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Abstract Generalized linear mixed models are a widely
used tool for modeling longitudinal data. However, their use
is typically restricted to few covariates, because the pres-
ence of many predictors yields unstable estimates. The pre-
sented approach to the fitting of generalized linear mixed
models includes an L1-penalty term that enforces variable
selection and shrinkage simultaneously. A gradient ascent
algorithm is proposed that allows to maximize the penal-
ized log-likelihood yielding models with reduced complex-
ity. In contrast to common procedures it can be used in high-
dimensional settings where a large number of potentially in-
fluential explanatory variables is available. The method is
investigated in simulation studies and illustrated by use of
real data sets.

Keywords Generalized linear mixed model · Lasso ·
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1 Introduction

Generalized linear mixed models (GLMMs) are widely used
to model correlated and clustered responses. Various estima-
tion methods have been proposed ranging from numerical
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integration techniques (for example Booth and Hobert 1999)
over “joint maximization methods” (Breslow and Clayton
1993; Schall 1991), in which parameters and random effects
are estimated simultaneously, to fully Bayesian approaches
(Fahrmeir and Lang 2001). Overviews on current methods
are found in McCulloch et al. (2008). Due to the heavy
computational problems in GLMMs modeling usually is re-
stricted to few predictor variables. When many predictors
are available, estimates become very unstable. Therefore,
procedures to select the relevant variables are important in
modeling. Classical approaches to the selection of predic-
tors are based on test statistics with the usual stability prob-
lems of forward-backward selection procedures, which are
due to the inherent discreteness of the method (for example
Breiman 1996).

A more timely approach to variable selection is based
on boosting methods, which have originally been devel-
oped within the machine learning community as a method
to improve classification. A first breakthrough was the Ad-
aBoost algorithm proposed by Freund and Schapire (1996).
Breiman (1998) considered the AdaBoost algorithm as
a gradient descent optimization technique and Friedman
(2001) extended boosting methods to include regression
problems. Bühlmann and Yu (2003) showed how to fit
smoothing splines by boosting base learners and introduced
the concept of componentwise boosting, which may be ex-
ploited to select predictors. For a detailed overview of com-
ponentwise boosting, see Bühlmann and Yu (2003) and
Bühlmann and Hothorn (2007). For linear mixed models
the incorporation of random effects has been considered by
Tutz and Reithinger (2007), first attempts to fit univariate
GLMMs were proposed by Tutz and Groll (2010).

An alternative approach to variable selection that has re-
ceived much attention is based on penalized regression tech-
niques. The Lasso proposed by Tibshirani (1996) has be-
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come a very popular approach to regression that uses an
L1-penalty on the regression coefficients. This has the ef-
fect that all coefficients are shrunken towards zero and some
are set exactly to zero. The basic idea is to maximize the
log-likelihood l(β) of the model while constraining the L1-
norm of the parameter vector β . Thus one obtains the Lasso
estimate

β̂ = argmax
β

l(β), subject to ‖β‖1 ≤ s, (1)

with s ≥ 0 and with ‖ · ‖1 denoting the L1-norm. Equiva-
lently, the Lasso estimate β̂ can be derived by solving the
optimization problem

β̂ = argmax
β

[
l(β) − λ‖β‖1

]
, (2)

with λ ≥ 0. Both s and λ are tuning parameters that have to
be determined, for example by information criteria or cross-
validation. This can be very time-consuming, especially in
high-dimensional data settings. Thus, for getting computa-
tion time under control, in general problems involving a
complex log-likelihood, efficient algorithms are needed to
derive the solutions of (1) or (2).

For linear models the optimization problem of the Lasso
can be solved by quadratic programming (Tibshirani 1996),
whereas Osborne et al. (2000) recommend an algorithm con-
sidering simultaneously the primal problem and its dual,
which is highly efficient and is also applicable in high-
dimensional cases. A substantial progress was achieved by
the LARS algorithm (Efron et al. 2004), which simultane-
ously produces the set of Lasso fits for all values of the tun-
ing parameters by following the exact, piecewise linear solu-
tion path of β as a function of s or λ, respectively, and which
also inspired the regularization path algorithm for the sup-
port vector machine (Hastie et al. 2004). In the last decade
several improvements have been designed for the Lasso, e.g.
the adaptive Lasso (Zou and Hastie 2006), SCAD (Fan and
Li 2001), the Elastic Net (Zou and Hastie 2005), the Dantzig
selector (Candes and Tao 2007), the Double Dantzig (James
and Radchenko 2009) and the VISA (Radchenko and James
2008).

The Lasso has been extended to more general models,
for example Tibshirani (1997) proposed a new method to
perform variable selection in the Cox model. He minimizes
the partial log-likelihood subject to the L1-norm of the pa-
rameters being bounded by a constant, which is done by an
iterative two-step estimation scheme, using reweighted least
squares and adaption to the constraint alternately through a
quadratic programming procedure. This procedure was im-
proved by Gui and Li (2005), who suggested an iteratively
reweighted estimation approach based on the LARS algo-
rithm, called the LARS-Cox procedure. But according to

Segal (2006) and Goeman (2010) both algorithms are com-
putational so demanding, that they cannot be used very well
in high-dimensional scenarios.

For generalized linear models a flexible and efficient ap-
proach is the L1-regularized path following algorithm by
Park and Hastie (2007), who extended the concept of the
LARS algorithm (Efron et al. 2004) to generalized linear
models. The exact solution coefficients β̂j are computed at
particular values of the smoothing parameter λ and then the
coefficients are connected in a piecewise linear manner. An-
other promising approach uses the componentwise gradi-
ents, initiating from a starting value β(0) and then running
through the single coordinates of β , updating them accor-
dant to the gradient of the penalized likelihood (see e.g. She-
vade and Keerthi 2003, Kim and Kim 2004 or Genkin et al.
2007). Recently Goeman (2010) presented another approach
based on a combination of gradient ascent optimization with
the Newton-Raphson algorithm.

The use of penalization techniques for the selection of
variables in mixed models is still in the beginning. For Gaus-
sian mixed models Ni et al. (2010) proposed SCAD penalty
techniques, while Wang et al. (2010a) proposed an adap-
tive mixed Lasso method, which can incorporate a large
number of predictors and simultaneously accounts for the
population structure. Schelldorfer et al. (2011) developed
a L1-penalized estimation procedure that works for high-
dimensional linear mixed-effects models based on maxi-
mum likelihood. Bondell et al. (2010) and Wang et al.
(2010b) considered the case of joint selection for fixed and
random effects in linear models. A wide class of variable se-
lection procedures for GLMMs with a focus on longitudinal
data analysis is studied in Yang (2007).

In the following we develop L1-penalty approaches for
the generalized linear mixed model. The method works
by combining gradient ascent optimization with the Fisher
scoring algorithm and is based on the approach of Goeman
(2010). The article is structured as follows. In Sect. 2 we
introduce the GLMM. In Sect. 3 we present the gradient as-
cent algorithm with its computational details and give fur-
ther information about starting values and computation of
tuning parameters. Then the performance of the gradient
ascent algorithm is investigated in two simulation studies.
Applications are considered in Sect. 4. The presented algo-
rithm is implemented in the glmmLasso function of the
corresponding R-package (Groll 2011a; publicly available
via CRAN, see http://www.r-project.org). Details concern-
ing the determination of the tuning parameter and standard
errors as well as the partition of the Fisher matrix are given
in the Appendix.

At this point we want to mention the highly relevant pa-
per by Schelldorfer and Bühlmann (2011), which is avail-
able on the first author’s webpage. It was unknown to us
when first versions of this paper were written and we are
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grateful to an unknown reviewer who referred to it. The pa-
per is devoted to the same problem and is interesting both
from an algorithmic and theoretical perspective. The ap-
proach uses an algorithm called GLMMLasso, that is based
on a Lasso-type regularization with a cyclic coordinate de-
scent optimization and is implemented in the R-package
glmmlasso. We will compare our method with their ap-
proach (which we denote by GLMMLasso (SB) for better
distinctness) in simulation studies and refer to differences
between the two approaches.

2 Generalized linear mixed models—GLMMs

Let yit denote observation t in cluster i, i = 1, . . . , n, t =
1, . . . , Ti , collected in yT

i = (yi1, . . . , yiTi
). Furthermore, let

xT
it = (1, xit1, . . . , xitp) be the covariate vector associated

with fixed effects and zT
it = (zit1, . . . , zitq ) be the covari-

ate vector associated with random effects. It is assumed
that the observations yit are conditionally independent with
means μit = E(yit |bi ,xit , zit ) and variances var(yit |bi ) =
φυ(μit ), where υ(.) is a known variance function and φ is a
scale parameter. The GLMM that we consider in the follow-
ing has the form

g(μit ) = xT
itβ + zT

itbi = η
par
it + ηrand

it , (3)

where g is a monotonic and continuously differentiable link
function, ηpar

it = xT
itβ is a linear parametric term with param-

eter vector βT = (β0, β1, . . . , βp) including intercept and
ηrand

it = zT
itbi contains the cluster-specific random effects

bi ∼ N(0,Q), with q × q covariance matrix Q. An alter-
native form that we also use is

μit = h(ηit ), ηit = η
par
it + ηrand

it ,

where h = g−1 is the inverse link function.
A closed representation of model (3) is obtained by us-

ing matrix notation. By collecting observations within one
cluster, the model has the form

g(μi ) = Xiβ + Zibi ,

where XT
i = (xi1, . . . ,xiTi

) denotes the design matrix of the
i-th cluster and ZT

i = (zi1, . . . , ziTi
). For all observations

one obtains

g(μ) = Xβ + Zb,

with XT = [XT
1 , . . . ,XT

n ] and block-diagonal matrix Z =
diag(Z1, . . . ,Zn). For the random effects vector bT =
(bT

1 , . . . ,bT
n ) one has a normal distribution with block-

diagonal covariance matrix Qb = diag(Q, . . . ,Q).

Focusing on GLMMs we assume that the conditional
density of yit , given explanatory variables and the random
effect bi , is of exponential family type

f (yit |xit ,bi ) = exp

{
(yit θit − κ(θit ))

φ
+ c(yit , φ)

}
,

where θit = θ(μit ) denotes the natural parameter, κ(θit ) is
a specific function corresponding to the type of exponential
family, c(.) the log-normalization constant and φ the disper-
sion parameter (compare Fahrmeir and Tutz 2001).

One popular method to maximize GLMMs is penal-
ized quasi-likelihood (PQL), which has been suggested by
Breslow and Clayton (1993), Lin and Breslow (1996) and
Breslow and Lin (1995). Typically the covariance matrix
Q(�) of the random effects bi depends on an unknown pa-
rameter vector �. In penalization-based concepts the joint
likelihood-function is specified by the parameter vector
of the covariance structure � together with the dispersion
parameter φ, which are collected in γ T = (φ,�T ), and
parameter vector δT = (βT ,bT ). The corresponding log-
likelihood is

l(δ,γ ) =
n∑

i=1

log

(∫
f (yi |δ,γ )p(bi ,γ )dbi

)
,

where p(bi ,γ ) denotes the density of the random effects.
Breslow and Clayton (1993) derived the approximation

lapp(δ,γ ) =
n∑

i=1

log
(
f (yi |δ,γ )

) − 1

2
bT Q(�)−1b, (4)

where the penalty term bT Q(�)−1b is due to the approxi-
mation based on the Laplace method.

PQL usually works within the profile likelihood concept.
It is distinguished between the estimation of δ, given the
plugged-in estimate γ̂ , resulting in the profile-likelihood
lapp(δ, γ̂ ), and the estimation of γ . The PQL method is
implemented in the macro GLIMMIX and proc GLMMIX
in SAS (Wolfinger 1994), as well as in the glmmPQL and
gamm functions of the R-packages MASS (Venables and
Ripley 2002) and mgcv (Wood 2006). Further notes were
given by Wolfinger and O’Connell (1993), Littell et al.
(1996) and Vonesh (1996).

3 Regularization in GLMMs

In the following the log-likelihood (4) is expanded to in-
clude the penalty term λ

∑p

i=1 |βi |. Approximation along
the lines of Breslow and Clayton (1993) yields the penal-
ized log-likelihood

lpen(β,b,γ ) = lpen(δ,γ ) = lapp(δ,γ ) − λ

p∑

i=1

|βi |. (5)
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For given γ̂ the optimization problem reduces to

δ̂ = argmax
δ

lpen(δ, γ̂ ) = argmax
δ

[

lapp(δ, γ̂ ) − λ

p∑

i=1

|βi |
]

.

(6)

We will use a full gradient algorithm that is based on the
algorithm of Goeman (2010). As Goeman (2010) already
pointed out, the algorithm can easily be amended to situ-
ations in which some parameters should not be penalized.
In this case the penalty term from the optimization problem
of equation (2) is replaced by

∑p

i=1 λi |βi |, where λi = 0 is
chosen for unpenalized parameters. The penalty used in (5)
and (6) can be seen as a partially penalized approach if the
whole parameter vector δT = (βT ,bT ) is considered.

3.1 Gradient ascent algorithm—glmmLasso

In the following an algorithm is presented for maximizing
the penalized log-likelihood lpen(δ,γ ) from (5). In contrast
to the approaches of Shevade and Keerthi (2003), Kim and
Kim (2004) and Genkin et al. (2007), where only a single
component is updated at a time, it follows the gradient of
the likelihood from a given starting value of δ and uses the
full penalized gradient at each step.

Note, that due to the penalty term in (5) the penalized
log-likelihood lpen is not differentiable everywhere. How-
ever, for every point δ and every direction v ∈ R

p+nq the
directional derivative can be defined as

l′pen(δ;v,γ ) = lim
t↓0

1

t

(
lpen(δ + tv,γ ) − lpen(δ,γ )

)
.

The gradient ascent algorithm uses a series of Taylor ap-
proximations and approximates at each step the penalized
log-likelihood lpen from (5) locally from a current estimate
δ̂ in direction of the gradient by a directional second order
Taylor approximation

lpen(δ̂ + tspen(δ̂,γ ),γ
) ≈ lpen(δ̂,γ )

+ t l′pen

(
δ̂; spen(δ̂,γ ),γ

)

+ 0.5t2l′′pen

(
δ̂; spen(δ̂,γ )

)
, (7)

with t > 0 and where spen(·, ·) and l′′pen(·; ·) are defined in
step 2 (a) and (b) in the following algorithm (compare Goe-
man 2010).

A central issue is to find the correct step size t for the up-
date. In the following, the optimal step size resulting from
Taylor approximation is denoted by topt. But in order to
guarantee differentiability of the log-likelihood, the step size
of the update needs to be constrained, such that no discon-
tinuity points of the gradient are crossed, while going into
the direction of the gradient. This could happen, if single

components of the gradient have opposite directions as their
corresponding estimates. Hence, an adequate upper bound
tedge for the step size is derived in the update step 2. (d) of
the algorithm.

Similar to Goeman (2010) the algorithm can automat-
ically switch to a Fisher scoring procedure when it gets
close to the optimum and therefore avoids the tendency to
slow convergence which is typical for gradient ascent algo-
rithms. An additional step is needed to estimate the variance-
covariance components Q of the random effects. To keep
the notation simple, we omit the argument γ in the follow-
ing description of the algorithm and write lapp(δ) instead of
lapp(δ,γ ).

Algorithm glmmLasso

1. Initialization

Compute starting values β̂
(0)

, b̂
(0)

, γ̂ (0) (see Sect. 3.2.1);

η̂(0) = Xβ̂
(0) + Zb̂

(0)
.

2. Iteration
For l = 1,2, . . . until convergence:
(a) Calculation of the log-likelihood gradient for given

γ̂ (l−1):
With s(δ) = ∂lapp(δ)/∂δ derive:

s
pen
0

(
δ̂
(l−1)) = s0

(
δ̂
(l−1))

,

s
pen
i

(
δ̂
(l−1)) = si

(
δ̂
(l−1))

, i = p + 1, . . . , p + ns.

Furthermore, for i = 1, . . . , p derive:

s
pen
i (δ̂

(l−1)
) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

si(δ̂
(l−1)

) − λsign(β̂
(l−1)
i ),

if β̂
(l−1)
i 
= 0,

si(δ̂
(l−1)

) − λsign(si(δ̂
(l−1)

)),

if β̂
(l−1)
i = 0 and |si(δ̂(l−1)

)| > λ,

0, otherwise,

where sign(x) =
⎧
⎨

⎩

1 if x > 0
0 if x = 0
−1 if x < 0.

(b) Calculation of the directional second derivative:
Let A := [X,Z] and K = diag(0, . . . ,0,Q−1, . . . ,

Q−1) be a block-diagonal penalty matrix with a di-
agonal of p + 1 zeros corresponding to the fixed
effects and then n times the matrix Q−1. Then the
Fisher matrix is given in closed form as Fpen(δ) =
AT W(δ)A + K, with W(δ) = D(δ)Σ−1(δ)D(δ)T

and D(δ) = ∂h(η)/∂η,Σ(δ) = cov(y|δ). The direc-
tional second derivative is given for every δ and every
direction vector v ∈ R

p+1+ns by

l′′pen(δ;v) = −vT Fpen(δ)v
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(c) Optimum of Taylor approximation:
Maximization of the Taylor approximation (7) with
respect to t , using l′pen(δ; spen(δ,γ ),γ ) = ‖spen(δ)‖2,
yields

t
(l−1)
opt = − ‖spen(δ̂

(l−1)
)‖2

l′′pen(δ̂
(l−1)

, spen(δ̂
(l−1)

))

,

and

t
(l−1)
edge = min

i

{
− δ̂

(l−1)
i

s
pen
i (δ̂

(l−1)
)

:

sign
(
δ̂
(l−1)
i

) = −sign
[
s

pen
i

(
δ̂
(l−1))] 
= 0

}

with ‖ · ‖2 denoting the L2 norm.
(d) Update

δ̂
(l) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ̂
(l−1) + t

(l−1)
edge spen(δ̂

(l−1)
),

if t
(l−1)
opt ≥ t

(l−1)
edge ,

δ̂
(l−1)

FS , if t
(l−1)
opt < t

(l−1)
edge

and sign(δ̂
(l)

FS) = sign(δ̂
(l−1)

),

δ̂
(l−1) + t

(l−1)
opt spen(δ̂

(l−1)
), otherwise,

where δ̂
(l)

FS denotes the Fisher scoring estimate as
given in Sect. 3.2.2.

a) Computation of variance-covariance components

Estimates Q̂
(l)

are obtained as approximate EM-type
estimates or by alternative methods (see Sect. 3.2.3)
yielding the update �(l). If necessary, the whole vec-
tor γ̂ (l) is completed by an estimate of the dispersion
parameter.

3. Re-Estimation
In a final step a model that includes only the variables
corresponding to non-zero parameters of β̂ is fitted.
A simple Fisher scoring, resulting in the final estimates
δ̂, Q̂ is used.

3.2 Computational details of glmmLasso

In the following we give a more detailed description of the
single steps of the glmmLasso algorithm. First details of
the computation of starting values are given, then the Fisher
scoring step is further explained and finally two estimation
techniques for the variance-covariance components are de-
scribed.

3.2.1 Starting values for glmmLasso

We compute the starting values β̂
(0)

, b̂
(0)

, Q̂
(0)

from step 1
of the glmmLasso algorithm by fitting the simple global

intercept model with random effects, given by g(μit ) = β0 +
zT
itbi . This can be done very easily, for example by using the

R-function glmmPQL (Wood 2006) from the MASS library
(Venables and Ripley 2002).

3.2.2 Fisher scoring

Similar to Goeman (2010) we combine gradient ascent op-
timization with the Fisher scoring algorithm in the update
step 2 (d) of the glmmLasso algorithm. Although gradient
ascent optimization is computationally simple, because no
matrix inversion or other computationally expensive calcu-
lations are involved, often a large number of steps is required
for convergence. By allowing the algorithm to switch to the
Fisher scoring algorithm it becomes much faster.

For an arbitrary iteration we define J = {j : βj 
= 0, j =
0,1, . . . , p}, the index set of the “active” covariates, cor-
responding to the m = #J ≤ p + 1 non-zero coefficients.

Furthermore, let δ̃
T = (βJ1 , . . . , βJm,bT ), and let s̃pen(δ) =

{spen
J1

(δ), . . . , s
pen
Jm

(δ), s
pen
p+1(δ), . . . , s

pen
p+ns(δ)}T be the gradi-

ent in the constrained domain and F̃
pen

the (m+ns)× (m+
ns) Fisher matrix of the constrained optimization, given by
F̃

pen
(δ) = AT

J W(δ)AJ + KJ , with AJ := [XJ ,Z], whereas
XJ contains only those columns of X corresponding to
J , KJ = diag(0, . . . ,0,Q−1, . . . ,Q−1) is a block-diagonal
penalty matrix with a diagonal of m zeros corresponding to
the non-zero fixed effects and then n times the matrix Q−1.

One step of Fisher scoring in the current subdomain takes
the form

ˆ̃δ(l) = ˆ̃δ(l−1) + (
F̃

pen(
δ̂
(l−1)))−1s̃pen(δ̂

(l−1))
.

This estimator can be mapped back to a (p + 1 +ns)-vector

δ̂
(l)

FS by augmenting ˆ̃δ(l) with zeros for all non-active co-
variates. In order that the Taylor approximation which is
underlying such a step of Fisher scoring holds within the

current subdomain, δ̂
(l)

FS is accepted only when sign(δ̂
(l)

FS) =
sign(δ̂

(l−1)
).

As Goeman (2010) pointed out, it is often better to avoid
the attempt of trying a Fisher scoring step whenever it is
likely to fail, because it can be computational expensive.
Practical experience with our glmmLasso algorithm has
shown the same tendencies. We do not try a Fisher scoring
step at l = 0 and after a Fisher scoring step has failed we
try another step of Fisher scoring not until the active set has
changed. Nevertheless the incorporation of Fisher scoring
into the procedure can greatly speed up convergence once
the algorithm gets close to the optimum.

3.2.3 Variance-covariance components

Variance estimates for the random effects can be derived as
an approximate EM algorithm, using the posterior mode es-

timates and posterior curvatures. One derives (Fpen(δ̂
(l)

))−1,
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the inverse of the penalized pseudo Fisher matrix, using the

posterior mode estimates δ̂
(l)

to obtain the posterior curva-

tures V̂
(l)

ii . Now compute Q̂
(l)

by

Q̂
(l) = 1

n

n∑

i=1

(
V̂

(l)

ii + b̂
(l)

i

(
b̂

(l)

i

)T )
.

In general, the Vii are derived via the formula

Vii = F−1
ii + F−1

ii Fiβ

(

Fββ −
n∑

i=1

FβiF
−1
ii Fiβ

)−1

FβiF
−1
ii ,

where Fββ ,Fiβ ,Fii are elements of the partitioned Fisher
matrix, see Appendix B.

For an alternative estimation of variances (Breslow and
Clayton 1993) maximize the profile likelihood that is asso-
ciated with the normal theory model. By replacing β with β̂

one maximizes

l(Qb) = −1

2
log

(∣∣V(δ̂)
∣∣) − 1

2
log

(∣∣XT V−1(δ̂)X
∣∣)

− 1

2

(
η̃(δ̂) − Xβ̂

)T V−1(δ̂)
(
η̃(δ̂) − Xβ̂

)

with respect to Qb, with pseudo-observations η̃(δ) = Aδ +
D−1(δ)(y − μ(δ)) and matrices V(δ) = W−1(δ) + ZQbZT ,
Qb = diag(Q, . . . ,Q), W(δ) = D(δ)Σ−1(δ)D(δ)T . Having

calculated δ̂
(l)

in the l-th iteration, we obtain the estimator

Q̂
(l)

b , which is an approximate REML-type estimate for Qb.
In our simulation studies and applications the approxi-

mate EM-method is used, as in our experience the REML-
type approach did not improve on the results but increased
the computational costs.

3.3 Incorporation of categorical predictors

A frequently found type of structured regressors are cate-
gorical predictors (factors), which are usually dummy-coded
and hence result in groups of dummy variables. That means
a one-dimensional variable is transformed into a group of
variables. By construction, the standard Lasso solution is
only able to select distinct dummy variables but not whole
factors. Since one wants variable selection, the algorithm
has to be modified in the spirit of the group Lasso, which
was proposed by Yuan and Lin (2006). It was explicitly de-
signed for the selection of grouped variables in the form
of dummy-coded factors in the usual linear regression set-
up and represents an elegant combination of penalization
within groups of variables and groupwise selection by using
a Lasso penalty at the factor level, and a Ridge-type penal-
ization within coefficient groups.

Meier et al. (2008) have extended the group Lasso to lo-
gistic regression and present an efficient algorithm to solve

the corresponding convex optimization problem. Their re-
sulting logistic group Lasso estimator is obtained by re-
placing the Lasso penalty term from (2) by the penalty∑G

g=1 λg‖βIg
‖2, where Ig denotes the index set of to the

g-th group of variables, g = 1, . . . ,G and λg = λ
√

dfg ,
with dfg representing the number of parameters of group g,
which is equal to the number of factor levels minus one for
categorical predictors and dfg=1 for continuous predictors.

Suppose that the p + 1 columns of our design matrix X
are now resulting from G predictors, which may be cate-
gorical or continuous, plus intercept. Using the same nota-
tions as above, we incorporate the penalization adjustment
of Meier et al. (2008) into the glmmLasso algorithm by
simply modifying step 2 (a) in the following way:

(a2) Calculation of the log-likelihood gradient
With s(δ) = ∂lapp(δ)/∂δ derive:

s
pen
0 (δ̂

(l−1)
) = s0(δ̂

(l−1)
),

s
pen
i (δ̂

(l−1)
) = si(δ̂

(l−1)
), i = p + 1, . . . , p + ns.

Furthermore, for g = 1, . . . ,G derive:

spen
Ig

(δ̂
(l−1)

) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sIg (δ̂
(l−1)

) − λg

β̂
(l−1)

Ig

‖β̂(l−1)

Ig
‖2

,

if ‖β̂(l−1)

Ig
‖2 
= 0,

sIg (δ̂
(l−1)

) − λg
sIg (δ̂

(l−1)
)

‖sIg (δ̂
(l−1)

)‖2

,

if ‖β̂(l−1)

Ig
‖2 = 0

and ‖sIg (δ̂
(l−1)

)‖2 > λg,

000, otherwise.

3.4 Simulation study

In the following small simulation study the performance of
the glmmLasso algorithm is compared to alternative ap-
proaches.

Poisson Link The underlying model is the random inter-
cept Poisson model

ηit =
p∑

j=1

xitj βj + bi, i = 1, . . . ,40, t = 1, . . . ,10,

E[yit ] = exp(ηit ) := λit , yit ∼ Pois(λit ),

with linear effects given by β1 = −4, β2 = −6, β3 = 10
and βj = 0, j ≥ 4. We chose the different settings p =
3,10,100,200,500. For j = 1, . . . , p the vectors xT

it =
(xit1, . . . , xitp) follow a uniform distribution within the in-
terval [−0.14,0.14], where the parameter vector β and the
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interval boundaries of the uniform distributions of the co-
variates have been chosen such that reasonable and manage-
able response values are obtained. The number of observa-
tions was determined by n = 40, Ti := T = 10, i = 1, . . . , n.
The random effect and the noise variable have been specified
by bi ∼ N(0, σ 2

b ) with σb = 0.4,0.8,1.6.
In general, the R-functions glmmPQL (Venables and Rip-

ley 2002), glmmML (Broström 2009) and glmer ( Bates
and Maechler 2010) are able to fit the underlying model.
The glmmPQL routine is supplied by the MASS library. It
operates by iteratively calling the R-function lme from the
nlme library and returns the fitted lme model object for the
working model at convergence. For more details about the
lme function, see Pinheiro and Bates (2000). The glmmML
function is supplied with the glmmML package (Broström
2009) and features two different methods of approximat-
ing the integrals in the log-likelihood function, Laplace and
Gauss-Hermite, whereas for the first method the results co-
incide with the results of the glmmPQL routine. Unfortu-
nately, for both functions no model testing methods are
available, thus no subset selection procedures can be per-
formed.

However, the glmer function from the lme4 package
(Bates and Maechler 2010) provides model testing based on
an analysis of deviance. Hence, we use forward subset selec-
tion in order to perform variable selection and compare the
results with our glmmLasso algorithm. We restrict con-
sideration to forward procedures because forward/backward
procedures imply huge computational costs. It should be
mentioned that the glmer function also features two dif-
ferent methods of approximating the integrals in the log-
likelihood function, Laplace and adaptive Gauss-Hermite.
We focused on the former and call the corresponding for-
ward selection procedure glmer-select.

In addition, we compare the results of our glmmLasso
algorithm with the results obtained by the GLMMLasso
(SB) algorithm proposed in Schelldorfer and Bühlmann
(2011), which was already mentioned at the end of Sect. 1.
For both L1-regularized approaches the tuning parameter λ

has been determined using the Bayesian Information Crite-
rion (BIC), see Appendix A.

Finally, we also compare our results with two boosting
functions, bGLMM (EM) and bGLMM (REML), introduced in
Tutz and Groll (2010) and implemented in the R-package
GMMBoost (see Groll 2011b), which perform variable se-
lection by boosting techniques. They differ in the computa-
tion of the covariance matrix components Q of the random
effects. The first one can be derived as an approximate EM
algorithm, the second one by maximizing the profile like-
lihood that is associated with the normal theory model and
therefore could be seen as an approximate REML-type esti-
mate.

The performance of estimators was evaluated separately
for the structural components and the variance. By av-

eraging across 100 training data sets we consider mean
squared errors for β and σb given by mseβ := ‖β − β̂‖2,
mseσb

:= (σb − σ̂b)
2. The means of both quantities are

presented in Table 1 and 2, together with the correspond-
ing standard errors in brackets. The results of mseβ are
illustrated in Fig. 1, which shows boxplots of the ra-
tios log(mseβ(·)/mseβ(glmer-select)) for the different
methods, for different numbers of noise variables and the
scenario σb = 0.4. Additionally, we present boxplots of the
ratios log(mseσb

(·)/mseσb
(glmer-select)) correspond-

ing to σb = 0.4 in Fig. 2.
Additional information on the performance of the algo-

rithm was collected in falseneg (f.n.), the mean over all 100
simulations of the number of variables βj , j = 1,2,3, that
were not selected and in falsepos (f.p.), the mean over all
100 simulations of the number of variables βj , j = 4, . . . , p,
that were selected. In order to make the different approaches
comparable with respect to computational efficiency, we
present the computational times (in minutes; the total sum
over all 100 simulation runs) for each approach, includ-
ing the determination of the tuning parameter for the L1-
regularized approaches and including the forward selection
procedure for glmer. The corresponding results are pre-
sented in Table 3.

Results for varying number p of covariates xit1, . . . , xitp

are summarized in Tables 1 to 3. It is seen that simple for-
ward selection with glmer performs rather well and dom-
inates all other procedures with the exception of glmm-
Lasso in terms of mseβ . glmmLasso performs best, and
turns out to be very stable also in high dimensional settings,
whereas, in particular the boosting approaches, deteriorate
in high dimensional settings. Although the performance of
the latter could be improved by adapting tuning parame-
ters, especially by allowing more iterations, computational
costs would increase tremendously. In general, the compu-
tational expense is drastically growing with the number of
covariates for all approaches, but glmmLasso turns out
to be most efficient in terms of computational time, espe-
cially in high-dimensional settings. glmmLasso also out-
performs the other approaches in terms of false positives.
False negatives are for all approaches extremely low. In
terms of mseσb

, glmer-select, GLMMLasso (SB) and
glmmLasso show almost identical results and outperform
boosting for most scenarios.

An advantage of the L1-penalization approaches over
boosting techniques is that they also perform well when all
variables in the predictor are influential as well as in really
high dimensional settings. Also with respect to the variance
component σb, both glmmLasso and GLMMLasso (SB)
slightly outperform both boosting approaches.

Figures 1 and 2 compare the performance of the pro-
cedures with glmer-select as the reference. They
show the varying proportions log(mseβ(·)/mseβ(glmer-
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Table 1 Results for mseβ for glmmLasso and alternative approaches on Poisson data (standard errors in brackets)

σb p

glmer-select GLMMLasso (SB) glmmLasso bGLMM (EM) bGLMM (REML)

mseβ mseβ mseβ mseβ mseβ

0.4 3 0.92 (0.73) 0.95 (0.79) 0.92 (0.73) 1.56 (1.52) 1.03 (0.85)

0.4 10 1.26 (1.08) 3.63 (2.47) 1.26 (1.08) 2.05 (1.37) 1.84 (1.36)

0.4 100 2.92 (2.22) 8.70 (3.78) 1.80 (1.85) 8.54 (3.79) 8.40 (3.79)

0.4 200 4.98 (3.63) 10.16 (4.46) 1.43 (1.48) 15.98 (6.97) 15.20 (6.78)

0.4 500 11.95 (6.47) 12.29 (4.78) 1.71 (2.42) 34.65 (12.20) 33.31 (11.82)

0.8 3 0.82 (0.63) 0.89 (0.71) 0.83 (0.64) 2.28 (2.43) 2.29 (2.46)

0.8 10 1.08 (0.97) 3.39 (2.42) 1.10 (1.04) 1.61 (1.40) 1.58 (1.31)

0.8 100 2.80 (2.59) 8.20 (3.66) 1.36 (2.20) 7.25 (4.32) 7.21 (4.32)

0.8 200 4.26 (3.24) 9.83 (4.25) 1.67 (3.42) 12.53 (5.11) 12.72 (5.50)

0.8 500 9.87 (6.48) 11.73 (5.38) 3.30 (9.34) 26.54 (10.97) 26.63 (11.44)

1.6 3 0.47 (0.47) 0.53 (0.54) 0.47 (0.45) 0.84 (1.41) 0.74 (1.37)

1.6 10 0.54 (0.56) 1.76 (1.38) 0.63 (0.47) 7.84 (4.60) 7.86 (4.60)

1.6 100 1.31 (1.25) 4.34 (2.54) 2.81 (5.43) 3.55 (2.32) 2.21 (1.84)

1.6 200 1.82 (1.59) 5.03 (3.04) 4.24 (4.12) 5.24 (2.93) 5.16 (2.86)

1.6 500 7.83 (2.76) 7.54 (4.71) 7.36 (5.76) 11.16 (5.74) 10.74 (5.77)

Table 2 Results for mseσb
for glmmLasso and alternative approaches on Poisson data (standard errors in brackets)

σb p

glmer-select GLMMLasso (SB) glmmLasso bGLMM (EM) bGLMM (REML)

mseσb
mseσb

mseσb
mseσb

mseσb

0.4 3 0.003 (0.005) 0.004 (0.005) 0.003 (0.005) 0.035 (0.093) 0.003 (0.004)

0.4 10 0.004 (0.006) 0.004 (0.006) 0.004 (0.005) 0.032 (0.053) 0.003 (0.005)

0.4 100 0.004 (0.006) 0.004 (0.006) 0.004 (0.005) 0.065 (0.169) 0.004 (0.005)

0.4 200 0.005 (0.007) 0.004 (0.007) 0.004 (0.005) 0.045 (0.072) 0.004 (0.006)

0.4 500 0.007 (0.010) 0.004 (0.006) 0.004 (0.005) 0.057 (0.080) 0.006 (0.010)

0.8 3 0.009 (0.010) 0.009 (0.010) 0.009 (0.009) 0.117 (0.208) 0.009 (0.009)

0.8 10 0.011 (0.014) 0.011 (0.014) 0.011 (0.012) 0.153 (0.254) 0.011 (0.012)

0.8 100 0.009 (0.012) 0.009 (0.011) 0.009 (0.011) 0.155 (0.277) 0.008 (0.010)

0.8 200 0.011 (0.014) 0.011 (0.13) 0.010 (0.013) 0.186 (0.361) 0.010 (0.012)

0.8 500 0.012 (0.014) 0.012 (0.014) 0.011 (0.012) 0.218 (0.351) 0.010 (0.014)

1.6 3 0.034 (0.046) 0.035 (0.046) 0.034 (0.040) 0.957 (1.209) 0.404 (0.545)

1.6 10 0.031 (0.040) 0.031 (0.040) 0.032 (0.040) 0.893 (0.999) 0.708 (0.582)

1.6 100 0.031 (0.045) 0.031 (0.045) 0.030 (0.041) 1.349 (1.358) 0.035 (0.058)

1.6 200 0.036 (0.049) 0.036 (0.049) 0.034 (0.043) 1.315 (1.423) 0.039 (0.059)

1.6 500 0.035 (0.047) 0.035 (0.047) 0.042 (0.054) 1.200 (1.321) 0.452 (0.572)

select)) as well as log(mseσb
(·)/mseσb

(glmer-

select)) over the simulations for σb = 0.4.

Bernoulli Link The underlying model is the random inter-
cept Bernoulli model

ηit =
p∑

j=1

xitj βj + bi, i = 1, . . . ,40, t = 1, . . . ,10,

E[yit ] = exp(ηit )

1 + exp(ηit )
:= πit yit ∼ B(1,πit )

with linear effects given by β1 = −5, β2 = −10, β3 = 15
and βj = 0, j = 4, . . . ,500. Again we choose the different
settings p = 3,10,100,200,500. For j = 1, . . . , p the vec-
tors xT

it = (xit1, . . . , xitp) have been drawn independently
with components following a uniform distribution within the
interval [−0.1,0.1], where parameters and interval bound-
aries have been chosen such that the frequencies of the two
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Table 3 Computational times (in minutes) together with false positives and false negatives for glmmLasso and alternative approaches on Poisson
data

σb p

glmer-select GLMMLasso (SB) glmmLasso bGLMM (EM) bGLMM (REML)

time f.p. f.n. time f.p. f.n. time f.p. f.n. time f.p. f.n. time f.p. f.n.

0.4 3 5 0 0 528 0 0 47 0 0 22 0 0 159 0 0

0.4 10 25 0.15 0 312 1.00 0 114 0.18 0 100 1.02 0 320 1.09 0

0.4 100 1415 0.82 0 1677 1.25 0 369 0.36 0 1728 5.17 0 2214 5.42 0

0.4 200 1570 1.66 0 2904 1.27 0 872 0.17 0 1888 9.38 0 1764 9.26 0

0.4 500 4633 4.01 0 6618 1.77 0 3625 0.24 0.01 5687 16.96 0 6141 17.01 0

0.8 3 5 0 0 548 0 0 29 0 0 23 0 0 196 0 0

0.8 10 38 0.09 0 582 1.08 0 302 0.12 0 73 1.25 0 198 1.25 0

0.8 100 520 0.90 0 1138 1.50 0 545 0.37 0.01 568 5.37 0 1754 5.43 0

0.8 200 1691 1.54 0 4197 1.88 0 1786 1.15 0.01 1662 8.47 0 1838 8.62 0

0.8 500 5163 3.64 0 8020 2.41 0 4913 4.49 0.07 6815 15.16 0 7007 15.36 0

1.6 3 7 0 0 990 0 0 398 0 0 118 0 0 423 0 0

1.6 10 53 0.10 0 2280 1.11 0 2415 1.59 0 174 0.82 0 584 0.78 0

1.6 100 856 0.77 0 2105 3.22 0 1404 7.28 0.06 1596 5.50 0 3172 4.70 0

1.6 200 1670 1.21 0 6377 3.73 0 3121 6.13 0.03 3757 7.56 0 4392 7.42 0

1.6 500 4850 2.62 0 12743 6.02 0 4294 8.17 0.08 9440 12.66 0 10027 12.40 0

Fig. 1 Boxplots of log(mseβ (·)/mseβ (glmer-select)) for glmmLasso and alternative approaches on Poisson data for σb = 0.4

Fig. 2 Boxplots of log(mseσb
(·)/mseσb

(glmer-select)) for glmmLasso and alternative approaches on Poisson data for σb = 0.4

response categories are comparatively balanced. The num-
ber of observations remains n = 40, Ti := T = 10,∀i =
1, . . . , n. The random effects and the noise variable have
been specified by bi ∼ N(0, σ 2

b ) with σb = 0.4,0.8,1.6.

Again, we evaluate the performance of estimators sep-
arately for the structural components and the variance and
compare the alternative approaches. Results for varying
number p of covariates xit1, . . . , xitp and different ran-



146 Stat Comput (2014) 24:137–154

Table 4 Results for mseβ for glmmLasso and alternative approaches on Bernoulli data (standard errors in brackets)

σb p

glmer-select GLMMLasso (SB) glmmLasso bGLMM (EM) bGLMM (REML)

mseβ mseβ mseβ mseβ mseβ

0.4 3 24.38 (14.07) 16.38 (15.90) 21.79 (14.34) 23.36 (15.94) 41.51 (35.40)

0.4 10 24.95 (17.61) 47.99 (32.48) 25.33 (17.73) 21.84 (16.79) 40.41 (35.42)

0.4 100 62.63 (45.16) 94.42 (42.16) 52.06 (43.82) 65.77 (34.80) 69.46 (66.06)

0.4 200 135.72 (112.56) 113.35 (255.05) 82.20 (77.55) 130.01 (255.05) 438.31 (769.35)

0.4 500 3873.83 (34363.55) 128.38 (41.83) 113.16 (84.81) 2879.71 (1369.55) 2540.35 (1237.83)

0.8 3 26.82 (16.56) 17.56 (16.58) 24.60 (18.24) 24.73 (20.42) 68.38 (44.29)

0.8 10 27.94 (20.00) 52.45 (29.80) 26.88 (22.07) 26.75 (19.95) 61.17 (39.13)

0.8 100 73.07 (54.42) 107.74 (44.44) 58.59 (45.37) 80.37 (38.22) 74.60 (98.11)

0.8 200 138.25 (92.77) 121.23 (42.73) 86.71 (95.67) 678.95 (1050.71) 1233.89 (993.02)

0.8 500 400.78 (504.87) 124.95 (43.20) 71.78 (61.58) 2519.97 (1889.11) 2408.70 (1792.54)

1.6 3 39.54 (28.81) 22.72 (27.52) 34.25 (28.75) 45.20 (37.86) 52.73 (43.12)

1.6 10 34.66 (21.66) 67.21 (46.18) 33.16 (22.07) 52.03 (33.07) 61.44 (36.39)

1.6 100 91.91 (68.77) 129.46 (56.49) 75.45 (55.50) 654.34 (565.97) 638.86 (493.11)

1.6 200 182.83 (178.20) 144.04 (54.66) 91.44 (88.97) 2427.09 (943.12) 2369.36 (866.69)

1.6 500 5016.08 (25797.97) 164.06 (60.74) 104.27 (95.97) 3954.57 (2598.53) 2879.37 (1943.81)

Table 5 Results for mseσb
for glmmLasso and alternative approaches on Bernoulli data (standard errors in brackets)

σb p

glmer-select GLMMLasso (SB) glmmLasso bGLMM (EM) bGLMM (REML)

mseσb
mseσb

mseσb
mseσb

mseσb

0.4 3 0.056 (0.062) 0.058 (0.062) 0.044 (0.049) 0.080 (0.008) 0.053 (0.066)

0.4 10 0.051 (0.058) 0.068 (0.069) 0.037 (0.045) 0.078 (0.008) 0.043 (0.058)

0.4 100 0.047 (0.052) 0.071 (0.069) 0.036 (0.043) 0.064 (0.015) 0.036 (0.055)

0.4 200 0.053 (0.061) 0.075 (0.072) 0.051 (0.057) 0.119 (0.676) 0.272 (0.633)

0.4 500 2.590 (25.173) 0.074 (0.070) 0.035 (0.044) 3.854 (2.437) 1.379 (1.184)

0.8 3 0.043 (0.063) 0.046 (0.067) 0.036 (0.054) 0.343 (0.130) 0.046 (0.065)

0.8 10 0.044 (0.061) 0.063 (0.082) 0.036 (0.050) 0.347 (0.124) 0.048 (0.060)

0.8 100 0.039 (0.058) 0.070 (0.103) 0.032 (0.051) 0.299 (0.093) 0.102 (0.039)

0.8 200 0.050 (0.086) 0.079 (0.104) 0.037 (0.075) 1.819 (3.018) 0.721 (0.757)

0.8 500 0.102 (0.174) 0.086 (0.132) 0.038 (0.056) 4.373 (3.833) 1.413 (1.326)

1.6 3 0.060 (0.074) 0.058 (0.075) 0.065 (0.082) 4.681 (5.589) 0.220 (0.175)

1.6 10 0.062 (0.099) 0.086 (0.104) 0.070 (0.084) 4.136 (5.627) 0.206 (0.170)

1.6 100 0.070 (0.107) 0.116 (0.140) 0.065 (0.102) 8.077 (6.464) 0.302 (0.480)

1.6 200 0.105 (0.214) 0.135 (0.136) 0.077 (0.092) 14.010 (8.809) 1.021 (0.906)

1.6 500 15.032 (84.298) 0.129 (0.135) 0.084 (0.108) 19.661 (14.804) 1.663 (1.765)

dom effects variances σb are summarized in Tables 4, 5,
and 6 and visualized in Figs. 3 and 4. The difference be-
tween approaches is less distinct, but glmmLasso again
dominates the other approaches in terms of mseβ when
noise variables are in the model. Besides, glmmLasso
again yields the best results with respect to computational
time as well as in terms of mseσb

. The performance of the
boosting approaches is much worse than for the other ap-
proaches, especially for the case p = 500. For this really

high-dimensional case tuning parameters have to be adapted

but we abstain from adapting tuning parameters to spe-

cific high-dimensional settings. Boosting approaches per-

form well in terms of false negatives, but not in terms of

false positives. The GLMMLasso (SB) dominates glmm-

Lasso in terms of false positives but not in terms of false

negatives. glmer-select has a tendency to include too

many irrelevant variables.
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Table 6 Computational times (in minutes) together with false positives and false negatives for glmmLasso and alternative approaches on
Bernoulli data

σb p

glmer-select GLMMLasso (SB) glmmLasso bGLMM (EM) bGLMM (REML)

time f.p. f.n. time f.p. f.n. time f.p. f.n. time f.p. f.n. time f.p. f.n.

0.4 3 3 0 0.52 143 0 0.11 1825 0 0.45 65 0 0.39 1590 0 0.81

0.4 10 16 0.05 0.49 146 0.61 0.35 742 0.11 0.51 228 0.11 0.34 742 0.06 0.78

0.4 100 260 0.87 0.53 590 0.68 0.61 1025 0.74 0.65 3140 1.54 0.47 4593 1.04 0.86

0.4 200 478 2.36 0.55 1573 0.64 0.82 1032 1.55 0.64 2822 2.92 0.56 3055 6.16 0.78

0.4 500 5615 6.50 0.57 2112 0.70 0.93 2104 2.33 0.74 7084 30.62 0.33 7570 30.65 0.43

0.8 3 3 0 0.57 271 0 0.13 187 0 0.51 161 0 0.38 657 0 1.23

0.8 10 17 0.06 0.55 273 0.32 0.75 182 0.16 0.48 420 0.32 0.28 1004 0 1.17

0.8 100 300 1.01 0.58 704 0.57 0.78 415 0.84 0.72 4283 2.37 0.38 5385 0.28 1.12

0.8 200 499 2.35 0.58 1647 0.64 0.78 732 1.79 0.67 2949 8.33 0.43 3375 14.35 0.58

0.8 500 3201 4.96 0.64 2029 0.60 0.88 423 0.88 0.91 6996 23.10 0.48 7758 22.38 0.71

1.6 3 4 0 0.80 345 0 0.15 85 0 0.67 211 0 0.43 1010 0 0.53

1.6 10 21 0.05 0.69 342 0.53 0.48 102 0.10 0.64 666 0.40 0.46 1537 0.39 0.50

1.6 100 338 0.95 0.74 931 0.62 0.99 257 1.17 0.76 5727 8.53 0.38 6454 8.79 0.38

1.6 200 723 2.32 0.66 2399 0.56 0.99 1385 1.36 0.87 3204 21.64 0.38 4056 21.52 0.38

1.6 500 11656 6.00 0.81 2281 0.54 1.23 1344 1.28 1.17 7635 23.67 0.53 8215 21.87 0.60

Fig. 3 Boxplots of log(mseβ (·)/mseβ (glmer-select)) for glmmLasso and alternative approaches on Bernoulli data for σb = 0.4

Fig. 4 Boxplots of log(mseσb
(·)/mseσb

(glmer-select)) for glmmLasso and alternative approaches on Bernoulli data for σb = 0.4
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Fig. 5 Relative frequencies of the nine defoliation classes for all ob-
servation plots and all time points for the forest health data

Fig. 6 Coefficient built-ups for the glmmLasso for the forest health
data; the optimal value of the penalty parameter λ is shown by the
vertical line

4 Applications to real data

In the following sections we will apply our lasso method on
different real data sets and compare the results with other
approaches. The tuning parameters λ have been chosen via
BIC, see Appendix A. Standard errors for fixed effects and
random effects variance components can be obtained by
simulation-based parametric bootstrap evaluations, see Ap-
pendix C.

4.1 Forest health data

The forest health data has been considered in previous stud-
ies, for example in Kneib et al. (2009) and Tutz and Groll
(2012). In this application, the health status of beeches at 83
observation plots located in a northern Bavarian forest dis-
trict has been assessed in visual forest health inventories car-
ried out between 1983 and 2004. Originally, the health sta-
tus is classified on an ordinal scale, where the nine possible
categories denote different degrees of defoliation. Figure 5
shows a histogram of the nine defoliation classes indicating

Table 7 Description of covariates for the forest health data

Covariate Description

age age of the tree in years (continuous,
7 ≤ age ≤ 234)

elevation elevation above sea level in meters
(continuous, 250 ≤ elevation ≤ 480)

inclination inclination of slope in percent (continuous,
0 ≤ inclination ≤ 46)

soil depth of soil layer in centimeters
(continuous, 9 ≤ soil ≤ 51)

canopy density of forest canopy in percent
(continuous, 0 ≤ canopy ≤ 1)

stand type of stand (categorical, 1 = deciduous
forest, −1 = mixed forest)

fertilisation fertilisation (categorical, 1 = yes, −1 = no)

humus thickness of humus layer in 5 categories
(ordinal, higher categories represent
higher proportions)

moisture level of soil moisture (categorical, 1 =
moderately dry, 2 = moderately moist,
3 = moist or temporary wet)

saturation base saturation (ordinal, higher categories
indicate higher base saturation)

that no trees were observed in the last two categories. We are
now only interested in whether a tree is healthy or not, so we
model the dichotomized response variable defoliation with
categories 1 (not healthy; defoliation above or equal 12.5 %)
and 0 (healthy; no defoliation; 0.0 %). In Kneib et al. (2009)
a brief description of the covariates in the data set is pre-
sented, which is found in Table 7.

As Kneib et al. (2009) identified a nonlinear effect of
“age”, we include some higher powers of “age” into our
model, which results in the following predictor:

g(πit ) = β0 + ageitβ1 + age2
it β2 + age3

itβ3 + age4
itβ4

+ elevationitβ5 + inclinationitβ6 + soilitβ7

+ canopyit β8 + fertilisationitβ9 + standit β10

+ humus0itβ11 + humus2itβ12 + humus3it β13

+ humus4itβ14 + saturation1itβ15

+ saturation3itβ16 + saturation4it β17

+ moisture1it β18 + moisture3itβ19 + bi,

where πit = μit denotes the expected probability of defo-
liation for observation area i at time t and bi ∼ N(0, σ 2

b )

represent cluster-specific random intercepts. We fit a bino-
mial model with logit-link, building groups for the catego-
rial variables “humus”, “moisture” and “saturation”. For this
purpose we use the extended algorithm for categorical pre-
dictors from Sect. 3.3. Results for the parameter estimates
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Table 8 Estimates for the forest health data (standard errors in brack-
ets)

glmer-select GLMMLasso (SB) glmmLasso

Intercept −0.948 (0.688) −0.867 −7.642 (1.904)

age 0.029 (0.004) – 0.311 (0.092)

age2 – – −0.006 (0.002)

age3 – 0.000 0.000 (0.000)

age4 – 0.000 0.000 (0.000)

elevation – – –

inclination – – –

soil – – –

canopy −3.497 (0.525) −1.299 –

fertilisation −1.905 (0.615) – –

stand – – 1.220 (1.138)

humus0 – 0.646 –

humus2 – – –

humus3 – – –

humus4 – – –

saturation1 – – –

saturation3 – – –

saturation4 – – –

moisture1 – – –

moisture3 – – –

σ̂b 1.865 2.178 1.895 (0.116)

Fig. 7 Smoothed age effect for the forest health data with gamm (solid
line) and glmmLasso (dashed line)

are found in Table 8 and the corresponding coefficient built-
ups are illustrated in Fig. 6.

The penalty parameter λ for the glmmLasso again was
determined by BIC on the interval [0;300]. The chosen pa-
rameter was rather high, λopt = 112, indicating that penal-
ization improves the fit compared to ordinary fitting proce-
dures which are obtained for λ = 0 and consequently only
few of the variables are included. The smooth effect of age
on tree defoliation for our binomial model with logit-link
is shown in Fig. 7. For comparison, the smooth effect ob-

Table 9 Description of covariates for the Jimma data

Covariate Description

age age of the child in days (continuous,
0 ≤ age ≤ 385)

ageM age of the mother in years (continuous,
14 ≤ ageM ≤ 50)

education educational level of the mother (categorical,
1 = illiterate, 2 = read and write,
3 = elementary school, 4 = junior high school,
5 = high school, 6 = college and above)

delivery place of delivery (categorical, 1 = hospital,
2 = health center, 3 = home)

visits number of antenatal visits (categorical, 0, ≥ 1)

month month of birth (categorical, 1 = Jan.–June,
0 = July–Dec.)

sex sex of the child (categorical, 1 = male,
0 = female)

marital marital status of mother (categorical,
1 = married, 2 = divorced,
3 = widowed, 4 = never married)

status occupational status of mother (categorical,
1 = unemployed, 0 = employed)

tained by a penalized basis function approach, which is im-
plemented in the gamm function of the R-package mgcv
(Wood 2006), is shown. Obviously with increasing age of
the trees the probability of defoliation increases in a non-
linear fashion.

4.2 Jimma Infant Survival Study

The Jimma Infant Survival Differential Longitudinal Study
is a cohort study investigating the live births which took
place in the town of Jimma in Ethiopia during a one year
period from September 1992 until September 1993. An ex-
tensive description can be found in Lesaffre et al. (1999).
The study covers 8000 households with live births in the
said period. Following Lesaffre et al. (1999) and Tutz and
Reithinger (2007), 495 singleton live births have been con-
sidered and monitored for a one year period in order to de-
termine the risk factors for infant mortality. A good indica-
tor of a child’s health status is the body weight. Hence, to
determine possible influence factors on growth of the chil-
dren, we use the (logarithmic) body weight (in kg) as re-
sponse variable together with some socio-economic and de-
mographic as well as some prenatal and delivery-related co-
variates. A brief description of all considered covariates can
be found in Table 9.

Tutz and Reithinger (2007) identified a nonlinear effect
of “age”, therefore we include also “age2” into our model,
resulting in the following predictor:

g(μit ) = β0 + ageit β1 + age2
itβ2 + ageMitβ3
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Table 10 Estimates for the standard deviations of the random effects
for the Jimma data with glmer-select, with lmmlasso function
and glmmLasso algorithm (bootstrap standard errors in brackets)

glmer-select lmmlasso glmmLasso

σ̂b0 0.294 0.400 0.078 (0.001)

σ̂b1 0.001 0.003 0.000 (0.003)

σ̂b2 0.000 0.000 0.000 (0.002)

+ education1itβ4 + education2itβ5

+ education3itβ6 + education4itβ7

+ education5itβ8 + delivery1it β9

+ delivery2itβ10 + visitsitβ11 + monthitβ12

+ sexit β13 + marital1itβ14 + marital2itβ15

+ marital3itβ16 + statusitβ17

+ b0i + ageit b1i + age2
it b2i ,

where μit denotes the expected body weight of child i at
time t and bi = (b0i , b1i , b2i )

T ∼ N(0,Q) represent child-
specific random intercepts and random slopes on age and
squared age. The continuous variables age, squared age and
age of the mother have been standardized. We fit a normal
distribution model with log-link, building groups for the cat-
egorial variables “education”, “delivery” and “marital”. So
again the extended algorithm for categorical predictors from
Sect. 3.3 is required. For GLMMLasso (SB) only Poisson
and binomial model are implemented, so we use the lmm-
lasso from the corresponding R-package (see Schelldor-
fer 2011) as well as glmer-select for comparison. Note
here, that for the lmmlasso function a warning message is
reported, that covariance parameters are redundant. The es-
timates for the standard deviations of the random effects for
the standardized model are presented in Table 10.

The results for the estimated linear effects correspond-
ing to the original scaling of the variables can be found in
Table 11 and the corresponding coefficient built-ups are il-
lustrated in Fig. 8. The BIC is plotted against the penalty
parameter λ in Fig. 9. Again penalization improves ordinary
fitting procedures obtained for λ = 0 and a sparse model is
chosen with a clearly non-linear influence of the child’s age.
Only the lmmlasso function detects a linear influence of
the variable “sex”.

The child-specific smooth effects of the children’s age
on the body weight for glmmLasso are shown in Fig. 10.
As was to be expected, with increasing age of the children
their body weight increases, at first relatively fast, but slow-
ing down after the first 200 days. The main feature of the
penalized approach is that variables that also turn out to be
non-influential are automatically selected.

Fig. 8 Coefficient built-ups for the glmmLasso for the Jimma data;
the optimal value of the penalty parameter λ is shown by the vertical
line

Fig. 9 Results for BIC for the glmmLasso as function of penalty
parameter λ for the Jimma data; the optimal value of the penalty pa-
rameter λ is shown by the vertical line

5 Concluding remarks

Several procedures for variable selection based on L1-
penalties have been proposed. The procedures yield stable
estimates in cases where methods that do not include vari-
able selection typically fail because of the complexity of the
fitting task. The method allows to include categorical pre-
dictors that are selected or omitted as a whole predictor in
the spirit of the group lasso. It is straightforward to extend
the approach to include more complex penalty terms, for ex-
ample, the elastic net penalty or hierarchical penalty terms
as proposed by Zhao et al. (2009). Even though the proce-
dures work in linear mixed models the main focus of this
article was on GLMMs.

As suggested by a referee we included a comparison
with the approach recently proposed by Schelldorfer and
Bühlmann (2011). In contrast to the gradient ascent algo-
rithm proposed here, they suggest a coordinate gradient de-
scent method based on a quadratic approximation of the pe-
nalized log-likelihood and perform indirect line search to
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Table 11 Estimated linear effects for the Jimma data with glmer-
select, with lmmlasso function and glmmLasso algorithm (stan-
dard errors in brackets)

glmer-select lmmlasso glmmLasso

Intercept 1.288 (0.007) 3.293 (–) 1.288 (0.010)

age 0.005 (0.000) 0.023 (–) 0.005 (0.000)

age2 −0.000 (0.000) −0.000 (–) −0.000 (0.000)

ageM – – –

education1 – – –

education2 – – –

education3 – – –

education4 – – –

education5 – – –

delivery1 – – –

delivery2 – – –

visits – – –

month – – –

sex – 0.088 (–) –

marital1 – – –

marital2 – – –

marital3 – – –

occupational – – –

ensure that the objective function decreases. Also the com-
putation of variance components is different and our proce-
dure includes a final re-estimation step. It should be noted
that the selection of the tuning parameter in our procedure is
based on the whole procedure, iterative estimates and final
re-estimation. This may account for the difference in per-
formance. The simulation study shows that the new glmm-
Lasso algorithm is highly competitive, both with respect
to the accuracy of β-estimates and estimates of the random
effects variance parameters as well as the computational
efficiency. An advantage of glmmLasso is the appropri-
ate treatment of categorical variables. Another advantage of
the glmmLasso function comes from the implementation
side: glmmLasso is able to fit many GLM-families and
to consider all kinds of random effects covariance matrices,
whereas the GLMMLasso (SB) method at the moment only
allows for binomial and Poisson family and two rather sim-
ple structures for the random effects covariance matrix.

After finishing the present paper we found that an alter-
native approach proposed by Ibrahim et al. (2011) is avail-
able online, but in the simulations as well as in the applica-
tion only linear mixed models were considered. They select
both fixed and random effects in a general class of mixed
effects models using maximum penalized likelihood (MPL)
estimation along with the smoothly clipped absolute devia-
tion (SCAD) and the adaptive least absolute shrinkage and
selection operator (ALASSO) penalty functions. They spec-
ify penalty parameters as hyperparameters. In contrast to the

Fig. 10 Individual smoothed age effects for the Jimma data on the pre-
dictor level (upper) and versus body weight (lower) for glmmLasso
with slopes up to second potence of age

gradient ascent approach used here they use the expectation-
maximization (EM) algorithm to simultaneously optimize
the penalized likelihood function and estimate the penalty
parameters.

Appendix A: Determination of the tuning parameter λ

First of all, define a fine grid of different values for the tun-
ing parameter, 0 ≤ λ1 ≤ · · · ≤ λL ≤ ∞. Next, the optimal
tuning parameter is determined using one of the following
techniques and finally, the whole data set is fitted again us-
ing the glmmLasso algorithm with λopt to obtain the final
estimates δ̂, Q̂ and the corresponding fit μ̂.

One way to determine the tuning parameter is based on
information criteria. In the following we focus on Akaike’s
information criterion (AIC, see Akaike 1973) as well as on
the Bayesian information criterion (BIC, see Schwarz 1978),
also known as Schwarz’s information criterion, given by:

AICl = −2l
(
μ̂(j)

) + 2df (λj ),

BICl = −2l
(
μ̂(j)

) + log(n)df (λj ),
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j ∈ {1, . . . ,L}, where l(μ̂(j)
) denotes the approximated log-

likelihood from (4) evaluated at the fit corresponding to
λj and df (λj ) denotes the degrees of freedom, which are
equal to the sum of the number of nonzero fixed-effects
coefficients and the number of covariance parameters, that
is df (λj ) = #{k : 1 ≤ k ≤ p, β̂k 
= 0} + q(q+1)

2 (compare
Schelldorfer and Bühlmann 2011). Finally, for the optimal
tuning parameter λopt the chosen information criterion is
minimal.

Alternatively to information criteria, the optimal tun-
ing parameter λopt can be derived using K-fold cross-
validation. For this purpose the original sample is randomly
partitioned into K subsamples and the model is fitted on
K − 1 subsamples (training data). The remaining subsam-
ple (test data) is used for validation. The adequacy of the
model for λj , j ∈ {1, . . . ,L} can be assessed by evaluating
a cross-validation score on the test data, for example, the
deviance

Dj = −2φ

ntest∑

i=1

[
li
(
μ̂

(j)
i

) − li (yi)
]
,

where li (·) denotes the log-likelihood contribution of sample
element i. In special situations other measures of fit can also
be used, for example the misclassification error rate for bi-
nary responses or the mean squared error for continuous re-
sponses. The procedure is then repeated K times, with each
subsample used exactly once as test data. For the optimal
tuning parameter the cross-validation score averaged over
all K folds is minimal. The concept of splitting the data into
parts has a long history and has already been discussed, for
example, by Stone (1974, 1978), Geissler (1975) and Picard
and Cook (1984).

Appendix B: Partition of Fisher matrix

According to Fahrmeir and Tutz (2001) the penalized
pseudo-Fisher matrix Fpen(δ) = AT W(δ)A + K can be par-
titioned into

Fpen(δ) =

⎡

⎢
⎢⎢⎢⎢
⎣

Fββ Fβ1 Fβ2 . . . Fβn

F1β F11 0
F2β F22
...

. . .

Fnβ 0 Fnn

⎤

⎥
⎥⎥⎥⎥
⎦

,

with single components

Fββ = −E

(
∂2lpen(δ)

∂β∂βT

)
= XT D(δ)Σ(δ)−1D(δ)T X,

Fβi = FT
iβ = −E

(
∂2lpen(δ)

∂β∂bT
i

)

= XT
i Di (δ)Σ i (δ)

−1Di (δ)
T Zi ,

Fii = −E

(
∂2lpen(δ)

∂bi∂bT
i

)

= ZT
i Di (δ)Σ i (δ)

−1Di (δ)
T Zi + Q−1,

and Di (δ) = ∂h(ηi )/∂η, Σ i (δ) = cov(yi |β,bi ).

Appendix C: Two bootstrap approaches for GLMMs

The general idea of bootstrapping has been developed by
Efron (1983, 1986). An extensive overview of the bootstrap
and related methods for asserting statistical accuracy can be
found in Efron and Tibshirani (1993). For GLMMs two main
approaches are found in the literature. The first approach
is to resample nonparametrically, which has been proposed
e.g. by McCullagh (2000) and Davison and Hinkley (1997).
They randomly sample groups of observations with replace-
ment at the first stage and suggest various ways how to sam-
ple within the groups at the second stage. They showed that
sometimes it can be useful to randomly resample groups at
the first stage only and leave groups themselves unchanged,
for example if there is a longitudinal structure in the data,
see e.g. Shang and Cavanaugh (2008).

The second approach, on which the standard errors in
Sect. 4 are based on, is to simulate parametric bootstrap
samples following the parametric distribution family of the
underlying model (compare Efron 1982). Booth (1996) has
extended the parametric approach from Efron (1982) to
GLMMs to estimate standard errors for the fitted linear pre-
dictor η̂ = Xβ̂ + Zb̂ from Sect. 2.

Analogously we can derive standard errors for the fixed
effects estimate β̂ and for the estimated random effects vari-
ance components Q̂, respectively. Let {Fξ : ξ ∈ } denote
the parametric distribution family of the underlying model,
where ξT = (βT ,vec(Q)T ) is unknown. Here vec(Q) de-
notes the column-wise vectorization of matrix Q to a column

vector. Let ξ̂ = (β̂
T
,vec(Q̂)T ) denote the Lasso estimate of

ξ for an already chosen penalty parameter λ on a certain data
set. Now we can simulate new bootstrap data sets (y∗,b∗)
with respect to the distribution F

ξ̂
, i.e. (y∗,b∗) ∼ F

ξ̂
. We re-

peat this procedure sufficiently often, say B = 10.000, and
fit every new bootstrap data set (y∗

(r),X,W), r = 1, . . . ,B ,
with our glmmLasso algorithm. The new fits ξ̂

∗
(r) corre-

sponding to the r-th new data set serve as bootstrap esti-
mates and can be used to derive standard errors.

Although consistency of straightforward bootstrap in L1-
penalized regression can fail even in the simple case of linear
regression (Chatterjee and Lahiri 2011), in the finite dimen-
sional case bootstrap is helpful and we found that it yields
reasonable results.
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