2 ATP-gated channels. J Biol Chem 275:10190–10195
- 44. Paukert M, Osteroth R, Geisler H-S, Brandle U, Glowatzki E, Ruppersberg JP, Grunder S (2001) Inflamatory mediators potentiate ATP-gated channels through the P2X3 subunit. J Biol Chem 276:21077–21082
- 45. Ennion SJ, Evans RJ (2002) P2X(1) receptor subunit contribution to gating revealed by a dominant negative PKC mutant. Biochem Biophys Res Commun 291:611–616
- 46. Ennion S, Hagan S, Evans RJ (2000) The role of positively charged amino acids in ATP recognition by human P2X1 receptors. J Biol Chem 275:29361–29367
- Zemkova H, He ML, Koshimizu TA, Stojilkovic SS (2004) Identification of ectodomain regions contributing to gating, deactivation, and resensitization of purinergic P2X receptors. J Neurosci 24:6968–6978
- Rettinger J, Schmalzing G (2003) Activation and desensitization of the recombinant P2X1 receptor at nanomolar ATP concentrations. J Gen Physiol 121:451–461
- Rettinger J, Schmalzing G (2004) Desensitization masks nanomolar potency of ATP for the P2X1 receptor. J Biol Chem 279:6426–6433
- 50. Sokolova E, Skorinkin A, Fabbretti E, Masten L, Nistri A, Giniatullin R (2004) Agonist-dependence of recovery from desensitization of P2X3 receptors provides a novel and sensitive approach for their rapid up or downregulation. Br J Pharmacol 141:1048–1058
- Pratt EB, Brink TS, Bergson P, Voigt MM, Cook SP (2005) Use-dependent inhibition of P2X3 receptors by nanomolar agonist. J Neurosci 25:7359–7365
- 52. Dunn PM, Liu M, Zhong Y, King BF, Burnstock G (2000) Diinosine pentaphosphate: an antagonist which discriminates between recombinant P2X3 and P2X2/3 receptors and between two P2X receptors in rat sensory neurones. Br J Pharmacol 130:1378–1384

- 53. Ford KK, Matchett M, Krause JE, Yu W (2005) The P2X3 Antagonist P1, P5-Di[inosine-5'] pentaphosphate binds to the desensitized state of the receptor in rat dorsal root ganglion neurons. J Pharmacol Exp Ther 315:405–413
- Cook SP, McCleskey EW (1997) Desensitization, recovery and Ca(2+)-dependent modulation of ATP-gated P2X receptors in nociceptors. Neuropharmacology 36:1303–1308
- 55. Cook SP, Rodland KD, McCleskey EW (1998) A memory for extracellular Ca2+ by speeding recovery of P2X receptors from desensitisation. J Neurosci 18:9238–9244
- 56. Fabbretti E, Sokolova E, Masten L, D'Arco M, Fabbro A, Nistri A, Giniatullin R (2004) Identification of negative residues in the P2X3 ATP receptor ectodomain as structural determinants for desensitization and the Ca2+-sensing modulatory sites. J Biol Chem 279:53109–53115
- 57. Wildman SS, Brown SG, Rahman M, Noel CA, Churchill L, Burnstock G, Unwin RJ, King BF (2002) Sensitization by extracellular Ca(2+) of Rat P2X(5) Receptor and Its Pharmacological Properties Compared with Rat P2X(1). Mol Pharmacol 62:957–966
- 58. Lewis CJ, Evans RJ (2000) Lack of run-down of smooth muscle P2X receptor currents recorded with the amphotericin permeabilised patch technique; physioloigcal and pharmacological characterisation of the properties of mesenteric artery P2X receptor ion channels. Br J Pharmacol 131:1659–1666
- Nakazawa K, Inoue K, Koizumi S (1994) Facilitation by 5-hydroxytryptamine of ATP-activated current in rat pheochromocytoma cells. Pflugers Arch 427:492–499
- 60. Nakazawa K, Fujimori K, Takanaka A, Inoue K (1991) Comparison of adenosine triphosphate- and nicotine-activated inward currents in rat phaeochromocytoma cells. J Physiol 434:647–660
- Nakazawa K (1994) ATP-activated current and its interaction with acetylcholine-activated current in rat sympathetic neurons. J Neurosci 14:740–750
- Vial C, Tobin AB, Evans RJ (2004) G-protein-coupled receptor regulation of P2X(1) receptors does not involve direct channel phosphorylation. Biochem J 382:101–110
- 63. Ase AR, Raouf R, Belanger D, Hamel E, Seguela P (2005) Potentiation of P2X1 ATP-gated currents by 5-hydroxytryptamine 2A receptors involves diacylglycerol-dependent kinases and intracellular calcium. J Pharmacol Exp Ther 315:144–154
- 64. Adinolfi E, Kim M, Young MT, Di Virgilio F, Surprenant A (2003) Tyrosine phosphorylation of HSP90 within the P2X7 receptor complex negatively regulates P2X7 receptors. J Biol Chem 278:37344–37351
- Chow Y-W, Wang H-L (1998) Functional modulation of P2X2 receptors by cyclic AMP-dependent protein kinase. J Neurochem 70:2606–2612
- 66. Xu GY, Huang LY (2004) Ca2+/calmodulin-dependent protein kinase II potentiates ATP responses by promoting trafficking of P2X receptors. Proc Natl Acad Sci U S A 101(32):11866–11873
- 67. Wirkner K, Stanchev D, Koles L, Klebingat M, Dihazi H, Flehmig G, Vial C, Evans RJ, Furst S, Mager PP, Eschrich K, Illes P (2005) Regulation of human recombinant P2X3 receptors by ecto-protein kinase C. J Neurosci 25:7734–7742
- Searl TJ, Redman RS, Silinsky EM (1998) Mutual occlusion of P2X ATP receptors and nicotinic receptors on sympathetic neurons of guinea-pig. J Physiol 510:783–791
- 69. Zhou X, Galligan JJ (1998) Non-additive interaction between nicotinic cholinergic and P2X purine receptors in guinea-pig enteric neurons in culture. J Physiol 513(3):685–697
- Barajas-Lopez C, Espinosa-Luna R, Zhu Y (1998) Functional interactions between nicotinic and P2X channels in short-term cultures of guinea-pig submucosal neurons. J Physiol 513 (3):671–683
- Khakh BS, Zhou X, Sydes J, Galligan JJ, Lester HA (2000) State-dependent cross-inhibition between transmitter-gated cation channels. Nature 406:405–410

- 72. Barajas-Lopez C, Montano LM, Espinosa-Luna R (2002) Inhibitory interactions between 5-HT3 and P2X channels in submucosal neurons. Am J Physiol Gastrointest Liver Physiol 283:G1238–G1248
- Boue-Grabot E, Barajas-Lopez C, Chakfe Y, Blais D, Belanger D, Emerit MB, Seguela P (2003) Intracellular cross talk and physical interaction between two classes of neurotransmittergated channels. J Neurosci 23:1246–1253
- 74. Sokolova E, Nistri A, Giniastullin R (2001) Negative cross talk between anionic GABAA and cationic P2X ionotropic receptors of dorsal root ganglion neurons. J Neurosci 21:4958–4968
- 75. Boue-Grabot E, Emerit MB, Toulme E, Seguela P, Garret M (2004) Cross-talk and co-trafficking between {rho}1/GABA receptors and ATP-gated channels. J Biol Chem 279:6967–6975
- Boue-Grabot E, Toulme E, Emerit MB, Garret M (2004) Subunitspecific coupling between gamma-aminobutyric acid type A and P2X2 receptor channels. J Biol Chem 279:52517–52525
- 77. Khakh BS, Fisher JA, Nashmi R, Bowser DN, Lester HA (2005) An angstrom scale interaction between plasma membrane ATP-gated P2X2 and alpha4beta2 nicotinic channels measured with fluorescence resonance energy transfer and total internal reflection fluorescence microscopy. J Neurosci 25:6911–6920
- Kim M, L-H. Jiang, Wilson HL, North RA, Surprenant A (2001) Proteomic and functional evidence for a P2X7 receptor signalling complex. EMBO J 20:6347–6358
- 79. Wilson HL, Wilson SA, Surprenant A, North RA (2002) Epithelial membrane proteins induce membrane blebbing and interact with the P2X7 receptor C terminus. J Biol Chem 277:34017–34023
- Gendreau S, Schirmer J, Schmalzing G (2003) Identification of a tubulin binding motif on the P2X2 receptor. J Chromatogr B Analyt Technol Biomed Life Sci 786:311–318
- Masin M, Kerschensteiner D, Dumke K, Rubio ME, Soto F (2006) Fe65 interacts with P2X2 subunits at excitatory synapses and modulates receptor function. J Biol Chem 281 (7):4100–4108
- Royle SJ, Bobanovic LK, Murrell-Lagnado RD (2002) Identification of a non-canonical tyrosine-based endocytic motif in an ionotropic receptor. J Biol Chem 277:35378–35385
- Royle SJ, Qureshi OS, Bobanovic LK, Evans PR, Owen DJ, Murrell-Lagnado RD (2005) Non-canonical YXXGPhi endocytic motifs: recognition by AP2 and preferential utilization in P2X4 receptors. J Cell Sci 118:3073–3080
- 84. Chaumont S, Jiang LH, Penna A, North RA, Rassendren F (2004) Identification of a trafficking motif involved in the stabilization and polarization of P2X receptors. J Biol Chem 279:29628–29638
- Khakh BS, Procotor WR, Dunwiddie TV, Labarca C, Lester HA (1999) Allosteric control of gating and kinetics at P2X4 receptor channels. J Neurosci 19:7289–7299
- Priel A, Silberberg SD (2004) Mechanism of ivermectin facilitation of human P2X4 receptor channels. J Gen Physiol 123:281–293
- 87. Wiley JS, Dao-Ung LP, Li C, Shemon AN, Gu BJ, Smart ML, Fuller SJ, Barden JA, Petrou S, Sluyter R (2003) An Ile-568 to Asn polymorphism prevents normal trafficking and function of the human P2X7 receptor. J Biol Chem 278:17108–17113
- Denlinger LC, Sommer JA, Parker K, Gudipaty L, Fisette PL, Watters JW, Proctor RA, Dubyak GR, Bertics PJ (2003) Mutation of a dibasic amino acid motif within the C terminus of the P2X7 nucleotide receptor results in trafficking defects and impaired function. J Immunol 171:1304–1311
- Wildman SS, Marks J, Churchill LJ, Peppiatt CM, Chraibi A, Shirley DG, Horisberger JD, King BF, Unwin RJ (2005) Regulatory interdependence of cloned epithelial Na+ channels and P2X receptors. J Am Soc Nephrol 16:2586–2597
- 90. Ding S, Sachs F (2005) Evidence for non-independent gating of P2X2 receptors expressed in *Xenopus* oocytes. BMC Neurosci 3:17

- Clyne JD, Brown TC, Hume RI (2003) Expression level dependent changes in the properties of P2X2 receptors. Neuropharmacology 44:403–412
- 92. Fujiwara Y, Kubo Y (2004) Density-dependent changes of the pore properties of the P2X2 receptor channel. J Physiol 558:31–43
- Khakh BS, Gittermann D, Cockayne DA, Jones A (2003) ATP modulation of excitatory synapses onto interneurons. J Neurosci 23:7426–7437
- 94. Pike LJ (2004) Lipid rafts: heterogeneity on the high seas. Biochem J 378:281–292
- Vial C, Evans RJ (2005) Disruption of lipid rafts inhibits P2X1 receptor-mediated currents and arterial vasoconstriction. J Biol Chem 280:30705–30711
- Vacca F, Amadio S, Sancesario G, Bernardi G, Volonte C (2004) P2X3 receptor localizes into lipid rafts in neuronal cells. J Neurosci Res 76:653–661
- 97. Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951
- Freist W, Verhey JF, Stuhmer W, Gauss DH (1998) ATP binding site of P2X channel proteins: structural similarities with class II aminoacyl-tRNA synthetases. FEBS Lett 434:61–65
- 99. Yan Z, Liang Ž, Tomic M, Obsil T, Stojilkovic SS (2005) Molecular determinants of the agonist binding domain of a P2X receptor channel. Mol Pharmacol 67:1078–1088
- 100. Roberts JA, Evans RJ (2004) ATP binding at human P2X1 receptors: Contribution of aromatic and basic amino acids revealed using mutagenesis and partial agonists. J Biol Chem 279:9043–9055
- 101. Jiang L-H, Rassendren F, Surprenant A, North RA (2000) Identification of amino acid residues contributing to the ATP binding site of a purinergic P2X receptor. J Biol Chem 275:34190–34196
- 102. Worthington RA, Smart ML, Gu BJ, Williams DA, Petrou S, Wiley JS, Barden JA (2002) Point mutations confer loss of ATP-induced human P2X(7) receptor function. FEBS Lett 512:43–46
- 103. Gu BJ, Sluyter R, Skarratt KK, Shemon AN, Dao-Ung LP, Fuller SJ, Barden JA, Clarke AL, Petrou S, Wiley JS (2004) An Arg307 to Gln polymorphism within the ATP-binding site causes loss of function of the human P2X7 receptor. J Biol Chem 279:31287–31295
- 104. Li Z, Migita K, Samways DS, Voigt MM, Egan TM (2004) Gain and loss of channel function by alanine substitutions in the transmembrane segments of the rat ATP-gated P2X2 receptor. J Neurosci 24:9378–9386
- 105. Ennion SJ, Ritson J, Evans RJ (2001) Conserved negatively charged residues are not required for ATP action at P2X(1) receptors. Biochem Biophys Res Commun 289:700–704
- 106. Roberts JA, Evans RJ (2005) Contribution of conserved polar glutamine, asparagine and threonine residues and glycosylation to agonist action at human P2X1 receptors for ATP. J Neurochem 96(3):843–852
- 107. Tanner NK, Cordin O, Banroques J, Doere M, Linder P (2003) The Q motif: a newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis. Mol Cell 11:127–138
- 108. Ennion SJ, Evans RJ (2002) Conserved cysteine residues in the extracellular loop of the human P2X(1) receptor form disulfide bonds and are involved in receptor trafficking to the cell surface. Mol Pharmacol 61:303–311
- Clyne JD, Wang LF, Hume RI (2002) Mutational analysis of the conserved cysteines of the rat P2X2 purinoceptor. J Neurosci 22:3873–3880
- 110. Spelta V, Jiang LH, Bailey RJ, Surprenant A, North RA (2003) Interaction between cysteines introduced into each transmembrane domain of the rat P2X(2) receptor. Br J Pharmacol 138:131–136

- 111. Roberts JA, Evans RJ (2005) Mutagenesis studies of conserved proline residues of human P2X receptors for ATP indicate that proline 272 contributes to channel function. J Neurochem 92:1256–1264
- 112. Digby HR, Roberts JA, Sutcliffe MJ, Evans RJ (2005) Contribution of conserved glycine residues to ATP action at human P2X1 receptors: mutagenesis indicates that the glycine at position 250 is important for channel function. J Neurochem 95(6):1746–1754
- 113. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242
- 114. Gourine AV, Llaudet E, Dale N, Spyer KM (2005) ATP is a mediator of chemosensory transduction in the central nervous system. Nature 436:108–111
- 115. Zhao HB, Yu N, Fleming CR (2005) Gap junctional hemichannel-mediated ATP release and hearing controls in the inner ear. Proc Natl Acad Sci U S A 102(51):18724–18729
- 116. De Vuyst E, Decrock E, Cabooter L, Dubyak GR, Naus CC, Evans WH, Leybaert L (2006) Intracellular calcium changes trigger connexin 32 hemichannel opening. EMBO J 25:34–44
- 117. Benham CD (1986) ATP-gated cation channels in vascular smooth muscle cells. Biochem J 233:309–319
- 118. Benham CD, Tsien RW (1987) A novel receptor-operated Ca2
 +-permeable channel activated by ATP in smooth muscle. Nature 328:275–278
- 119. Inoue R, Brading AF (1990) The properties of the ATP-induced depolarization and current in single cells isolated from the guinea-pig urinary bladder. Br J Pharmacol 100:619–625
- 120. Mulryan K, Gitterman DP, Lewis CJ, Vial C, Leckie BJ, Cobb AL, Brown JE, Conley EC, Buell G, Pritchard CA, Evans RJ (2000) Reduced vas deferens contraction and male infertility in mice lacking P2X1 receptors. Nature 403:86–89
- 121. Vial C, Evans RJ (2000) P2X receptor expression in mouse urinary bladder and the requirement of P2X1 receptors for functional P2X receptor responses in the mouse urinary bladder smooth muscle. Br J Pharmacol 131:1489–1495
- 122. Vial C, Evans RJ (2002) P2X(1) receptor-deficient mice establish the native P2X receptor and a P2Y6-like receptor in arteries. Mol Pharmacol 62:1438–1445
- 123. Inscho EW, Cook AK, Imig JD, Vial C, Evans RJ (2003) Physiological role for P2X1 receptors in renal microvascular autoregulatory behavior. J Clin Invest 112:1895–1905
- 124. Inscho EW, Cook AK, Imig JD, Vial C, Evans RJ (2004) Renal autoregulation in P2X knockout mice. Acta Physiol Scand 181:445–453
- 125. Rolf MG, Mahaut-Smith MP (2002) Effects of enhanced P2X1 receptor Ca2+ influx on functional responses in human platelets. Thromb Haemost 88:495–502
- 126. Hechler B, Lenain N, Marchese P, Vial C, Heim V, Freund M, Cazenave J-P, Cattaneo M, Ruggeri ZM, Evans RJ, Gachet C (2003) A role of the fast ATP-gated P2X1 cation channel in the thrombosis of small arteries in vivo. J Exp Med 198(4):661–667
- 127. Oury C, Kuijpers MJ, Toth-Zsamboki E, Bonnefoy A, Danloy S, Vreys I, Feijge MA, De Vos R, Vermylen J, Heemskerk JW, Hoylaerts MF (2003) Overexpression of the platelet P2X1 ion channel in transgenic mice generates a novel prothrombotic phenotype. Blood 101:3969–3976
- Calvert JA, Evans RJ (2004) Heterogeneity of P2X receptors in sympathetic neurons: contribution of neuronal P2X1 receptors revealed using knockout mice. Mol Pharmacol 65:139–148
- 129. Watano T, Calvert JA, Vial C, Forsythe ID, Evans RJ (2004) P2X receptor subtype specific modulation of excitatory and inhibitory synaptic inputs in the rat brainstem. J Physiol 558:745–757
- 130. Rong W, Gourine AV, Cockayne DA, Xiang Z, Ford AP, Spyer KM, Burnstock G (2003) Pivotal role of nucleotide P2X2 receptor subunit of the ATP-gated ion channel mediating ventilatory responses to hypoxia. J Neurosci 23:11315–11321

- 131. Ren J, Bian X, DeVries M, Schnegelsberg B, Cockayne DC, Ford AP, Galligan JJ (2003) P2X2 Subunits contribute to fast synaptic excitation in myenteric neurons of the mouse small intestine. J Physiol 551(1):309–322
- 132. Cockayne DA, Dunn PM, Zhong Y, Rong W, Hamilton SG, Knight GE, Ruan HZ, Ma B, Yip P, Nunn P, McMahon SB, Burnstock G, Ford AP (2005) P2X2 knockout mice and P2X2/ P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP. J Physiol 567:621–639
- 133. Cockayne DA, Hamilton SG, Zhu Q-M, Dunn PM, Zhong Y, Novakovic S, Malmberg AB, Cain G, Berson A, Kassotakis L, Hedley L, Lachnit WG, Burnstock G, McMahon SB, Ford APDW (2000) Urinary bladder hyporeflexia and reduced painrelated behaviour in P2X3-deficient mice. Nature 1011–1015
- 134. Souslova V, Cesare P, Ding Y, Akopian AN, Stanfa L, Suzuki R, Carpenter K, Dickenson A, Boyce S, Hill R, Nebenius-Oosthuizen D, Smith AJH, Kidd EJ, Wood JN (2000) Warm-coding deficits and aberrant inflamatory pain in mice lacking P2X3 receptors. Nature 407:1015–1017
- 135. Honore P, Kage K, Mikusa J, Watt AT, Johnston JF, Wyatt JR, Faltynek CR, Jarvis MF, Lynch K (2002) Analgesic profile of intrathecal P2X(3) antisense oligonucleotide treatment in chronic inflammatory and neuropathic pain states in rats. Pain 99:11–19
- 136. Barclay J, Patel S, Dorn G, Wotherspoon G, Moffatt S, Eunson L, Abdel'al S, Natt F, Hall J, Winter J, Bevan S, Wishart W, Fox A, Ganju P (2002) Functional downregulation of P2X3 receptor subunit in rat sensory neurons reveals a significant role in chronic neuropathic and inflammatory pain. J Neurosci 22:8139–8147
- 137. Dorn G, Patel S, Wotherspoon G, Hemmings-Mieszczak M, Barclay J, Natt FJ, Martin P, Bevan S, Fox A, Ganju P, Wishart W, Hall J (2004) siRNA relieves chronic neuropathic pain. Nucleic Acids Res 32:e49
- 138. Bian X, Ren J, DeVries M, Schnegelsberg B, Cockayne DA, Ford AP, Galligan JJ (2003) Peristalsis is impaired in the small intestine of mice lacking the P2X3 subunit. J Physiol 551:309–322
- 139. Finger TE, Danilova V, Barrows J, Bartel DL, Vigers AJ, Stone L, Hellekant G, Kinnamon SC (2005) ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310:1495–1499
- 140. Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:778–783
- 141. Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438:1017–1021
- 142. Yamamoto K, Sokabe T, Matsumoto T, Yoshimura K, Shibata M, Ohura N, Fukuda T, Sato T, Sekine K, Kato S, Isshiki M, Fujita T, Kobayashi M, Kawamura K, Masuda H, Kamiya A, Ando J (2006) Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat Med 12:133–137
- 143. Le K-T, Paquet M, Nouel D, Babinski K, Seguela P (1997) Primary structure and expression of a naturally truncated human P2X ATP receptor subunit from brain and immune system. FEBS Lett 418:195–199
- 144. Bo X, Jiang LH, Wilson HL, Kim M, Burnstock G, Surprenant A, North RA (2003) Pharmacological and biophysical properties of the human P2X5 receptor. Mol Pharmacol 63:1407–1416
- 145. Rijke BD, van Horssen-Zoetbrood A, Beekman JM, Otterud B, Maas F, Woestenenk R, Kester M, Leppert M, Schattenberg AV, de Witte T, van de Wiel-van Kemenade E, Dolstra H (2005) A frameshift polymorphism in P2X5 elicits an allogeneic cytotoxic T lymphocyte response associated with remission of chronic myeloid leukemia. J Clin Invest 115:3506–3516

- 146. Collo G, North RA, Kawashima E, Merlo-Pich E, Neidhart S, Surprenant A, Buell G (1996) Cloning of P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J Neurosci 16:2495–2507
- 147. Jones CA, Vial C, Sellers LA, Humphrey PP, Evans RJ, Chessell IP (2004) Functional regulation of P2X6 receptors by N-Linked glycosylation: identification of a novel {alpha} {beta}-methylene ATP-sensitive phenotype. Mol Pharmacol 65:979–985
- 148. Solle M, Labasi J, Perregaux DG, Stam E, Petrushova N, Koller BH, Griffiths RJ, Gabel CA (2001) Altered cytokine production in mice lacking P2X(7) receptors. J Biol Chem 276:125–132
- 149. Labasi JM, Petrushova N, Donovan C, McCurdy S, Lira P, Payette MM, Brissette W, Wicks JR, Audoly L, Gabel CA (2002) Absence of the P2X7 receptor alters leukocyte function and attenuates an inflammatory response. J Immunol 168:6436–6445
- 150. Le Feuvre RA, Brough D, Iwakura Y, Takeda K, Rothwell NJ (2002) Priming of macrophages with lipopolysaccharide potentiates P2X7- mediated cell death via a caspase-1-dependent mechanism, independently of cytokine production. J Biol Chem 277:3210–3218
- 151. Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL, Grahames CB, Casula MA, Yiangou Y, Birch R, Anand P, Buell GN (2005) Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114:386–396
- 152. Ke HZ, Qi H, Weidema AF, Zhang Q, Panupinthu N, Crawford DT, Grasser WA, Paralkar VM, Li M, Audoly LP, Gabel CA, Jee WS, Dixon SJ, Sims SM, Thompson DD (2003) Deletion of the P2X7 nucleotide receptor reveals its regulatory roles in bone formation and resorption. Mol Endocrinol 17:1356–1367
- 153. Korcok J, Raimundo LN, Ke HZ, Sims SM, Dixon SJ (2004) Extracellular nucleotides act through P2X7 receptors to activate NF-kappaB in osteoclasts. J Bone Miner Res 19:642–651
- 154. Gartland A, Buckley KA, Hipskind RA, Perry MJ, Tobias JH, Buell G, Chessell I, Bowler WB, Gallagher JA (2003) Multinucleated osteoclast formation in vivo and in vitro by P2X7 receptor-deficient mice. Crit Rev Eukaryot Gene Expr 13:243–253
- 155. Li J, Liu D, Ke HZ, Duncan RL, Turner CH (2005) The P2X7 nucleotide receptor mediates skeletal mechanotransduction. J Biol Chem 280(52):42952–42959
- 156. Adriouch S, Dox C, Welge V, Seman M, Koch-Nolte F, Haag F (2002) Cutting edge: a natural P451L mutation in the cytoplasmic domain impairs the function of the mouse P2X7 receptor. J Immunol 169:4108–4112
- 157. Gu BJ, Zhang W, Worthington RA, Sluyter R, Dao-Ung P, Petrou S, Barden JA, Wiley JS (2001) A Glu-496 to Ala polymorphism leads to loss of function of the human P2X7 receptor. J Biol Chem 276:11135–11142
- 158. Saunders BM, Fernando SL, Sluyter R, Britton WJ, Wiley JS (2003) A loss-of-function polymorphism in the human P2X7 receptor abolishes ATP-mediated killing of mycobacteria. J Immunol 171:5442–5446
- 159. Denlinger LC, Angelini G, Schell K, Green DN, Guadarrama AG, Prabhu U, Coursin DB, Bertics PJ, Hogan K (2005) Detection of human P2X7 nucleotide receptor polymorphisms by a novel monocyte pore assay predictive of alterations in lipopolysaccharide-induced cytokine production. J Immunol 174:4424–4431
- 160. Sim JA, Young MT, Sung HY, North RA, Surprenant A (2004) Reanalysis of P2X7 receptor expression in rodent brain. J Neurosci 24:6307–6314

- 161. Kukley M, Stausberg P, Adelmann G, Chessell IP, Dietrich D (2004) Ecto-nucleotidases and nucleoside transporters mediate activation of adenosine receptors on hippocampal mossy fibers by P2X7 receptor agonist 2'-3'-O-(4-benzoylbenzoyl)-ATP. J Neurosci 24:7128–7139
 162. Ashour F, Atterbury-Thomas AE, Deuchars J, Evans RJ (2006)
- 162. Ashour F, Atterbury-Thomas AE, Deuchars J, Evans RJ (2006) An evaluation of antibody detection of the P2X1 receptor subunit in the CNS of wild type and P2X1-knockout mice. Neurosci Lett 397(1–2):120–125
- 163. North RA, Surprenant A (2000) Pharmacology of cloned P2X receptors. Annu Rev Pharmacol Toxicol 40:563–580
- 164. Stoop R, Surprenant A, North RA (1997) Different sensitivities to pH of ATP-indiced currents at four cloned P2X receptors. J Neurophysiol 78:1837–1840

500