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Abstract

Sphingolipids including ceramide and its derivatives such as ceramide-1-phosphate, glycosyl-ceramide, and sphinogosine (-1-phosphate) are
now recognized as novel intracellular signal mediators for regulation of inflammation, apoptosis, proliferation, and differentiation. One of the
important and regulated steps in these events is the generation of these sphingolipids via hydrolysis of sphingomyelin through the action of
sphingomyelinases (SMase). Several lines of evidence suggest that reactive oxygen species (ROS; O2

−, H2O2, and OH−,) and reactive nitrogen
species (RNS; NO, and ONOO−) and cellular redox potential, which is mainly regulated by cellular glutathione (GSH), are tightly linked to the
regulation of SMase activation. On the other hand, sphingolipids are also known to play an important role in maintaining cellular redox
homeostasis through regulation of NADPH oxidase, mitochondrial integrity, and antioxidant enzymes. Therefore, this paper reviews the
relationship between cellular redox and sphingolipid metabolism and its biological significance.
© 2006 Elsevier Inc. All rights reserved.
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Introduction

Under normal conditions, reactive oxygen species (ROS)
and reactive nitrogen species (RNS) can be generated as a by-
product of normal metabolic processes and function as
physiological signaling molecules [1,2]. However, in patholog-
ical conditions, the excessive increase in ROS, such as super
oxide anion (O2

−), hydrogen peroxide (H2O2), and hydroxyl
radicals (UOH), and RNS, such as nitric oxide (NO) and
peroxynitrite (ONOO−), by mitochondrial dysfunction, activa-
tion of xanthine, and NADPH oxidases and increased gene
expression of inducible nitric oxide synthase (iNOS) can cause
cell death and tissue damage [3]. Under normal conditions, the
O2
− is scavenged by superoxide dismutase (SOD) which

specifically processes O2
− and produces H2O2. The H2O2 is in

turn detoxified by catalase and glutathione peroxidase (GPX)
because otherwise H2O2 would react with transition metals to
generate highly toxic hydroxyl radicals through the Fenton
reaction (H2O2 + Fe2+ → −OH + Fe3+ + UOH). Moreover, RNS
are also able to affect cellular redox homeostasis [2], such as the
physiologically relevant action of NO in the activation of the
guanylate cyclase and the subsequent activation of cGMP-
mediated signaling cascades, whereas an excessive amount of
NO can cause cell and tissue damage [3,4]. NO can scavenge O2

−

and other free radicals and inhibit the O2
− driven Fenton reaction

and lipid peroxidation. On the other hand, large amounts of NO
as generated by the iNOS isoform in inflammatory disease
conditions are often accompanied by a large production of ROS,
and will shift NO chemistry toward indirect effects such as
nitrosation, nitration, and oxidation [2,5]. The interaction of NO
with molecular oxygen (O2) or O2

− gives rise to the formation of
the potent nitrosating agent N2O3 and peroxynitrite (ONOO−),
respectively. S-Nitrosothiol adducts are formed by the interac-
tion between N2O3 and certain protein thiol groups and evoke
signaling by altering protein kinases and phosphatases, G-
proteins, ion channels, protein tyrosine kinases, and redox-
sensitive transcription factors [5,6].

Sphingolipids are ubiquitous constituents of membrane
lipids in mammalian cells. Along with their structural role,
sphingolipids have received attention due to their role as second
messengers in proliferation, differentiation, apoptosis, and
inflammation [7–12]. In mammalian cells, the majority of
sphingolipids are colocalized with cholesterol in specific
membrane domains called “lipid rafts” also known as
“detergent-resistant membrane domains” due to their insoluble
TE
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Oproperty in non-ionic detergents such as Triton X-100 [13,14].

These specialized membrane microdomains contain a variety of
sphingolipid-metabolizing enzymes such as sphingomyelinase
(SMase) [15,16], ceramidase [17], sphingosine kinase [18], and
ceramide kinase [19]. Dobrowsky reported that depletion of
membrane cholesterol abolished p75NTR-dependent sphingo-
myelin hydrolysis and ceramide generation [13]. Due to the
localization of sphingolipid-metabolizing enzyme in lipid rafts
and the strong association of sphingolipids with cholesterol,
cholesterol appears to affect sphingomyelin metabolism
through modulation of lipid raft integrity. The lipid rafts also
contain a variety of receptors and signaling enzymes, such as
GTPases and kinases, and mediate receptor-mediated intracel-
lular signaling cascades and membrane trafficking [20,21].
Therefore, it is now believed that the regulation of sphingolipid
metabolism in these membrane domains may be linked to
various cellular signaling events as well as cellular cholesterol
levels.

Recently, it has been reported that ROS and RNS are in-
volved in sphingolipid metabolism. For example, the depletion
of cellular reduced glutathione (GSH) by increased ROS and
RNS regulates enzymatic activities of SMases and ceramidase
[22–25]. Conversely, sphingolipids including ceramide, sphin-
gosine, and sphingosine-1-phosphate have the ability to regu-
late cellular redox homeostasis through regulation of NADPH
oxidase [26], mitochondrial integrity [27], NOS [10,28,29], and
antioxidant enzymes [30,31]. Therefore, in this review, we
discuss the mechanisms of activation and regulation of enzymes
which are involved in sphingomyelin metabolism and redox
regulation.

Regulation of sphingolipid metabolism by oxidative stress

Sphingomyelin (SM) is a constituent of membrane lipids and
mainly localized in the plasma membrane. At least two different
subtypes of SMases are involved in SM hydrolysis which is
regulated by intra- or extracellular stimuli. These are
identified based on pH optima, subcellular localization, and
cation dependence. The acidic, or lysosomal, sphingomyelinase
(A-SMase or SMPD1) was the first sphingomyelinase to be
identified and subjected to intensive investigation due to its role
in ceramide generation [32,33]. Later, the neutral, membrane-
bound Mg2+-dependent SMases 1 and 2 (SMPD2 and 3) were
cloned [34] and characterized [35,36]. Although the detailed
mechanism for the activation of these SMases is still under
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investigation, cellular redox potential is regarded as one of the
key regulators for the activation of these enzymes.

Acid sphingomyelinase

A-SMase, which is deficient in patients affected with type A
and B Niemann-Pick disease, has been known to play a role in
stress signaling and apoptosis [37]. So far three types of human
A-SMase have been cloned (types I, II, and III). These are
generated by alternative splicing from a single transcript and
only type I, which is major A-SMase species, has functional A-
SMase activity [38]. A-SMase is generated from a 75-kDa
proprecursor by proteolytic processing to a 72-kDa protein in
ER/Golgi and further processing in endosome-lysosome to the
fully active 70-kDa enzyme [39]. A-SMase is also found as an
extracellular form and this secretary A-SMase is encoded from
the same gene that encodes the lysosomal form of type I A-
SMase but with different posttranslational modification [40].

The mechanism for A-SMase activation is not fully
understood at present but several factors are identified to be
involved in its activation or inhibition. These include tumor
necrosis factor-receptor I (TNF-R1) [41,42], ApoC-III, an
apolipoprotein [43], phosphatidylinositol-3′-kinase (PI3K)/
protein kinase B (Akt) [44], and certain lipids such as mono-,
di-, and triacylglycerols [45], 1,2-diacylglycerol [46], and
sphingosine-1-phosphate [47]. A-SMase is also known to be
UN
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EC

Fig. 1. The possible regulatory mechanism of sphingolipid metabolism by cellular
(N-SMase) and acid sphingomyelinase (A-SMase). N-SMase is regulated by cel
which are affected by antioxidant protein, Bcl-xL, and reactive oxygen or nitroge
by GSH, it is inhibited by dithiothreitol (DTT) and cGMP-mediated pathway. The
However, whether ROS and RNS are implicated in the formation of adduct on cystei
known at present. Ceramide accumulation is also regulated by the activity of neutral c
degradation through the ubiquitine/proteasome pathway. Solid arrow and T-shaped h
ED
PR

OO
F

regulated by thiol oxidation. Although the enzymatic activity of
A-SMase is not affected by GSH, it is inhibited by DTT in a
dose-dependent manner [48,49]. The inactivation by DTT may
not simply be due to disulfide reduction because effects of
DTT on activity were reported to be unrelated to disulfide
reduction [50]. Interestingly, Qiu and co-workers [23] have
shown that the C-terminal cysteine (Cys629) is an unbridged
free form and modification of this thiol group by dimerization,
chemical modification, or deletion increases the enzymatic
activity of A-SMase. Notably, restoration of the thiol group with
DTT inhibits copper-mediated dimerization as well as activation
of A-SMase [23]. Therefore, it is possible that oxidative
modification of the C-terminal cysteine may be required for
full activation of A-SMase and that certain antioxidants such as
DTT may counteract by restoring the thiol group (Fig. 1).

In vitro studies have shown that NO plays a role in the
regulation of A-SMase activity. NO from exogenous or
endogenous sources has been known to inhibit TNF-α-
mediated apoptosis via inhibition of ceramide generation
[24,51]. Although the mechanism for NO-mediated inhibition
of A-SMase is not fully understood, a NO-mediated increase in
cGMP and the activation of cGMP-dependent protein kinase
(PKG) have been suggested to be involved in the inhibition of
A-SMase [52,53]. However, excessive amounts of NO are also
known to activate apoptosis via activation of ceramide
generation which is sensitive to A-SMase inhibitor [54]. NO-
T

redox potential. In mammalian cells, sphingomyelin is hydrolyzed by neutral
lular level of reduced and oxidized forms of glutathione (GSH and GSSH)
n species (ROS and RNS). Although the activity of A-SMase is not affected
adduct formation on cystein629 is known to enhance the activity of A-SMase.
n629 and whether DTT counteracts ROS/RNS-mediated adduct formation are not
eramidase (N-ceramidase). Nitric oxide (NO) is known to activate N-ceramidase
eads represent stimulatory and inhibitory effects, respectively.
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mediated interaction between A-SMase and procaspase-3 [55]
suggests the possible regulation of A-SMase activity by NO
through interaction with other proteins. Indeed, several protein
molecules have been identified to be regulated posttranslation-
ally by NO through S-nitrosylation-mediated adduct formation
[56]. Therefore, posttranslational modification of A-SMase by
S-nitrosylation, in particular on C-terminal cysteine (Cys629),
and its role in A-SMase activity should be an interesting
investigation (Fig. 1).

Neutral sphingomyelinase

The presence of N-SMase which has neutral pH optimum
(∼7.4) and magnesium dependency was firstly described in
1967 by Schneider and Kennedy [57]. Later N-SMase1 was
cloned and characterized in mice and humans by Tomiuk and
co-workers [36]. The cloned human N-SMase1 (sphingomyelin
phosphodiesterases; smpd2) gene is localized on chromosome 6
and encodes proteins with a predicted molecular mass of
47.6 kDa with two putative transmembrane domains at the C
terminus [36]. Although it shows activity for SM hydrolysis in
vitro [58], it shows no change of SM hydrolysis as compared to
increased hydrolysis of 1-O-alkyl-lyso-phosphatidylcholine
(lyso-platelet-activating factor or lyso-PAF) in N-SMase1-
overexpressing cells, suggesting that the cloned enzyme is
actually a lyso-PAF phospholipase C, but not N-SMase [58].
More recently, Hofmann and co-workers cloned and character-
ized another mammalian brain-specific magnesium-dependent
N-SMase (N-SMase2; smpd3) from humans and mice [35].
Human N-SMase 2 gene is localized in chromosome 16 and
encodes proteins of 655 amino acids, resulting in a predicted
molecular mass of 71 kDa. The N terminus contains two
predicted transmembrane domains, whereas the C terminus
contains the putative catalytic domain. In contrast to N-SMase1,
the N-SMase2 showed properties similar to the previously
purified rat brain N-SMase but had no activity against lyso-PAF
[35]. The primary subcellular localization of N-SMase2 was
described to be in the Golgi [35]; however, later, its localization
was reported to be in the plasma membrane [59].

The mechanism of N-SMase activation has been intensely
studied during the past decade. In addition to bioactive
lipids, such as arachidonic acid [35,36], anionic phospholi-
pids (i.e., cardiolipin and phosphatidylglycerol) [60], and
phosphatidylserine [61], N-SMase is also reported to be
regulated by caspases 3 [62] and 9 [63] and TNF-R1
through FAN (factor associated with N-SMase activation)
protein [64]. Upon ligation of TNF-α, TNF-R1 recruits FAN
through its N-SMase activation domain (NSD) and activates
N-SMase [64]. The role of FAN in N-SMase activation was
further supported by other groups using FAN-deficient mice
and cells which overexpressed dominant-negative FAN
[65,66]. Since N-SMase1 does not exhibit sphingomyelinase
activity in vivo, the increased N-SMase activity by these
activators appears to be mediated by N-SMase2. However,
the detailed mechanism for the activation of N-SMases2 by
these activators is not known at present. Moreover, a
possible role of other isoforms of N-SMase cannot be excluded.
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Indeed, the existence of multiple forms of N-SMase in bovine
brain was demonstrated previously based on different chro-
matographic and biochemical properties [67].

Previously, we and other groups have observed that
proinflammatory cytokines (i.e., IL-1β and TNF-α) or
hypoxia induced SM hydrolysis and ceramide generation in
a redox-sensitive event [12,68]. Moreover, Aβ1-42 or its
synthetic peptide Aβ23-35, which produces pathologies of
Alzheimer's disease, induces ceramide generation by activa-
tion of N-SMase in a redox-sensitive manner without altering
A-SMase [69,70]. Therefore, these studies suggest that
oxidative stress-mediated N-SMase activation and ceramide
generation may play a key role(s) in the pathobiology of
various disease conditions. However, the mechanism of
regulation of N-SMase by oxidative stress is not completely
known. Liu and Hannun showed that GSH, but not DTT and
β-mercaptoethanol, dose dependently inhibited partially puri-
fied N-SMase activity [49]. They reported that γ-glutamyl-
cysteine, but not the free sulfhydryl group, in GSH may
function as an allosteric regulator of N-SMase. GSH was also
known to regulate N-SMase activity through Bcl-xL or Bcl-2,
an antiapoptotic protein, by inhibiting oxidative stress-
mediated SM hydrolysis and ceramide generation [71,72].
Moreover, tyrosine kinases such as Lyn and PKCζ are also
implicated in oxidative stress-mediated regulation of N-SMase
activity and ceramide generation [73,74]. In addition to GSH,
Takeda and associates reported that sodium nitroprusside
(SNP), a NO donor, also increases cellular sphingomyelin
hydrolysis and ceramide generation through activation of N-
SMase [75]. However, whether NO mediates N-SMase
activation through direct interaction or depletion of cellular
GSH levels is not currently known (Fig. 1).

Ceramidase

In addition to the increase in ceramide levels via activation of
A-SMase or N-SMase, the increased ceramide levels may also
be due to concomitant inhibition of ceramidases [22]. In renal
mesangial cells, NO from an exogenous donor causes a chronic
upregulation of ceramide levels by activating sphingomyeli-
nases and concomitantly inhibiting ceramidases, and particu-
larly in the late phase ceramide generation may be responsible
for the further processing of a proapoptotic signal [22]. Later,
this effect was shown to be due to the action of NO on ubiquitin/
proteasome-mediated proteolysis of neutral ceramidase and
counterregulated by protein kinase C (PKC), especially the δ-
isoform [76,77]. Therefore, neutral ceramidase may represent
another novel target for interference with the cellular stress
response and modulate programmed cell death, a typical feature
of many inflammatory diseases (Fig. 1).

Regulation of redox potential by sphingolipids

As discussed in the preceding section, oxidative stress
regulates sphingolipid metabolism to generate sphingolipid
molecules which participate in intracellular signaling. On the
other hand, a growing body of evidence also suggests that
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certain sphingolipids, such as ceramide or its glycosyl deri-
vatives, are able to induce cellular oxidative stress through
activation of NADPH oxidase [26], mitochondrial dysfunction
[27,78], and NOS [10,28,29], and/or downregulation of
antioxidant enzymes [30,31]. Therefore, sphingolipid metabo-
lism and redox homeostasis are regulated in a bidirectional
manner.

Regulation of NADPH oxidase

In phagocytes, ROS are generated by a membrane-associated
phagocytic NADPH oxidase (Phox; also known as NADPH
oxidase-2, Nox2), with its catalytic moiety gp91phox, which is
activated by assembly with regulatory proteins such as
p47phox, p67phox, and Rac [79,80]. Recently, other oxidases
similar to the Phox complex have also been identified in other
cell types and show different expression patterns depending on
cell or tissue types [81,82]. Similar to Nox, dual oxidase (Duox)
isoforms (i.e., Duox 1 and 2) include molecular mass gp91phox
homologs with an N-terminal peroxidase domain in addition to
the C-terminal NADPH oxidase activity.

The involvement of sphingolipids in the regulation of
NADPH oxidase activity was first discussed in Gaucher disease
type I [83]. Liel and co-workers reported that monocyte
dysfunction in Gaucher disease type I patients is caused by
suppression of NADPH oxidase-mediated superoxide genera-
tion as glucosylceramide (glucocerebroside) accumulates [83].
Recent studies by Moskwa and co-workers further support the
role of glycosylceramide in the regulation of NADPH oxidase
activity, in which glucosylceramide is able to inhibit NADPH
oxidase in a cell-free system [84]. However, other related lipids
such as lactosylceramide (CDw17) and ganglioside GD3 have
been reported to upregulate NADPH oxidase activity [85–88].
The lactosylceramide-mediated activation of NADPH oxidase
and ROS generation is involved in endothelial and neutrophil
cell functions through regulation of endothelial cell prolifera-
tion, adhesion molecule expression, and phagocytosis [85–87].
Recently, our group also reported the involvement of lacto-
sylceramide-mediated ROS generation in sequential activation
of hRas/NFκB and inflammatory gene expression [89]. The
exact mechanism of lactosylceramide-mediated activation of
NADPH oxidase is not clear, but it is believed that lacto-
sylceramide interactions with a Src family kinase (i.e., Lyn) in
the lipid rafts may lead to generation of ROS through phos-
phatidylinositol-3-kinase-, p38 MAPK-, and PKC-dependent
signal transduction pathways [90].

Along with lactosylceramide, ceramide has also been
implicated in the regulation of NADPH oxidase. Recently,
ceramide-mediated activation of NADPH oxidase and resultant
oxidative stress were reported to be involved in endostatin-
induced endothelial dysfunction [91]. The mechanism for
ceramide-mediated activation of NADPH oxidase is not fully
understood but involvement of ceramide-mediated activation of
Rac small GTPase, a regulatory component of NADPH oxidase,
was suggested recently [92]. Moreover, ceramide activates the
NADPH oxidase through activation of PKCζ [93]. PKCζ may
also activate p47phox adapter protein via phosphorylation [93],
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followed by translocation of activated p47phox to membrane to
facilitate stimulus-induced binding of p67phox to the holo
NADPH enzyme complex [26].

Mitochondrial dysfunction: mitochondrial redox regulation
and apoptosis

Mitochondria play a central role in cellular metabolism.
They are the site of fatty acid catabolism and the citric acid
cycle, which produces NADH and FADH2. These molecules
transfer electrons to the respiratory chain, and finally to oxygen,
a process that generates ATP. It has long been recognized that
the mitochondrial electron transport chain is a site of free radical
generation [94]. The two sites where this occurs are complex I
(NADH-coQ reductase) and complex III (cytochrome c
oxidase). The electron leaks from mitochondria and formation
of O2

− have been identified in normal as well as pathological
conditions. Mitochondria are also known to play a central role
in regulating apoptosis [95]. Mitochondria sense the catastro-
phic cellular changes and irreversibly commit cells to apoptosis
by releasing death factors into the cytosol, such as cytochrome c
[95], Smac 2/DIABLO [96], AIF [97], and EndoG [98].

Ceramide was reported as a regulator for the generation of
ROS and activation of the mitochondrial irreversible apoptotic
process. Mitochondria isolated from TNF-α-treated hepatocytes
showed a higher content of ceramide, compared to control [27],
and addition of C2-ceramide to mitochondria from untreated
cells increased ROS production [27]. Moreover, naturally
occurring C16 ceramide was shown to cause an increase in
ROS generation through mitochondria [78]. Ceramide may
function to generate ROS from mitochondria as a consequence
of cytochrome c release, an electron carrier of the respiration
chain between complexes II and III in mitochondria [99].
Ghafourifar et al. have shown that C2- and C6-ceramide induce
release of cytochrome c from isolated mitochondria [100].
Since cytochrome c release causes a decrease in mitochondrial
oxygen consumption, mitochondrial inner transmembrane
potential (ΔΨm), and Ca2+ retention and all of which lead to
mitochondrial dysfunction and ROS generation [100], cera-
mide-mediated release of cytochrome c may be one of the key
events in the induction of ROS generation from mitochondria
(Fig. 2).

Ceramide may also affect cellular redox potential through
regulation of the Bcl-2 family of proteins, which are regarded as
antioxidants because they increase the GSH pool or redistribute
GSH to various cellular compartments [101]. Indeed, Bcl-2 was
known to prevent ROS production, GSH depletion, and cellular
damage caused by lipid peroxidation [102,103] through
blocking cytochrome c release from mitochondria [104] and/
or inhibition of mitochondrial permeability transition pore
opening, leading to collapse of ΔΨm, by opposing the effect of
Bax, a component of the permeability transition pore [105,106].
Long-term treatment of human keratinocytes with C2-ceramide
induced downregulation of Bcl-2 [107]. Moreover, apoptotic
DNA fragmentation following exposure to TNF-α and C2-
ceramide was also associated with downregulation of Bcl-2
mRNA in HL-60 and U-937 cells [108], suggesting the possible
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Fig. 2. The possible regulatory mechanism of cellular redox potential by sphingolipid metabolism. Ceramide is one of the key signaling mediators in receptor-mediated
signaling cascades. It may activate gene expression of redox enzymes (i.e., iNOS and Mn-SOD) through receptor clustering, recruitment of signaling enzymes, and
activation of ceramide-activated protein kinases (i.e., PKCζ and KSR). The ceramide-activated signaling cascades, along with its derivatives such as glucosyl-
ceramide and lactosyl-ceramide, may be implicated in the regulation of NADPH oxidase activity through regulation of Rac1 GTP loading, holoenzyme assembly,
and/or p47 phosphorylation. Ceramide is also implicated in the activation of eNOS through cytosolic relocation from membrane and phosphorylation by the
phosphoinositide 3-phosphate kinase (PI3K)/Akt pathway. However, ceramide is also able to inhibit action of eNOS (vasodilation) through NADPH-mediated
superoxide generation (O2

−) leading to formation of peroxynitrite (ONOO−) or tetrahydrobiopterin (BH4) oxidation leading to uncoupling of eNOS. Ceramide,
sphingosine, and GD3 are potential activators for mitochondrial dysfunction which leads to the production of massive amounts of O2

−. They produce interference of
electron transfer, disruption of mitochondrial inner transmembrane potential (ΔΨm), opening permeability transition pore (PTP), mitochondrial lipid peroxidation, and
cytochrome c (cyto c) release. Ceramide is also known as a potent activator for mitochondrial Mn-SOD gene expression. The increased Mn-SOD by ceramide may be
toxic depending on the level of gluthathione peroxidase (GPX) in mitochondria. The role of ceramide on the regulation of cellular GPX is not known at present, but it
was known to inhibit catalase activity. Solid arrow and T-shaped heads represent stimulatory and inhibitory effects, respectively.
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role for ceramide in the regulation of Bcl-2-mediated anti-
oxidant activity (Fig. 2).

Ceramide was also reported to disturb the respiratory chain
through direct interaction [109,110] as C2- and C6-ceramide
treatment induced large pores in phospholipid planar mem-
branes [111]. Interestingly, rat liver mitochondria contain free
ceramide [112] and sphingolipid-metabolizing enzymes such as
ceramidase [113] and ceramide synthase [114]. Thus, dynamic
changes in the ceramide content of mitochondrial membranes
by vesicular transport or local production could possibly
regulate mitochondrial integrity and ROS generation. More-
over, ceramide can be converted into sphingosine by ceramidase
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and sphingosine-1-phosphate by further action of sphingosine
kinase, thus expanding the repertoire of downstream signals
which might affect cell fate. Sphingosine, as a negative
regulator of cell proliferation, is known to promote apoptosis
[115]. Moreover, sphingosine is also involved in the down-
regulation of Bcl-2 [116] and Bcl-XL [117], increase in
cytochrome c release [118,119], mitochondrial ΔΨ disruption
[120], and mitochondrial generation of H2O2 [27]. In contrast,
sphingosine 1-phosphate stimulates cell growth and is thus
antiapoptotic [115] through regulation of Bcl-2/Bax rheostat
[121] and inhibition of cytochrome c release [122]. Interest-
ingly, sphingosine kinase-overexpressing cells have decreased
levels of both sphingosine and ceramide [123,124] (Fig. 2).

A recent cDNA microarray study showed that the bcl-2 gene
is downregulated in Gaucher disease, suggesting that the
accumulation of either glucocerebroside or glucosylsphingo-
sine, as a result of glucocerebrosidase deficiency, affects Bcl-2-
mediated redox regulation [125]. In addition, ganglioside GD3
is also known to induce swelling of isolated mitochondria
through opening permeability transition pores [126,127];
however, no such effects on mitochondrial permeability are
described for other lipids such as GM1, GD1a, GM3, and
GT1b. GD3 appears to interfere at the level of complex III of the
electron transport chain [88] and GD3-mediated permeability
transition pore opening is secondary to reactive oxygen species
generation [128]. Therefore, the burst of ROS generation by
GD3 could also induce opening of the permeability transition
pores leading to cytochrome c release (Fig. 2).

Regulation of nitric oxide synthases

Since its discovery, nitric oxide (NO) has become the subject
of both intense research and heated debate over its role in
various biological and pathophysiological processes. Originally
discovered as a mediator of vascular smooth muscle relaxation,
NO has since been implicated in a wide range of physiological
mechanisms ranging from lysis of tumor cells to neural
transmission [129,130]. NO is a metabolic by-product of the
conversion of L-arginine to L-citrulline by a class of enzymes
dubbed as the nitric oxide synthases (NOS). To date, three
isoforms of NOS have been identified. Neuronal NOS (nNOS
or NOS1) is expressed constitutively by neurons in the brain
and enteric nervous system, whereas endothelial NOS (eNOS or
NOS3) exhibits constitutive expression which is confined to the
endothelial cells lining the vasculature [129,131]. The third
isoform of NOS is an inducible NOS (iNOS or NOS2) and as
the name implies, it is expressed only in response to certain
inflammatory stimuli such as bacterial products, cytokines, and
lipid mediators [130,131]. Classically, NO is considered to be
an activator for cGMP [132] in the regulation of cardiovas-
cular function [133] and neurotransmission [134]. Very
recently, S-nitrosylation, the covalent attachment of a nitrogen
monoxide group to the thiol side chain of cysteine, has
emerged as an important mechanism for dynamic posttrans-
lational regulation of proteins [56]. S-Nitrosylation thereby
conveys a large part of the ubiquitous influence of nitric
oxide on cellular signal transduction, and provides a
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mechanism for redox-based physiological regulation [56]. In
addition, NO in O2

− producing environment reacts rapidly to
form the highly toxic peroxynitrite anion, which then
protonates and decomposes to generate UOH or some other
potent oxidant with similar reactivity [135]. This is of
particular importance in neurodegenerating disease conditions
such as demyelinating disease and in ischemia and traumatic
injuries associated with infiltrating peripheral mononuclear
cells and the production of proinflammatory cytokines, where
subsequent astrocytes and microglia-derived NO could
contribute to oligodendrocyte degeneration and neuronal
death [136,137] (Fig. 2).

Endothelial nitric oxide synthase
eNOS identified in endothelial cells is also expressed in

cardiomyocytes [138,139]. eNOS produces NO via a complex
reaction which is stimulated by Ca2+ and requires NADPH,
along with other cofactors [138]. The role of ceramide in NO
generation through eNOS was identified because ceramide
affects vasorelaxation. The role of ceramide in vascular
function has been extensively reviewed by Berry et al. [29].
Initial studies probing the effect of ceramide on vascular
contractility demonstrated that application of cell-permeable
analogs of ceramide or exogenous bacterial sphingomyelinase
to preconstricted vascular segments results in concentration-
dependent relaxation [140,141]. Subsequently, Jin and co-
workers also reported that micromolar concentrations of
ceramide (C2-, C6-, and C16-ceramide) induce significant
relaxation in a NO-dependent manner and removal of the
endothelium significantly inhibited ceramide-induced relaxa-
tion [142]. Interestingly, angiotensin II type 2 receptor
activation also increases intracellular concentrations of cer-
amide [143,144]; therefore, ceramide may contribute to some
of the physiological effects of angiotensin II through
stimulation of nitric oxide production [145]. Although the
precise mechanism for ceramide-induced vasodilation is not
fully understood, recent studies have identified phosphatidy-
linositol-3′-kinase and Akt as downstream candidate effectors
for ceramide in eNOS activation [146]. Moreover, ceramide-
mediated translocation of eNOS from plasma membrane,
where it is bound to caveolin-1 as an inactive form, to the
cytoplasm was also demonstrated as a crucial step in ceramide-
induced synthesis of NO by eNOS [147,148]. However, there
are opposing views on the role of ceramide in vasoregulation
[11]. It was demonstrated that TNF-α inhibits NO-mediated
endothelium-dependent vasorelaxation in small coronary
arteries via sphingomyelinase activation and consequent
superoxide production [149]. Indeed, ceramide was reported
to inhibit endothelium-dependent vasodilation via an increase
in O2

− and a subsequent decrease in NO availability, without
altering NO synthesis [145], and this impairment of endothelial
function was prevented by overexpression of Cu/Zn superoxide
dismutase [150]. Therefore, ceramide appears to have a
bifunctional role in the regulation of NO-mediated vaso-
regulation through activation of eNOS-mediated NO produc-
tion and/or ROS generation which lowers NO availability by
generation of peroxynitrite (Fig. 2).
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Interestingly, ceramide-induced ROS generation also med-
iates oxidation of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4, a
cofactor of eNOS) that leads to BH4 deficiency [151] (Fig. 2).
The deficiency of BH4 causes an increase in uncoupled eNOS
molecules which leads to the formation of O2

- instead of NO
[151,152]. This phenomenon, along with increased gene
expression of eNOS [151] by ceramide, may be one of the
mechanisms of ceramide-mediated impairment of endothelial
function and increased oxidative stress under pathophysiolog-
ical disease conditions, such as hypertension, experimental
diabetes, and hypercholesterolemia, and in smokers [152].

Inducible nitric oxide synthase
In 1998, our group first reported the role of SMase and

ceramide in iNOS gene expression and NO production [11]. The
role of ceramide in the induction of iNOS gene expression was
further supported by other groups [153,154]. Furthermore,
recent studies demonstrated that a selective inhibitor of N-
SMase downregulates LPS and/or Aβ-induced iNOS expres-
sion in macrophages and astrocytes [10,69]. On the other hand,
neither pharmacological inhibition nor knockout of A-SMase
affected the expression of iNOS [10,69,155]. These reports
suggest a role of ceramide produced by N-SMase in the
expression of iNOS as well as other inflammatory genes that are
related to the regulation of cellular redox potential. The
mechanism for initiation of the ceramide-mediated inflamma-
tory signaling cascade is not clearly understood. Ceramide,
generated by N-SMase, induced NFκB activation through
activation of hRas signaling cascades [10]. Moreover, the
requirement of tyrosine kinases in this reaction [154] suggests
the possible action of tyrosine kinase in Ras/NFκB activation
and iNOS gene induction (Fig. 2). Putative ceramide-interacting
enzymes, such as Ser/Thr protein kinase (CAPK) [156], kinase
suppressor of Ras (KSR) [157], phosphatase (PP) 2A and 1B
[158], and PKCζ [159] either via direct interactions or indirectly
through formation of specific membrane microdomains may
play a role in these signaling events. Recent studies have shown
that ceramide plays a role in clustering of TNF family receptors
(i.e., TNF-R1, CD40, and CD95) [160–162]. Following liga-
tion of these receptors with ligands, the ceramide produced by
SMase around TNF receptors generates signaling microdo-
mains. Since ceramide has the ability to self-aggregate [163],
subsequent fusion of these small entities into larger membrane
domains (ceramide rafts) [164] has been demonstrated to
trigger the clustering of these receptor molecules [161,162].
The receptor clustering in the rafts induces close contact of
receptors with other signaling molecules [165] and exclusion of
inhibitory molecules (i.e., CD45 tyrosine phosphatase) [166],
and thus stabilizes ligand-receptor-signaling protein interac-
tions [161,162]. Therefore, the increase in ceramide and the
formation of ceramide rafts may enhance inflammatory or
death signaling events that are tightly related to cellular redox
potential [161,162] (Fig. 2).

In addition to ceramide, its glycosylated form lactosylcer-
amide was also demonstrated to activate iNOS and other
cytokine gene expression in astrocytes and a rat spinal cord
injury model [89]. The exact mechanism of this reaction is
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not known but inflammatory cytokine-mediated activation of
phosphatidylinositol-3-phosphate kinase appears to mediate
an increase in lactosylceramide via activation of galactosyl
transferase-2 (GalT-2) [167]. Both ceramide [10] and lac-
tosylceramide induce iNOS gene expression through activa-
tion of hRas/NFκB, but whether ceramide produced by N-
SMase is utilized for the synthesis of lactosylceramide is not
known.

Neuronal nitric oxide synthase
In contrast to eNOS and iNOS, the role of sphingolipids in

the regulation of nNOS activity is relatively unknown. In
neuronal cells, sphingosine treatment strongly inhibits the
activity of cytosolic Ca2+-independent NOS (a putative nNOS);
however, treatment with ceramide, N-acetylsphingosine, sphin-
gosine-1P, sphinganine, and tetradecylamine had no effect on
NOS activity [28]. Increasing concentrations of calmodulin led
to loss of sphingosine inhibition, suggesting that sphingosine
interferes with the calmodulin-dependent activation of the
enzyme by a competitive mechanism [28] but without altering
the intracellular Ca2+ concentration [168]. These observations
suggest that bioactive sphingosine plays a role in neuronal NO
signaling.

Regulation of antioxidant enzymes

In mammalian cells O2
− generated by respiration in

mitochondria and by activation of NADPH-oxidase or
xanthine oxidase is converted into H2O2 by three forms
of superoxide dismutase (extracellular and intracellular
CuZn- and Mn-SODs) [169]. Extracellular SOD (EC-SOD)
is mainly produced by vascular muscle cells and localized
between endothelium and vascular muscle cell layers where
it binds to cell surface, basal membrane, and extracellular
matrix [170,171]. EC-SOD was known to be a major
determinant of NO bioavailability in blood vessels through
inhibition of vascular peroxynitrite generation [172]. Sim-
ilarly, CuZn-SOD, which is a constitutively expressed
cytosolic isoform, is also involved in the regulation of
vascular functions through regulation of vascular O2

− level
and peroxynitrite formation [173,174]. Notably, its over-
expression is able to inhibit ceramide or lactosylceramide-
mediated impairment of endothelial function or ICAM
expression observed in pathological conditions [175].
Therefore, to protect NO over its entire diffusion route
against ceramide-mediated ROS, normal expression of both
CuZn-SOD and EC-SOD may be essential.

Mn-SOD is an inducible isoform of SOD and mainly
localized in mitochondria. Because of its localization and
reported lethal phenotype in null mice, Mn-SOD is con-
sidered to be the first line of defense against oxidative stress
from mitochondria [31,176]. The expression or activity of
Mn-SOD or both may be altered under several physiological
and pathophysiological conditions. For example, Mn-SOD is
particularly responsive to and upregulated by oxidative stress
caused by oxidized LDL, TNF-α, or H2O2 [176]. Moreover,
cell-permeable ceramide or bacterial sphingomyelinase also
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increase the expression of Mn-SOD in various cell types such
as rat primary astrocytes, rat mesangial cells, glioma, PC12
cells, skin fibroblasts [168,177], and neurons [31]. Ceramide-
mediated generation of ROS and subsequent activation of
redox-sensitive transcription factors such as activator protein-
1 (AP-1) and NFκB may be involved in the upregulation of
Mn-SOD gene expression [178,179] (Fig. 2).

Following conversion of O2
− by SODs into H2O2, it is

believed to play a role in various cellular signal transduction
pathways associated with cellular redox [180]. In addition, in
the presence of transient metals (iron or copper) it forms a
hydroxyl anion which is a strong oxidant and thus participates
in the pathobiology of various disease conditions. Therefore,
in the absence of adequate detoxification of H2O2, increased
activity of SOD may cause oxidative stress [30,181]. Two
enzymatic systems are involved in the detoxification of H2O2,
catalase and peroxidases [glutathione peroxidase (GPX) and
thioredoxin peroxidase (TPX)]. It is not clear how ceramide
regulates activity of GPX or TPX but ceramide was reported
to inhibit catalase function in various cell types [30]. The
mechanism for ceramide-induced inhibition of catalase is not
clear at present but the inhibitory effect of ceramide on
phosphatidylinositol-3-kinase has been reported to be in-
volved in this reaction [182,183] (Fig. 2).

Peroxisomal redox is maintained by the enzyme system
for production of O2

− and H2O2 and the antioxidant enzyme
system (Cu/Zn-SOD, Mn-SOD, catalase, and GPX) [183].
Sphingolipids may inhibit catalase activity through modulat-
ing peroxisomal function. The peroxisome is a redox-
sensitive organelle where H2O2 produced by various oxidases
is detoxified by catalase, a major peroxisomal matrix protein
[182]. Drastic alteration of peroxisomal functions, as well as
oxidative stress by mislocalization of catalase from peroxi-
somes [184], suggests that peroxisomal integrity and function
are important for the regulation of catalase activity. Recently,
our group reported that galactosyl-sphingosine (psychosine),
a metabolites that accumulates in the brains of globoid cell
leukodystrophy (GLD) [185] or Krabbe's disease [186]
patients, inhibits peroxisomal functions and increases cellular
free radical production [187,188]. Although the role of other
sphingolipids in peroxisomal function and catalase activity
has not been studied yet, the inhibitory effect of TNF-α on
the expression of peroxisome proliferator-activated receptors
(PPARs) [189] and catalase activity [187,188] along with the
concomitant increase in ceramide levels [187,188] suggests
the possible role of ceramide in peroxisome function as well
as catalase activity.

Summary and conclusion

Sphingolipids including sphingosine, sphingosine-1-phos-
phate, ceramide, ceramide-1-phosphate, psychosine, gluco-
sylceramide, lactosylceramide, and GD3 are known to play a
key role in receptor-mediated signal cascades which regulate
cell proliferation, inflammation, and endothelial function.
Similarly, endogenous prooxidants such as ROS and RNS
also play a key role in receptor-mediated activation of
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NADPH oxidase and NOS which are also involved in
various aspects of cell physiological regulation. A growing
body of evidence suggests that these two pathways interact
with each other. Prooxidants such as ROS and RNS regulate
sphingolipid metabolism through regulating the enzymes
responsible for their metabolism including SMase and
ceramidase. On the other hand, sphingolipids such as
ceramide, lactosylceramide, and GD3 also mediate ROS
and RNS generation through regulation of NADPH oxidase,
NOS, and antioxidant enzymes such as Mn-SOD and
catalase. Along with the physiological signaling cascades,
the interaction of these two pathways may also be involved
in cytotoxic or apoptotic cascades. Ceramide and other
sphingolipids such as sphingosine or GD3 were initially
known as potent proapoptotic agents which produce
irreversible mitochondrial dysfunction and massive ROS
generation. Although events that switch the roles of
prooxidants and sphingolipids from physiological to proa-
poptotic signaling cascades are still under investigation, it is
believed that cellular redox potential is a crucial factor for
this transition. For example, in the CNS, oligodendrocytes,
which are known to have low levels of GSH compared to
astrocytes or microglia, undergo apoptotic pathway activa-
tion upon stimulation with neurotoxic substances or proin-
flammatory cytokines, while astrocytes and microglia undergo
proliferation or inflammatory activation. Under low redox
buffering states, the receptor-mediated generation of ROS and
RNS may produce oxidative stress and then activate redox-
sensitive SMase and ceramide generation. In this event,
exclusive ceramide production may be able to induce mito-
chondrial dysfunction that further promotes ROS generation and
apoptosis. Similarly, the interaction of ROS/RNS generation and
sphingolipid metabolism may also play a crucial role in
endothelial function. As discussed, ceramide exerts its role as
a vasodilator through activation of eNOS. However, it may also
act as a vasoconstrictor by its dual role in the activation of ROS
generation when ROS are not removed due to a low redox
buffering state.

During the past two decades, the regulation of
sphingolipid metabolism has been under intense investiga-
tion due to the involvement of these events in the
pathophysiology of various disease conditions. Here, we
have discussed the interregulation of ROS/RNS generation
and sphingolipid metabolism as one of the crucial factors
promoting the pathological outcome. Therefore, therapeutic
approaches for intervention of sphingolipid-induced patho-
logical signal transduction pathways and the use of
antioxidants may improve the efficacy of therapeutics in
these disorders.
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