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Abstract

Most variable selection techniques for high-dimensional models are designed to be used in
settings where observations are independent and completely observed. At the same time, there
is a rich literature on approaches to estimation of low-dimensional parameters in the presence
of correlation, missingness, measurement error, selection bias, and other characteristics of real
data. In this paper, we present ThrEEBoost (ThresholdedEEBoost), a general-purpose variable
selection technique which can accommodate such problem characteristics by replacing the gra-
dient of the loss by an estimating function. ThrEEBoost generalizes the previously-proposed
EEBoost algorithm (Wolfson, 2011) by allowing the number of regression coefficients updated
at each step to be controlled by a thresholding parameter. Different thresholding parameter
values yield different variable selection paths, greatly diversifying the set of models that can
be explored; the optimal degree of thresholding can be chosen by cross-validation. ThrEE-
Boost was evaluated using simulation studies to assess the effects of different threshold values
on prediction error, sensitivity, specificity, and the number of iterations to identify minimum
prediction error under both sparse and non-sparse true models with correlated continuous out-
comes. We show that when the true model is sparse, ThrEEBoost achieves similar prediction
error to EEBoost while requiring fewer iterations to locate the set of coefficients yielding the
minimum error. When the true model is less sparse, ThrEEBoost has lower prediction error
than EEBoost and also finds the point yielding the minimum error more quickly. The tech-
nique is illustrated by applying it to the problem of identifying predictors of weight change in a
longitudinal nutrition study. Supplementary materials are available online.
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1 Introduction

Driven by the ever-increasing amount of high-dimensional data in biomedicine, much recent re-

search has focused on how to do variable selection and prediction in problems where the number of

predictors,p, is large in comparison to the number of observations,n. Traditional approaches like

forward selection and backward elimination are widely employed but have limitations, particularly

when the number of covariates is very large. For instance, it has been shown that the first vari-

able selected in forward selection candidate models can often be the first removed in backwards

elimination (Hocking, 1976). Methods such as the LASSO (Tibshirani, 1996) and SCAD (Fan and

Li, 2001) generally offer superior variable selection and predictive performance to stepwise tech-

niques, but have been applied almost exclusively to general linear (Park et al., 2006) and survival

regression models (Fan and Li, 2002). Some authors have extended penalized approaches to more

complex modeling situations such as correlated outcomes (Johnson et al., 2008) and missing co-

variates (Yang et al., 2005). However, the resulting statistical procedures often involve constrained

optimization of nonconvex functions, and may therefore be too computationally intensive to ap-

ply in settings wherep is on the order of hundreds or thousands. Ueki (2009) proposes a smooth

thresholding approach to penalizing estimating equations, with the selection threshold determined

by an adaptive LASSO type estimator. While smooth thresholding avoids convex optimization

and therefore offers a computational speedup, the method still requires that a set of estimating

equations be solved numerically for a large number of points on a two-dimensional grid of tuning

parameters. Further, since the thresholding relies on an initial “full model” estimator, it is unclear

how this technique generalizes to problems wherep is large in relation ton.
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As an alternative to penalization methods, Wolfson (2011) introduced EEBoost, a gradient

descent-based method that can be used to perform variable selection for any regression prob-

lem where estimation of low-dimensional coefficients can be performed by solving an estimating

equation. EEBoost iteratively constructs a set of models defined by coefficients using a modified

steepest descent algorithm wherein the gradient of the loss function is replaced by the relevant es-

timating equation. The generic EEBoost algorithm is easily implemented using existing statistical

software and can be applied to a wide variety of problems. Wolfson (2011) applied EEBoost to

generalized esimtating equations (GEE) (Liang and Zeger, 1986) for correlated data, and inverse

probability weighted estimating equations methods for time-to-event data with missing covariates,

and Janes et al. (2012) applied it to doubly robust semiparametric efficient estimating equations for

continuous outcome data.

In this paper, we propose Thresholded EEBoost (ThrEEBoost), an extension to EEBoost wherein

multiple coefficients may be updated at each iteration; the number of coefficients updated is con-

trolled by a threshold parameter on the magnitude of the estimating equation. By allowing more

coefficients to be updated at each iteration, ThrEEBoost can explore a greater diversity of variable

selection “paths” (i.e., sequences of coefficient vectors) through the model space, possibly finding

models with smaller prediction error than any of those on the path defined by EEBoost.

2 Boosting, EEBoost, and ThrEEBoost

Suppose we observe outcome dataY i and covariatesXi, i = 1, . . . , n with Xi = {Xi1, . . . ,Xip}. We

wish to predict future observationsYn+1, . . . ,Yn+K that arise from the same distributionF(X,Y)
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as the observed data. One common approach to prediction is to use a regression model in which

the relationship between the outcome and covariates is governed by the linear predictorXiβ. The

goal, then, is to estimate a set of coefficients,β̂, that minimizes risk for a nonnegative loss function

L: R(β) ≡ EF[L(X,β)], i.e., to obtainβ̂ such thatR(β̂) ≈ minβ R(β) ≡ β0. When p is small

compared ton, estimation involves directly minimizingL with respect toβ either analytically

or numerically. In the case of least squares regression with independent scalarsYi, parameter

estimates are determined byβ̂LS = arg minβ
∑

i
(Yi − Xiβ)2. More generally, if a complete or partial

log-likelihood ` is available, we can compute parameter estimatesβ̂MLE = arg minβ[−`(β,X)]. It

is well known that when the number of covariates,p, is large in comparison to the sample size,n,

using a subset of thep covariates to estimateYi will often lead to better prediction characteristics

than estimating nonzero coefficients for the entireβ vector (Wasserman, 2004). Hence, for large

p, variable selection is an important step in computingβ̂.

The most commonly used variable selection techniques are penalization methods which re-

strict the magnitude ofβ to discourage unimportant predictors from having non-zero coefficients.

Stronger restrictions yield simpler models with fewer selected covariates, while weaker ones lead

to more nonzero coefficient estimates. For example, the LASSO (Tibshirani, 1996) and ridge re-

gression (Hoerl and Kennard, 1970) restrict theL1 andL2 norms ofβ respectively.

An alternative to penalized methods is boosting or functional gradient descent (Freund and

Schapire, 1997; Friedman et al., 2000; Friedman, 2004), a variable selection technique that addi-

tively builds a model using subsets of the predictors. Given a loss functionL, one setsβ ≡ β(0) = 0,

and then iteratively “nudges” the entry inβ corresponding to the element of the gradient which is
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largest in magnitude by some small amountε. A small incrementε is chosen since the direction of

steepest descent ofL is only valid in a local neighborhood ofβ. Algorithm 1 describes the steps in

a generic “ε-boosting” algorithm. For linear regression with squared error loss, Algorithm 1 cor-

responds to the Forward Stagewise algorithm described in Efron et al. (2004), which is shown to

be approximately equivalent (for largen and smallε) to Least Angle Regression and the LASSO.

Prior to implementing the algorithm, all predictors need to be scaled andcentered.

Algorithm 1 ε-boosting
procedure ε-Boost
Setβ(0) to the zerop-vector0p.

for t = 0, . . . ,T do
Compute the gradient ofL at the current estimateβ(t): Δ = (∂L(X,β)/∂β j)β=β(t)

Identify the largest element of|Δ|: jt = argmaxj |Δ j |
Updateβ(t) in the direction ofjt: β

(t+1)
jt

= β(t)
jt
+ ε sign(Δ jt)

Algorithm 1 produces a sequence of coefficient estimatesB = {β(0), . . . ,β(T)} which define a

path through thep-dimensional parameter space for the coefficients. Variable selection is achieved

by “early stopping”, i.e., by selecting an element ofB for which some of the coefficients remain at

zero (i.e., were never updated by the iterative boosting procedure). This step can employ holdout

data, cross-validation, direct model scoring (via, e.g., the AIC or BIC), depending on the problem

in question. The primary purpose of boosting techniques (and penalization methods) is to identify

a set of candidate models from among a very large number of potential models; the hope is that at

least some of these candidate models will have small mean squared prediction error (MSPE). We

will emphasize this point later in arguing that the loss function used to calculate the MSPE need

not play a central role in identifying a “good” set of candidate models.
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2.1 EEBoost

Most existing variable selection procedures, whether based on penalization or boosting, focus on

regression models which apply to relatively “clean” data, i.e., where outcomes are independent,

completely observed, not subject to measurement error, etc. However, there is a vast and ever-

expanding toolbox of regression techniques which accommodate these various types of “dirty”

data. Many of these techniques avoid specifying a likelihood as the data characteristics being

accommodated (e.g., correlation) may be poorly understood and not amenable to modeling. For

such techniques, estimation typically involves solving a set of estimating equations.

As an alternative, Wolfson (2011) introduced EEBoost, an extension of the boosting algorithm

applicable to problems where coefficient estimation is carried out by solving an estimating equa-

tion. The key to EEBoost is that estimating equations, while not exactly corresponding to the

gradient of a loss function, often behave much like gradients and hence can take their place in a

boosting algorithm. The predictors are scaled to have mean 0 and variance 1. In the rare instance

of identical gradients, one of the variables with the tied max gradient could be selected at random

to be updated. In the following iteration, it is then very unlikely that the gradient for that vari-

able would again be tied with the others. Algorithm 2 presents EEBoost; note that the vector of

estimating equationsg(X,β) takes the place of the gradient|∂L(X,β)|/∂β from Algorithm1.

Algorithm 2 EEBoost
procedureEEBoost
Setβ(0) to the zerop-vector0p.

for t = 0, . . . ,T do
Compute the estimating equations at the current estimateβ(t): Δ = g(X,β)β=β(t)

Identify the largest element of|Δ|: jt = argmaxj |Δ j |
Updateβ(t) in the direction ofjt: β

(t+1)
jt

= β(t)
jt
+ ε sign(Δ jt)
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By making use of estimating equations which account for important features of the data, EE-

Boost aims to produce paths containing coefficient estimates which yield smaller MSPE. Since

there is no explicit loss function to minimize, the technique used to generate the variable selection

path may not be directly linked to the procedure employed to select the point on that path which

minimizes MSPE. For example, it can be shown that when observations are correlated within clus-

ters, accounting for the correlation in estimation of regression parameters yields a smaller MSPE,

even though the form of the MSPE does not acknowledge the correlated nature of the data. Hence,

in this setting, applying EEBoost with the Generalized Estimating Equations produces variable

selection paths which contain coefficient estimates yielding smaller MSPE than a standard LASSO

approach which ignores correlation.

As an added benefit, EEBoost is also much faster than competing penalized estimating equation-

based techniques, as it does not require solving constrained optimization problems. Wolfson (2011)

reported computational speedups of up to 100-fold over existing methods.

2.2 Diversifying variable selection paths

The primary goal of EEBoost is to identify a set of candidate models (i.e., a sequence of regression

coefficient estimates),B, whose predictive performance can be assessed using external data, cross-

validation, or other model scoring techniques. The hope is that there exists at least oneβ(k) ∈ B,

sayβ(k∗), such that|R(β(k∗)) − R(β0)| ≤ δ for some acceptably smallδ. In other words, the pathB

must pass “close enough” to the trueβ0; no amount of cross-validation or model scoring can find

a suitableβ in B otherwise.
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In certain settings, there are theoretical guarantees thatB will contain a suitableβ(k∗). For

instance, oracle results for several variants of the LASSO (Zou, 2006; Bunea et al., 2007; Van

De Geer, 2008; Huang et al., 2013) guarantee that, if the penalty parameterλn is suitably chosen

asn increases, then the LASSO solutionβ̂(λn) converges toβ0. Previous work by Efron et al.

(2004); Rosset et al. (2004); Rosset and Zhu (2007) demonstrated the equivalence (asT → ∞

and ε → 0 with T ∙ ε → 0) between boosting andL1 penalized paths, suggesting that similar

results also hold for boosting. For a broad class of estimating equations, EEBoost can be viewed

as gradient descent on a projected likelihood (see Wolfson (2011), using results from Small and

Wang (2003), for details), and hence EEBoost closely approximates the variable selection path

obtained by applying the LASSO to the aforementioned projected likelihood.

Unfortunately, these theoretical results provide limited insight into the real-world performance

of boosting methods. Beyond the fact that asymptotic results may not apply with finite samples,

in practice one must choose fixed values of the step length,ε, and the number of iterations,T.

Further, in settings where the loss function is more complex (e.g., projected likelihoods), existing

oracle inequalities may not be applicable. In such cases, it is not clear that the boosting algorithms

will yield good variable selection paths. We therefore propose a generalization of the EEBoost

algorithm which allows it to generate a wide variety of variable selection paths by setting values

of a single threshold parameter.
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2.3 ThrEEBoost: Thresholded EEBoost

Algorithms 1 and 2 update one coefficient at each iteration, corresponding to the largest element

of the gradient or estimating equation. Hence, ifjt = arg maxjΔ j is unique at each step,β(K) can

have at mostK nonzero entries. Friedman (2004) proposed a generalization of boosting called

Thresholded Gradient Descent Regularization (TGDR) wherein multiple elements of the coeffi-

cient vectorβ(K) can be updated at each iteration. The elements to be updated correspond to the

largest gradient values; how large the gradient needs to be for the corresponding coefficient to be

updated is determined by a threshold parameterτ ∈ [0,1]. Specifically, given scaled predictors,

coefficients are updated if|Δ j | ≥ τ ∙ maxj |Δ j |. τ = 0 corresponds to updating every coefficient

at every iteration, whileτ = 1 is equivalent to the original boosting algorithm, assuming that the

entries ofΔ are distinct.

We apply this idea to EEBoost, yielding ThrEEBoost, presented in Algorithm 3. Each value of

τ yields a distinct coefficient path,B(τ). Further, for a fixed value ofτ, the computational burden of

ThrEEBoost is no higher than EEBoost. When using cross-validation to select the optimal value of

τ, ThrEEBoost will be a factor ofK times more computationally expensive, whereK is the number

of thresholding values that arechosen.

Algorithm 3 ThrEEBoost
procedureThrEEBoost
Setβ(0) = 0

for t = 0, . . . ,T do
ComputeΔ = g(X,β)β=β(t−1)

Identify Jt = { j : |Δ j | ≥ τ ∙maxj |Δ j |}
for all jt ∈ Jt do

Updateβ(t)
jt
= β(t−1)

jt
+ ε sign(Δ jt)
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2.4 Selecting the best model

In standard applications of boosting and EEBoost, the algorithm is run for a pre-determined number

of iterations, producing a variable selection path from which one chooses the model (i.e., set of

coefficient estimates) yielding the smallest MSPE,1
nm

n∑

i=1

m∑

j=1
[yi j − xi jβ

(t)]2. The process is analogous

to solving a LASSO problem for a sequence of values of the penalty parameterλ, then choosing

the optimal value ofλ.

The ThrEEBoost procedure involves repeating this process for different settings of the threshold

parameterτ, yielding a family of variable selection paths indexed byτ. While applying ThrEE-

Boost with multipleτ values increases the number of coefficient sets for which MSPE must be

estimated, it poses no conceptual challenges. In practice, we recommend the following algorithm

to chooseτ via cross-validation, minimizing theMSPE.

Algorithm 4 Model Selection forThrEEBoost
procedureCross Validation

Divide the observations intoK folds where1
K of the observations are used as a test set.

for k = 1, . . . ,K do
Apply ThrEEBoost for several values ofτ.
Obtain the minimum MSPE of each candidate model on the test set.
Select theτk that minimizes MSPE.

Repeat across theK possible test sets and compute the mean of the selectedτk’s.

If cross-validation is computationally infeasible, then a model scoring criterion such as the QIC

(Pan, 2001) can also be used: AssumingQ() is the quasi-likelihood,R is the working correlation

structure,D is the data (X,Y), ΩI is the observed information, and̂Vr is the sandwich variance

estimate:

10
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QIC(R) = −2Q(β̂(R); I ,D) + 2 ∗ trace(Ω̂I V̂r)

Both approaches are illustrated as part of the simulation study in Section 3. Cross validation is

preferred and is utilized in the data application in Section 4.

3 Simulation Study

Simulations were conducted in R version 3.2.0 (R Core Team, 2015) using thethreeboost pack-

age provided in the supplementary materials. The code for conducting this simulation study is also

available in the supplementary materials.

3.1 Sparse regression model with correlated outcomes

We simulated data forn = 30 individuals with four correlated observations from each individual. A

vector of covariatesXi j of length 50 was generated for each individual from a multivariate normal

distribution with mean0 and covariance matrixΣX where Var(Xi jk) = 0.25 and for each Corr(Xi jk ,

Xi jl ) = 0.0, 0.3, 0.5, and 0.7∀ k , l. Each correlation level yielded similar results for all of our

performance metrics, so we will focus our results on the scenario where Corr(Xi jk , Xi jl ) = 0.3.

The outcome variables for each individualYi j , i = 1, . . ., 30, j = 1, . . ., 4, were generated from

a multivariate normal distribution with meanμi = Xiβ, with an exchangeable correlation matrix

such that Var(Yi j ) = 1, Corr(Yi j ,Yik) = ρ, ∀ j , k. The true values of the coefficient vectorβ =

(β0, β1, . . . , β50) were set as:

11
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βm =





0.5,1 ≤ m≤ 2

0.2,3 ≤ m≤ 5

0.0,6 ≤ m≤ 50

Models which accommodate correlated data are generalized linear mixed models (GLMMs)

and marginal models estimated via generalized estimating equations (GEE). GLMMs may be sen-

sitive to assumptions about the distribution of the outcome and random effects. Variable selection

techniques for GLMMs typically require maximizing the penalized likelihood and selecting both

random and fixed effects (Schelldorfer et al., 2014), which can be computationally demanding.

GEE provides an approach to estimation which is more robust to misspecification of the variance;

however, existing approaches for variable selection with GEE (Johnson et al., 2008) are based on

solving a set of penalized estimating equations, which is also computationally expensive. For this

simulation, ThrEEBoost was performed using GEE,

g(β) =
30∑

i=1
X
′

iV
−1
i (Yi − X

′

iβ)

whereV i = A1/2
i Ri(ρ)A1/2

i with Ai = diag(Var(Y i)) and Ri(ρ) is the working correlation matrix.

For these simulations, we assumed an exchangeable working correlation matrix such thatRi =

(1 − ρ)I + ρ11′. ρ was estimated at each iteration via a method of moments estimator using the

current valueβ(t) at iterationt.

For each combination ofρ = {0.0,0.3,0.6} andτ = {0.0,0.2,0.4,0.6,0.8,1.0, τCV}, we gen-

erated 1000 datasets as outlined above and ran 500 ThrEEboost iterations, producing a variable

selection path{β1, . . . ,βk} for k = 1, . . ., 500 for each simulated dataset. We selectedτCV using

cross-validation usingK = 10 folds. We estimated MSPE at each point on a path by estimating
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the average MSE across 100 datasets generated under the same assumptions used to generate the

original data.

Table 1 shows the minimum MSPE, minimum QIC, number of iterations to reach the mini-

mum MSPE, and variable selection sensitivity and specificity across the 1000 simulations for each

combination ofρ andτ. Sensitivity and specificity are given by

Sensitivity=

p∑

m=1
|sign(̂βk

m)|

p∑

m=1
|sign(βtrue

m )|
, Specificity=

p∑

m=1
1− |sign(̂βk

m)|

p∑

m=1
1− |sign(βtrue

m )|

where sign(β) = 0 if β = 0.

For some simulation runs, the ThrEEBoost algorithm led to a sequence of coefficient estimates

which began to alternate between 2 models before finding a solution that uniquely minimized the

MSE. These are easy to detect and can be remedied in practice by selecting another thresholding

value. The proportion of simulation runs resulting in numerical instability are reported in part (f)

of Tables 1 and 2.

For each value ofρ, mean minimum MSPE decreased asτ increased from 0.0 to 0.6. However,

values ofτ ≥ 0.6 resulted in very similar MSEs. ThrEEBoost had similar median sensitivity to

EEBoost across values ofρ. For each value ofρ, the sensitivity ranged from 0.80 to 1.00. Speci-

ficity increased withτ, ranging from 0 forτ = 0 to 0.87 forτ = 1. ThrEEBoost withτ < 1 reached

minimum MSPE with considerably fewer iterations than withτ = 1 (i.e., EEBoost). On average,

ThrEEBoost withτ < 1 located the point on the variable selection path achieving minimum MSPE

in 3.5 to 14.4 times fewer iterations than EEBoost. Minimum mean QIC decreased asτ increased.

Figure 1 shows the averageL1 distance from the trueβ, coefficient values, and MSE across the it-
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erations of ThrEEBoost for differentτ values in the scenario whereρ=0.3. Using cross-validation

to select an optimal thresholding valueτCV, all three cases chose a medianτ of 0.58. The distribu-

tion of the chosenτ values are shown in figure 2. The results followed the same patterns for each

simulated value ofρ and for each of Corr(Xi jk , Xi jl )=0.0, 0.3, 0.5, and 0.7.

3.2 Less sparse regression model with correlated outcomes

Next, we undertook an additional simulation study using the same setup as described in the previ-

ous section but with a less sparse true regression model for the mean defined by:

βm =





0.5,1 ≤ m≤ 15

0.2,16≤ m≤ 25

0.0,26≤ m≤ 50

Note that the number of nonzero regression coefficients (25) was nearly equal to the number of

independent individuals (30). Due to the reduced sparsity of the model, we increased the number

of iterations to 1500 for each of 1000 simulated datasets.

Table 2 summarizes the MSPE, QIC, sensitivity, specificity, number of iterations to find min-

imum MSPE, and rate of numerical instability of the algorithm. For all three settings of the cor-

relation parameteterρ, mean minimum MSPE and QIC both showed a clear ”U”-shaped pattern

acrossτ. MSPE achieved the lowest value atτ = 0.4, with τ = 0 andτ = 1 yielding MSPE values

6-28% higher than this minimum value. The optimalτ value to minimize QIC varied from 0.4 to

0.8 depending onρ. The sensitivity and specificity results show the trade-off that is at play: sensi-

tivity decreases and specificity increases asτ goes from 0 to 1. In this case, specificity improves

14
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dramatically up toτ = 0.4 but does not improve substantially with largerτ values; and sensitivity

declines steadily but modestly untilτ = 0.6. Figure 3 shows theL1 distance from the trueβ, the

coefficient traceplots, and MSPE across iterations. Figure 5 shows the mean QIC acrossτ values

of 0, 1, andτCV for the variousρ values. The results followed the same pattern forρ = 0 and

ρ = 0.6. Results were also similar in scenarios where the pairwise correlation between covariates

was set to 0, 0.5, and 0.7 (data not shown).

Using cross-validation to selectτ offered an improvement over EEBoost (i.e., ThrEEBoost with

τ = 1). The MSPE shrunk by about 22%, 18%, and 7% for the cases whereρ=0.0, 0.3, and 0.6,

respectively. The medianτ selected was lower than in the sparse case with values of 0.38, 0.40,

and 0.38, respectively. The distributions ofτCV are shown in Figure 4.

4 Data application - Box Lunch Study

We illustrate the application of ThrEEBoost to outcome data from the Box Lunch Study, a random-

ized controlled trial to evaluate the effect of portion size availability on caloric intake and weight

gain (French et al., 2014). Two hundred and thirty-three eligible individuals were randomized to

one of four groups: three “free lunch” groups and a “no free lunch” group which served as a con-

trol. The three “free lunch” conditions differed according to the number of calories provided in the

daily box lunch: 400, 800, and 1600.

Here, we explore the factors associated with BMI in the “no free lunch” group consisting of

n = 49 individuals on whom BMI measurements were taken at four time points (baseline, 1, 3,

and 6 months). There were 54 covariates of interest, including demographic (e.g. age, gender,

15
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race, height, education), lifestyle (e.g. smoking status, physical activity levels), and psychosocial

(e.g. frequency of self-weighing, degree of satisfaction with current weight) covariates recorded

at baseline, and a variety of longitudinally-recorded food-related outcomes such as average daily

caloric intake and average daily servings of fruits and vegetables. The outcome and predictors

were scaled to have zero mean and unit variance prior to analysis.

ThrEEBoost was applied using the Gaussian Generalized Estimating Equations with an ex-

changeable working correlation structure. The algorithm was run forτ = 0,0.2,0.4,0.6,0.8, and

1, and the optimal model for eachτ was selected as the one which minimized the MSPE estimated

by five fold cross-validation. The smallest MSPE overall (0.60) was achieved by ThrEEBoost with

τ = 0.4. To implement the LASSO, least angle regression (LARS) was utilized over five fold

cross-validation to select an optimal penalty parameter which minimized the MSPE. Fitting the

optimal LASSO model on the full data set, we obtained MSPE of 0.83. The non-zero coefficients

for this model are summarized in Table 3, and compared to the coefficients from the LASSO fit

with smallest cross-validated MSPE. The models selected by LASSO and ThrEEBoost share some

covariates in common, but remain quite distinct. Overall, the ThrEEBoost model is more parsi-

monious than the LASSO model. Notably, the LASSO estimates relatively large coefficients for

some variables (e.g., Dissatisfied with weight) which are not selected by ThrEEBoost. This may

be due to the fact that the LASSO ignores the correlated nature of the outcome, and is therefore

overly optimistic about the amount of statistical signal present in the data. Figure 6 summarizes the

coefficients of the optimal ThrEEBoost model for various values of the threshold parameterτ. The

estimated coefficients forτ = 0.4,0.6,0.8, and 1 are generally similar, with higherτ values leading
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to slightly more parsimonious models. However, as shown in Table 4, these subtle differences can

yield very different prediction errors, hence the path diversity offered by ThrEEBoost is an asset.

5 Discussion

We have introduced a thresholded extension of the EEBoost algorithm, ThrEEBoost, and critically

assessed its operating characteristics in variable selection and prediction in high-dimensional mod-

els. We have shown via a detailed simulation study that ThrEEBoost provides a predictive advan-

tage over EEBoost. In cases when the true regression model was relatively sparse, ThrEEBoost re-

quired considerably fewer iterations than EEBoost to locate models with comparable performance.

When the regression model was less sparse, varying the thresholding parameter in ThrEEBoost

allowed for the exploration of a larger set of variable selection paths, leading to the discovery of

models with lower MSPE.

Several limitations of the present study should be acknowledged. This simulation study focused

solely on cases of normally distributed correlated outcome data, using GEE with an exchangeable

working correlation. Further research is needed to clarify the benefits of thresholded variable se-

lection with other correlation structures, and for other classes of estimating equations. Second,

while the numerical experiments are promising, we have not provided theoretical results that guar-

antee, e.g., that ThrEEBoost possesses an oracle property. In ongoing work, we are exploring these

theoretical properties of ThrEEBoost and clarifying its relationship to “hybrid” penalized variable

selection procedures such as the elastic net.
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ρ τ = 0.0 τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8 τ = 1.0 τ = τCV

(a) Mean Minimum Prediction Error

0.0 1.17 1.13 1.09 1.08 1.07 1.07 1.09

0.3 1.16 1.12 1.09 1.06 1.06 1.06 1.08

0.6 1.15 1.11 1.07 1.06 1.05 1.06 1.06

(b) Median Sensitivity

0.0 1.00 1.00 1.00 0.80 0.80 0.80 0.80

0.3 1.00 1.00 1.00 0.80 0.80 0.80 1.00

0.6 1.00 1.00 1.00 1.00 0.80 0.80 1.00

(c) Median Specificity

0.0 0.00 0.36 0.64 0.80 0.84 0.87 0.76

0.3 0.00 0.31 0.62 0.78 0.82 0.87 0.76

0.6 0.00 0.29 0.60 0.76 0.82 0.87 0.73

(d) Mean Iterations to Minimum Prediction Error (IQR)

0.0 11 (9, 13) 15 (12, 17) 22 (17, 26) 34 (25, 41) 44 (34, 53) 158 (125, 183) 32 (21, 41)

0.3 12 (10, 14) 16 (13, 17) 23 (18, 27) 34 (26, 40) 45 (36, 52) 159 (129, 180) 32 (22, 42)

0.6 14 (10, 15) 18 (14, 21) 26 (20, 32) 36 (28, 43) 45 (38, 54) 160 (132, 184) 35 (26,44)

(e) Minimum Mean QIC

0.0 212 199 181 169 162 155 175

0.3 210 199 179 165 160 153 173

0.6 210 197 177 169 160 156 175

(f) Proportion of simulations with numerical instability

0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.6 0.01 0.01 0.00 0.01 0.01 0.01 0.01

Table 1: Mean minimum prediction error (a), median variable selection (b) sensitivity and (c)
specificity, (d) mean number of iterations (25th and 75th percentile) to attain minimum prediction
error, (e) minimum mean QIC, and (f) proportion of simulations where algorithm did not find
a unique minimum MSE for ThrEEBoost in the sparse true model under different values of the
threshold,τ and correlation between intra-individual observations,ρ. Results are based on 1000
simulations, each with 500 iterations.
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ρ τ = 0.0 τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8 τ = 1.0 τ = τCV

(a) Mean Minimum Prediction Error

0.0 1.95 1.78 1.65 1.77 2.02 2.12 1.65

0.3 1.53 1.45 1.36 1.42 1.53 1.63 1.35

0.6 1.82 1.71 1.73 1.78 1.86 1.88 1.74

(b) Median Sensitivity

0.0 1.00 0.96 0.92 0.88 0.84 0.80 0.92

0.3 1.00 0.96 0.92 0.88 0.88 0.88 0.92

0.6 1.00 1.00 0.92 0.92 0.92 0.88 0.96

(c) Median Specificity

0.0 0.00 0.24 0.56 0.64 0.68 0.72 0.52

0.3 0.00 0.24 0.56 0.60 0.64 0.64 0.52

0.6 0.00 0.24 0.56 0.60 0.60 0.68 0.52

(d) Mean Iterations to Minimum Prediction Error (IQR)

0.0 40 (40, 51) 43 (44, 50) 49 (49, 58) 63 (59, 79) 88 (73, 116) 696 (213, 966) 53 (49, 59)

0.3 47 (46, 52) 46 (46, 51) 52 (51, 58) 68 (63, 79) 102 (93, 120) 845 (871, 980) 55 (50, 61)

0.6 43 (45, 54) 42 (46, 51) 45 (49, 58) 59 (58, 76) 89 (83, 117) 767 (834, 1000) 53 (49,59)

(e) Minimum Mean QIC

0.0 340 314 295 317 354 378 296

0.3 334 319 287 287 299 391 282

0.6 470 470 460 458 418 536 487

(f) Proportion of simulations with numerical instability

0.0 0.14 0.10 0.04 0.07 0.10 0.12 0.07

0.3 0.02 0.02 0.01 0.01 0.01 0.03 0.01

0.6 0.03 0.02 0.02 0.02 0.04 0.03 0.03

Table 2: Mean minimum prediction error (a), median variable selection (b) sensitivity and (c)
specificity, (d) mean number of iterations (25th and 75th percentile) to attain minimum prediction
error, (e) minimum mean QIC, and (f) proportion of simulations where algorithm did not find a
unique minimum MSE for ThrEEBoost in the less sparse true model under different values of the
threshold,τ, and correlation between intra-individual observations,ρ. Results are based on 1000
simulations, each with 1500 ThrEEBoost iterations.
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Coefficients
Variable ThrEEBoost LASSO
Race (Black) 0.27 0.24
Race (Hispanic) 0.24 0.35
Health (1=exc 5=poor) 0.17 0.08
Age 0.17 0.11
Lost control past 28 days 0.15 –
Education (HS) 0.14 0.14
Have fridge at work 0.12 0.19
TFEQ Disinhibition 0.10 0.32
Lbs gain before you noticed 0.06 0.16
Dissatisfied with weight – 0.20
Light actvty min/day (251-2100) – 0.15
Freq fast food (0=never 5=7+ times/week) – 0.06
Limit food you eat – 0.05
Marital status (Married) -0.088 -0.11
Moderate activity min/day (2101-5900) – -0.05
Frequency self-weigh (0=never 5=every day) – -0.08
Freq restaurant/week – -0.10
TFEQ Hunger – -0.16

Table 3: Coefficients for the optimal ThrEEBoost (τ = 0.4) and LASSO models selected by cross-
validated MSE. Small coefficients (magnitude< 0.05) are omitted. “–” indicates that the variable
was not selected in the model.
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ThrEEBoostτ
0 0.2 0.4 0.6 0.8 1.0 LASSO

CV MSE 0.72 0.78 0.60 0.66 0.660.75 0.83

Table 4: Estimated mean squared prediction error for ThrEEBoost and LASSO models. (CV MSE)
denotes models selected by minimizing cross-validated MSE.
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Figure 1: AverageL1 distances from the trueβ (top row), estimated coefficient values (middle row)
and MSPE (bottow row) across iterations for various values ofτ, when data are generated from
a very sparse true regression model with an intra-individual correlation ofρ = 0.3. The solid,
dashed, and dotted lines in the coefficient plots (middle row) represent coefficients with true values
of 0.5, 0.2, and 0.0 respectively. Results are based on 1000 simulations, each with 500 ThrEEBoost
iterations. The solid vertical lines show the iteration where the minimum mean squared error is
achieved in each scenario.
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Selection of τ where ρ = 0.0

Cross Validated Threshold Value
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Figure 2: The distribution of selectedτ values via cross-validation. For each value ofρ, the median
τCV selected was 0.58.
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Figure 3: AverageL1 distances from the trueβ (top row), estimated coefficient values (middle row)
and MSPE (bottow row) across iterations for various values ofτ, when data are generated from a
less sparse true regression model with an intra-individual correlation ofρ = 0.3. The solid, dashed,
and dotted lines in the coefficient plots (middle row) represent coefficients with true values of 0.5,
0.2, and 0.0 respectively. Results are based on 1000 simulations, each with 1500 ThrEEBoost
iterations. The solid vertical lines show the iteration where the minimum mean squared error is
achieved in each scenario.
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Selection of τ where ρ = 0.0

Cross Validated Threshold Value
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Figure 4: The distribution of selectedτ values via cross-validation. For each value ofρ, the median
τCV selected were 0.38, 0.40, and 0.38.
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Figure 5: Average QIC when data are generated from a less sparse true regression model with an
intra-individual correlation ofρ = 0.3. Results are based on 1000 simulations, each with 1500
ThrEEBoost iterations.
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Figure 6: Coefficient magnitudes for the optimal models (chosen by cross-validated MSE) for
different values ofτ. Each row corresponds to a different variable; darker shades of gray correspond
to higher coefficient magnitudes. The names of the variables are displayed on the right; a data
dictionary giving the variable descriptions is provided in the Supplementary Materials.
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