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ThrEEBoost: Thresholded Boosting for Variable
Selection and Prediction via Estimating Equations

Ben Brown
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Abstract

Most variable selection techniques for high-dimensional models are designed to be used in
settings where observations are independent and completely observed. At the same time, there
is a rich literature on approaches to estimation of low-dimensional parameters in the presence
of correlation, missingness, measurement error, selection bias, and other characteristics of real
data. In this paper, we present ThrEEBodsirésholdedEEBo0oS}, a general-purpose variable
selection technigue which can accommodate such problem characteristics by replacing the gra-
dient of the loss by an estimating function. ThrEEBoost generalizes the previously-proposed
EEBoost algorithm (Wolfson, 2011) by allowing the number of regressiofficmnts updated
at each step to be controlled by a thresholding parametefferBit thresholding parameter
values yield diferent variable selection paths, greatly diversifying the set of models that can
be explored; the optimal degree of thresholding can be chosen by cross-validation. ThrEE-
Boost was evaluated using simulation studies to assesstdutseof diferent threshold values
on prediction error, sensitivity, specificity, and the number of iterations to identify minimum
prediction error under both sparse and non-sparse true models with correlated continuous out-
comes. We show that when the true model is sparse, ThrEEBoost achieves similar prediction
error to EEBoost while requiring fewer iterations to locate the set officients yielding the
minimum error. When the true model is less sparse, ThrEEBoost has lower prediction error
than EEBoost and also finds the point yielding the minimum error more quickly. The tech-
nique is illustrated by applying it to the problem of identifying predictors of weight change in a
longitudinal nutrition study. Supplementary materials are available online.
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1 Introduction

Driven by the ever-increasing amount of high-dimensional data in biomedicine, much recent re-
search has focused on how to do variable selection and prediction in problems where the number of
predictors,p, is large in comparison to the number of observationgraditional approaches like
forward selection and backward elimination are widely employed but have limitations, particularly
when the number of covariates is very large. For instance, it has been shown that the first vari-
able selected in forward selection candidate models can often be the first removed in backwards
elimination (Hocking, 1976). Methods such as the LASSO (Tibshirani, 1996) and SCAD (Fan and
Li, 2001) generally ffer superior variable selection and predictive performance to stepwise tech-
niques, but have been applied almost exclusively to general linear (Park et al., 2006) and survival
regression models (Fan and Li, 2002). Some authors have extended penalized approaches to more
complex modeling situations such as correlated outcomes (Johnson et al., 2008) and missing co-
variates (Yang et al., 2005). However, the resulting statistical procedures often involve constrained
optimization of nonconvex functions, and may therefore be too computationally intensive to ap-
ply in settings wher@ is on the order of hundreds or thousands. Ueki (2009) proposes a smooth
thresholding approach to penalizing estimating equations, with the selection threshold determined
by an adaptive LASSO type estimator. While smooth thresholding avoids convex optimization
and therefore fers a computational speedup, the method still requires that a set of estimating
equations be solved numerically for a large number of points on a two-dimensional grid of tuning
parameters. Further, since the thresholding relies on an initial “full model” estimator, it is unclear

how this technique generalizes to problems wheilarge in relation ton.
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As an alternative to penalization methods, Wolfson (2011) introduced EEBoost, a gradient
descent-based method that can be used to perform variable selection for any regression prob-
lem where estimation of low-dimensional ¢heients can be performed by solving an estimating
equation. EEBoost iteratively constructs a set of models defined Wiiaiepts using a modified
steepest descent algorithm wherein the gradient of the loss function is replaced by the relevant es-
timating equation. The generic EEBoost algorithm is easily implemented using existing statistical
software and can be applied to a wide variety of problems. Wolfson (2011) applied EEBoost to
generalized esimtating equations (GEE) (Liang and Zeger, 1986) for correlated data, and inverse
probability weighted estimating equations methods for time-to-event data with missing covariates,
and Janes et al. (2012) applied it to doubly robust semiparaméidieat estimating equations for
continuous outcome data.

In this paper, we propose Thresholded EEBoost (ThrEEBoost), an extension to EEBoost wherein
multiple codficients may be updated at each iteration; the number dficmats updated is con-
trolled by a threshold parameter on the magnitude of the estimating equation. By allowing more
codficients to be updated at each iteration, ThrEEBoost can explore a greater diversity of variable
selection “paths” (i.e., sequences of flament vectors) through the model space, possibly finding

models with smaller prediction error than any of those on the path defined by EEBoost.

2 Boosting, EEBoost, and ThrEEBoost

Suppose we observe outcome défand covariateX;, i = 1,...,nwith X; = {Xi1,..., Xjp}. We

wish to predict future observations,,s, ..., Y.k that arise from the same distributiéi(X, Y)
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as the observed data. One common approach to prediction is to use a regression model in which
the relationship between the outcome and covariates is governed by the linear prégictdhe
goal, then, is to estimate a set of ﬁﬁxeients,@, that minimizes risk for a nonnegative loss function
L: R(8) = Ef[L(X,B)], i.e., to obtainB such thatR(8) ~ ming R(B) = B,. Whenp is small
compared ton, estimation involves directly minimizindg with respect tg8 either analytically
or numerically. In the case of least squares regression with independent S¢alpasameter
estimates are determined ﬁys = arg mirp ;(Yi - X;B)?. More generally, if a complete or partial
log-likelihood ¢ is available, we can compute parameter estinﬁ;ﬁg = arg mirg[-£(B, X)]. It
is well known that when the number of covariatpsis large in comparison to the sample siag,
using a subset of thp covariates to estimatg will often lead to better prediction characteristics
than estimating nonzero ciiieients for the entirgg vector (Wasserman, 2004). Hence, for large
p, variable selection is an important step in compuﬁhg

The most commonly used variable selection techniques are penalization methods which re-
strict the magnitude g8 to discourage unimportant predictors from having non-zerdhcoents.
Stronger restrictions yield simpler models with fewer selected covariates, while weaker ones lead
to more nonzero cdicient estimates. For example, the LASSO (Tibshirani, 1996) and ridge re-
gression (Hoerl and Kennard, 1970) restrict theandL, norms off3 respectively.

An alternative to penalized methods is boosting or functional gradient descent (Freund and
Schapire, 1997; Friedman et al., 2000; Friedman, 2004), a variable selection technique that addi-
tively builds a model using subsets of the predictors. Given a loss furictione setg = 8 = 0,

and then iteratively “nudges” the entry ghcorresponding to the element of the gradient which is
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largest in magnitude by some small amoein small increment is chosen since the direction of
steepest descent bfis only valid in a local neighborhood @ Algorithm 1 describes the steps in

a generic é-boosting” algorithm. For linear regression with squared error loss, Algorithm 1 cor-
responds to the Forward Stagewise algorithm described in Efron et al. (2004), which is shown to
be approximately equivalent (for largeand smalk) to Least Angle Regression and the LASSO.

Prior to implementing the algorithm, all predictors need to be scaledamigred.

Algorithm 1 e-boosting
procedure e-Boost
Setp® to the zerop-vector0,,.
fort=0,...,Tdo
Compute the gradient &f at the current estimajg’: A = (8L(X,,B)/8ﬂj)ﬁ_'3(o
Identify the largest element ¢f|: j; = argmax|A|
Updateg® in the direction ofji: " = ¥ + € sign(a )

Algorithm 1 produces a sequence of fit@ent estimate8 = {8?, ..., 8"} which define a
path through th@-dimensional parameter space for thef&o@ents. Variable selection is achieved
by “early stopping”, i.e., by selecting an elemen8ofor which some of the cdicients remain at
zero (i.e., were never updated by the iterative boosting procedure). This step can employ holdout
data, cross-validation, direct model scoring (via, e.g., the AIC or BIC), depending on the problem
in question. The primary purpose of boosting techniques (and penalization methods) is to identify
a set of candidate models from among a very large number of potential models; the hope is that at
least some of these candidate models will have small mean squared prediction error (MSPE). We
will emphasize this point later in arguing that the loss function used to calculate the MSPE need

not play a central role in identifying a “good” set of candidate models.
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2.1 EEBoost

Most existing variable selection procedures, whether based on penalization or boosting, focus on
regression models which apply to relatively “clean” data, i.e., where outcomes are independent,
completely observed, not subject to measurement error, etc. However, there is a vast and ever-
expanding toolbox of regression techniques which accommodate these various types of “dirty”
data. Many of these techniques avoid specifying a likelihood as the data characteristics being
accommodated (e.g., correlation) may be poorly understood and not amenable to modeling. For
such techniques, estimation typically involves solving a set of estimating equations.

As an alternative, Wolfson (2011) introduced EEBoost, an extension of the boosting algorithm
applicable to problems where d&eient estimation is carried out by solving an estimating equa-
tion. The key to EEBoost is that estimating equations, while not exactly corresponding to the
gradient of a loss function, often behave much like gradients and hence can take their place in a
boosting algorithm. The predictors are scaled to have mean 0 and variance 1. In the rare instance
of identical gradients, one of the variables with the tied max gradient could be selected at random
to be updated. In the following iteration, it is then very unlikely that the gradient for that vari-
able would again be tied with the others. Algorithm 2 presents EEBoost; note that the vector of

estimating equationg(X, B) takes the place of the gradigét.(X, g)|/0B from Algorithm 1.

Algorithm 2 EEBoost
procedure EEBoosT
Setg© to the zeragp-vector0,,.
fort=0,...,T do
Compute the estimating equations at the current estipiate = g(X, 8) 88"
ldentify the largest element (f[: j; = argmax|A|]
UpdateB® in the direction ofj: B = Y + € sign(a;)
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By making use of estimating equations which account for important features of the data, EE-
Boost aims to produce paths containing ffi@eéent estimates which yield smaller MSPE. Since
there is no explicit loss function to minimize, the technique used to generate the variable selection
path may not be directly linked to the procedure employed to select the point on that path which
minimizes MSPE. For example, it can be shown that when observations are correlated within clus-
ters, accounting for the correlation in estimation of regression parameters yields a smaller MSPE,
even though the form of the MSPE does not acknowledge the correlated nature of the data. Hence,
in this setting, applying EEBoost with the Generalized Estimating Equations produces variable
selection paths which contain d&ieient estimates yielding smaller MSPE than a standard LASSO
approach which ignores correlation.

As an added benefit, EEBoost is also much faster than competing penalized estimating equation-
based techniques, as it does not require solving constrained optimization problems. Wolfson (2011)

reported computational speedups of up to 100-fold over existing methods.

2.2 Diversifying variable selection paths

The primary goal of EEBoost is to identify a set of candidate models (i.e., a sequence of regression
codficient estimatesB, whose predictive performance can be assessed using external data, cross-
validation, or other model scoring techniques. The hope is that there exists at le@8 an8,
sayB®), such thatR(8*)) — R(B,)| < 6 for some acceptably smail In other words, the patB

must pass “close enough” to the trdg no amount of cross-validation or model scoring can find

a suitableB in B otherwise.
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In certain settings, there are theoretical guaranteesBhaill contain a suitable8®’. For
instance, oracle results for several variants of the LASSO (Zou, 2006; Bunea et al., 2007; Van
De Geer, 2008; Huang et al., 2013) guarantee that, if the penalty paraétesuitably chosen
asn increases, then the LASSO solutiﬁ(un) converges tg3,. Previous work by Efron et al.
(2004); Rosset et al. (2004); Rosset and Zhu (2007) demonstrated the equivalefce»(as
ande —» O with T - ¢ — 0) between boosting anld; penalized paths, suggesting that similar
results also hold for boosting. For a broad class of estimating equations, EEBoost can be viewed
as gradient descent on a projected likelihood (see Wolfson (2011), using results from Small and
Wang (2003), for details), and hence EEBoost closely approximates the variable selection path
obtained by applying the LASSO to the aforementioned projected likelihood.

Unfortunately, these theoretical results provide limited insight into the real-world performance
of boosting methods. Beyond the fact that asymptotic results may not apply with finite samples,
in practice one must choose fixed values of the step lergtand the number of iteration3,.

Further, in settings where the loss function is more complex (e.g., projected likelihoods), existing
oracle inequalities may not be applicable. In such cases, it is not clear that the boosting algorithms
will yield good variable selection paths. We therefore propose a generalization of the EEBoost
algorithm which allows it to generate a wide variety of variable selection paths by setting values

of a single threshold parameter.
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2.3 ThrEEBoost: Thresholded EEBoost

Algorithms 1 and 2 update one dtieient at each iteration, corresponding to the largest element
of the gradient or estimating equation. Hencej; i arg maxA; is unique at each step® can
have at mosK nonzero entries. Friedman (2004) proposed a generalization of boosting called
Thresholded Gradient Descent Regularization (TGDR) wherein multiple elements of tfie coe
cient vector8® can be updated at each iteration. The elements to be updated correspond to the
largest gradient values; how large the gradient needs to be for the correspondiigierido be
updated is determined by a threshold parameter[0, 1]. Specifically, given scaled predictors,
codficients are updated |A;| > 7 - max |A;]. 7 = O corresponds to updating every fibeent
at every iteration, while = 1 is equivalent to the original boosting algorithm, assuming that the
entries ofA are distinct.

We apply this idea to EEBoost, yielding ThrEEBoost, presented in Algorithm 3. Each value of
7 yields a distinct cogicient pathB(r). Further, for a fixed value af, the computational burden of
ThrEEBoost is no higher than EEBoost. When using cross-validation to select the optimal value of
7, ThrEEBoost will be a factor K times more computationally expensive, wh&res the number

of thresholding values that achosen.

Algorithm 3 ThrEEBoost
procedure THREEBoosT
Setg® =0
fort=0,...,Tdo
ComputeA = g(X, B) BB+
Identify J; = {j : |Aj] > 7- max|Aj|}
for all j € J; do
Updateg®) = g~V + e sign@),)
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2.4 Selecting the best model

In standard applications of boosting and EEBoost, the algorithm is run for a pre-determined number
of iterations, producing a variable selection path from which one chooses the model (i.e., set of
codficient estimates) yielding the smallest MSI%Eél jgl[yij —x;BY]2. The process is analogous
to solving a LASSO problem for a sequence of values of the penalty parameten choosing
the optimal value oft.

The ThrEEBoost procedure involves repeating this processflerent settings of the threshold
parameterr, yielding a family of variable selection paths indexed#@yWhile applying ThrEE-
Boost with multipler values increases the number of fim@ent sets for which MSPE must be

estimated, it poses no conceptual challenges. In practice, we recommend the following algorithm

to chooser via cross-validation, minimizing the1ISPE.

Algorithm 4 Model Selection foiThrEEBoost
procedure Cross VALIDATION

Divide the observations intl folds where% of the observations are used as a test set.
fork=1,...,Kdo

Apply ThrEEBoost for several values of

Obtain the minimum MSPE of each candidate model on the test set.

Select ther, that minimizes MSPE.

Repeat across the€ possible test sets and compute the mean of the selegted

If cross-validation is computationally infeasible, then a model scoring criterion such as the QIC
(Pan, 2001) can also be used: Assum@(y is the quasi-likelihoodR is the working correlation
structure,D is the data X, Y), Q is the observed information, and is the sandwich variance

estimate:
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QIC(R) = —2Q(B(R); I, D) + 2 = trace(Q V)

Both approaches are illustrated as part of the simulation study in Section 3. Cross validation is

preferred and is utilized in the data application in Section 4.

3 Simulation Study

Simulations were conducted in R version 3.2.0 (R Core Team, 2015) usingitheboost pack-
age provided in the supplementary materials. The code for conducting this simulation study is also

available in the supplementary materials.

3.1 Sparse regression model with correlated outcomes

We simulated data far = 30 individuals with four correlated observations from each individual. A
vector of covariateX;; of length 50 was generated for each individual from a multivariate normal
distribution with mear® and covariance matriXx where Var§j) = 0.25 and for each Coix{,

Xij) = 0.0, 0.3, 0.5, and 0.Y k # |. Each correlation level yielded similar results for all of our
performance metrics, so we will focus our results on the scenario whereXggri;) = 0.3.

The outcome variables for each individog), i =1, ..., 30,j =1, ..., 4, were generated from

a multivariate normal distribution with megn = X;8, with an exchangeable correlation matrix
such that Var(j;) = 1, Corr(Y;;, Yk) = p, V j # k. The true values of the cfiient vectors =

(Bo, B, - - -, Bso) Were set as:
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051<m<?2

Bmn=94 02,3<m<5

0.0,6 <m<50

Models which accommodate correlated data are generalized linear mixed models (GLMMs)
and marginal models estimated via generalized estimating equations (GEE). GLMMs may be sen-
sitive to assumptions about the distribution of the outcome and ranffest® Variable selection
techniques for GLMMs typically require maximizing the penalized likelihood and selecting both
random and fixed féects (Schelldorfer et al., 2014), which can be computationally demanding.
GEE provides an approach to estimation which is more robust to misspecification of the variance;
however, existing approaches for variable selection with GEE (Johnson et al., 2008) are based on
solving a set of penalized estimating equations, which is also computationally expensive. For this

simulation, ThrEEBoost was performed using GEE,
0, ,
9B) = 2, XV (Yi = XiB)
1=

whereV; = AY?Ri(p)AY? with A; = diag(Var(Y;)) and Ri(o) is the working correlation matrix.
For these simulations, we assumed an exchangeable working correlation matrix sukh hat
(2 -p)l + plY. p was estimated at each iteration via a method of moments estimator using the
current valugd® at iterationt.

For each combination gf = {0.0,0.3,0.6} andr = {0.0,0.2,0.4,0.6,0.8, 1.0, rcv}, we gen-
erated 1000 datasets as outlined above and ran 500 ThrEEboost iterations, producing a variable
selection pathp,..., B8} for k = 1, ..., 500 for each simulated dataset. We seleetgdusing

cross-validation using( = 10 folds. We estimated MSPE at each point on a path by estimating
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the average MSE across 100 datasets generated under the same assumptions used to generate the
original data.

Table 1 shows the minimum MSPE, minimum QIC, number of iterations to reach the mini-
mum MSPE, and variable selection sensitivity and specificity across the 1000 simulations for each

combination ofp andr. Sensitivity and specificity are given by

P . p R
Y. Isign@y)l 3 1-Isign@y)l
Sensitivity= ";1— Specificity= T
2. Isign{i)| 2. 1-Isign{)l
m=1 m=1

where signg) = 0if 8 = 0.

For some simulation runs, the ThrEEBoost algorithm led to a sequencefitmrd estimates
which began to alternate between 2 models before finding a solution that uniquely minimized the
MSE. These are easy to detect and can be remedied in practice by selecting another thresholding
value. The proportion of simulation runs resulting in numerical instability are reported in part (f)
of Tables 1 and 2.

For each value gb, mean minimum MSPE decreasedraacreased from 0.0 to 0.6. However,
values ofr > 0.6 resulted in very similar MSEs. ThrEEBoost had similar median sensitivity to
EEBoost across values pf For each value g, the sensitivity ranged from 0.80 to 1.00. Speci-
ficity increased withr, ranging from O forr = 0 to 0.87 forr = 1. ThrEEBoost withr < 1 reached
minimum MSPE with considerably fewer iterations than witk 1 (i.e., EEBoost). On average,
ThrEEBoost withr < 1 located the point on the variable selection path achieving minimum MSPE
in 3.5 to 14.4 times fewer iterations than EEBoost. Minimum mean QIC decreagsedasased.

Figure 1 shows the averadgig distance from the trug, codfticient values, and MSE across the it-
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erations of ThrEEBoost for @ierentr values in the scenario whepe-0.3. Using cross-validation
to select an optimal thresholding valug,, all three cases chose a medtaof 0.58. The distribu-
tion of the chosen values are shown in figure 2. The results followed the same patterns for each

simulated value gb and for each of Corij, Xi;)=0.0, 0.3, 0.5, and 0.7.

3.2 Less sparse regression model with correlated outcomes

Next, we undertook an additional simulation study using the same setup as described in the previ-

ous section but with a less sparse true regression model for the mean defined by:

051<m<15

Bm=14 02,16<m< 25

0.0,26 < m<50

Note that the number of nonzero regressionfiicoents (25) was nearly equal to the number of
independent individuals (30). Due to the reduced sparsity of the model, we increased the number
of iterations to 1500 for each of 1000 simulated datasets.

Table 2 summarizes the MSPE, QIC, sensitivity, specificity, number of iterations to find min-
imum MSPE, and rate of numerical instability of the algorithm. For all three settings of the cor-
relation parametetgr, mean minimum MSPE and QIC both showed a clear "U”-shaped pattern
acrossr. MSPE achieved the lowest valuerat 0.4, with r = 0 andr = 1 yielding MSPE values
6-28% higher than this minimum value. The optimalalue to minimize QIC varied from 0.4 to
0.8 depending op. The sensitivity and specificity results show the tradietiwat is at play: sensi-

tivity decreases and specificity increases @®es from 0 to 1. In this case, specificity improves
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dramatically up tor = 0.4 but does not improve substantially with largevalues; and sensitivity
declines steadily but modestly until= 0.6. Figure 3 shows thk; distance from the trug, the
codficient traceplots, and MSPE across iterations. Figure 5 shows the mean QlCacahsss
of 0, 1, andrcy for the variousp values. The results followed the same patterndos 0 and
p = 0.6. Results were also similar in scenarios where the pairwise correlation between covariates
was set to 0, 0.5, and 0.7 (data not shown).

Using cross-validation to selecbffered an improvement over EEBoost (i.e., ThrEEBoost with
7 = 1). The MSPE shrunk by about 22%, 18%, and 7% for the cases wh&x8, 0.3, and 0.6,
respectively. The medianselected was lower than in the sparse case with values of 0.38, 0.40,

and 0.38, respectively. The distributionsrgf, are shown in Figure 4.

4 Data application - Box Lunch Study

We illustrate the application of ThrEEBoost to outcome data from the Box Lunch Study, a random-
ized controlled trial to evaluate théfect of portion size availability on caloric intake and weight
gain (French et al., 2014). Two hundred and thirty-three eligible individuals were randomized to
one of four groups: three “free lunch” groups and a “no free lunch” group which served as a con-
trol. The three “free lunch” conditionsfiiered according to the number of calories provided in the
daily box lunch: 400, 800, and 1600.

Here, we explore the factors associated with BMI in the “no free lunch” group consisting of
n = 49 individuals on whom BMI measurements were taken at four time points (baseline, 1, 3,

and 6 months). There were 54 covariates of interest, including demographic (e.g. age, gender,
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race, height, education), lifestyle (e.g. smoking status, physical activity levels), and psychosocial
(e.g. frequency of self-weighing, degree of satisfaction with current weight) covariates recorded
at baseline, and a variety of longitudinally-recorded food-related outcomes such as average daily
caloric intake and average daily servings of fruits and vegetables. The outcome and predictors
were scaled to have zero mean and unit variance prior to analysis.

ThrEEBoost was applied using the Gaussian Generalized Estimating Equations with an ex-
changeable working correlation structure. The algorithm was rum fe10, 0.2, 0.4, 0.6, 0.8, and
1, and the optimal model for eaetwas selected as the one which minimized the MSPE estimated
by five fold cross-validation. The smallest MSPE overall (0.60) was achieved by ThrEEBoost with
7 = 0.4. To implement the LASSO, least angle regression (LARS) was utilized over five fold
cross-validation to select an optimal penalty parameter which minimized the MSPE. Fitting the
optimal LASSO model on the full data set, we obtained MSPE of 0.83. The non-zdfwizrgs
for this model are summarized in Table 3, and compared to th&ideets from the LASSO fit
with smallest cross-validated MSPE. The models selected by LASSO and ThrEEBoost share some
covariates in common, but remain quite distinct. Overall, the ThrEEBoost model is more parsi-
monious than the LASSO model. Notably, the LASSO estimates relatively lardgiceerds for
some variables (e.g., Dissatisfied with weight) which are not selected by ThrEEBoost. This may
be due to the fact that the LASSO ignores the correlated nature of the outcome, and is therefore
overly optimistic about the amount of statistical signal present in the data. Figure 6 summarizes the
codficients of the optimal ThrEEBoost model for various values of the threshold paramétes

estimated co@écients forr = 0.4,0.6,0.8, and 1 are generally similar, with highewralues leading
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to slightly more parsimonious models. However, as shown in Table 4, these stflagitentes can

yield very diterent prediction errors, hence the path diversitgr@d by ThrEEBoost is an asset.

5 Discussion

We have introduced a thresholded extension of the EEBoost algorithm, ThrEEBoost, and critically
assessed its operating characteristics in variable selection and prediction in high-dimensional mod-
els. We have shown via a detailed simulation study that ThrEEBoost provides a predictive advan-
tage over EEBoost. In cases when the true regression model was relatively sparse, ThrEEBoost re-
quired considerably fewer iterations than EEBoost to locate models with comparable performance.
When the regression model was less sparse, varying the thresholding parameter in ThrEEBoost
allowed for the exploration of a larger set of variable selection paths, leading to the discovery of
models with lower MSPE.

Several limitations of the present study should be acknowledged. This simulation study focused
solely on cases of normally distributed correlated outcome data, using GEE with an exchangeable
working correlation. Further research is needed to clarify the benefits of thresholded variable se-
lection with other correlation structures, and for other classes of estimating equations. Second,
while the numerical experiments are promising, we have not provided theoretical results that guar-
antee, e.g., that ThrEEBoost possesses an oracle property. In ongoing work, we are exploring these
theoretical properties of ThrEEBoost and clarifying its relationship to “hybrid” penalized variable

selection procedures such as the elastic net.
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P =00 =02 =04 =06 7=08 =10 T=1cVv

(a) Mean Minimum Prediction Error

0.0 1.17 1.13 1.09 1.08 1.07 1.07 1.09
0.3 1.16 1.12 1.09 1.06 1.06 1.06 1.08
0.6 1.15 1.11 1.07 1.06 1.05 1.06 1.06

(b) Median Sensitivity

0.0 1.00 1.00 1.00 0.80 0.80 0.80 0.80
0.3 1.00 1.00 1.00 0.80 0.80 0.80 1.00
0.6 1.00 1.00 1.00 1.00 0.80 0.80 1.00

(c) Median Specificity

0.0 0.00 0.36 0.64 0.80 0.84 0.87 0.76
0.3 0.00 0.31 0.62 0.78 0.82 0.87 0.76
0.6 0.00 0.29 0.60 0.76 0.82 0.87 0.73

(d) Mean Iterations to Minimum Prediction Error (IQR)

0.0 | 11(9,13) 15(12,17) 22(17,26) 34(25,41) 44(34,53) 158(125,183) 32(21,41)
0.3 | 12(10,14) 16(13,17) 23(18,27) 34(26,40) 45(36,52) 159 (129,180) 32 (22,42)
0.6 | 14(10,15) 18(14,21) 26(20,32) 36(28,43) 45(38,54) 160 (132,184) 3B4p6,

(e) Minimum Mean QIC

0.0 212 199 181 169 162 155 175
0.3 210 199 179 165 160 153 173
0.6 210 197 177 169 160 156 175

(f) Proportion of simulations with numerical instability

0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.6 0.01 0.01 0.00 0.01 0.01 0.01 0.01

Table 1: Mean minimum prediction error (a), median variable selection (b) sensitivity and (c)
specificity, (d) mean number of iterations (25th and 75th percentile) to attain minimum prediction
error, () minimum mean QIC, and (f) proportion of simulations where algorithm did not find
a unique minimum MSE for ThrEEBoost in the sparse true model undkareint values of the
threshold,r and correlation between intra-individual observatignsResults are based on 1000
simulations, each with 500 iterations.
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P 7=0.0 =02 =04 =06 =08 =10 T=1CV
(a) Mean Minimum Prediction Error

0.0 1.95 1.78 1.65 1.77 2.02 2.12 1.65
0.3 1.53 1.45 1.36 1.42 1.53 1.63 1.35
0.6 1.82 1.71 1.73 1.78 1.86 1.88 1.74

(b) Median Sensitivity
0.0 1.00 0.96 0.92 0.88 0.84 0.80 0.92
0.3 1.00 0.96 0.92 0.88 0.88 0.88 0.92
0.6 1.00 1.00 0.92 0.92 0.92 0.88 0.96

(c) Median Specificity
0.0 0.00 0.24 0.56 0.64 0.68 0.72 0.52
0.3 0.00 0.24 0.56 0.60 0.64 0.64 0.52
0.6 0.00 0.24 0.56 0.60 0.60 0.68 0.52

(d) Mean lIterations to Minimum Prediction Error (IQR)
0.0 | 40(40,51) 43(44,50) 49(49,58) 63(59,79) 88(73,116) 696 (213,966) 53 (49, 59)
0.3 | 47(46,52) 46(46,51) 52(51,58) 68(63,79) 102(93,120) 845(871,980) 55(50,61)
0.6 | 43(45,54) 42(46,51) 45(49,58) 59(58,76) 89(83,117) 767 (834,1000) 539¥9,
(e) Minimum Mean QIC
0.0 340 314 295 317 354 378 296
0.3 334 319 287 287 299 391 282
0.6 470 470 460 458 418 536 487
(f) Proportion of simulations with numerical instability

0.0 0.14 0.10 0.04 0.07 0.10 0.12 0.07
0.3 0.02 0.02 0.01 0.01 0.01 0.03 0.01
0.6 0.03 0.02 0.02 0.02 0.04 0.03 0.03

Table 2: Mean minimum prediction error (a), median variable selection (b) sensitivity and (c)
specificity, (d) mean number of iterations (25th and 75th percentile) to attain minimum prediction
error, () minimum mean QIC, and (f) proportion of simulations where algorithm did not find a
unique minimum MSE for ThrEEBoost in the less sparse true model unfieratit values of the
threshold,r, and correlation between intra-individual observatignsResults are based on 1000
simulations, each with 1500 ThrEEBoost iterations.
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Codficients
Variable ThrEEBoost LASSO
Race (Black) 0.27 0.24
Race (Hispanic) 0.24 0.35
Health (:=exc 5=poor) 0.17 0.08
Age 0.17 0.11
Lost control past 28 days 0.15 -
Education (HS) 0.14 0.14
Have fridge at work 0.12 0.19
TFEQ Disinhibition 0.10 0.32
Lbs gain before you noticed 0.06 0.16
Dissatisfied with weight - 0.20
Light actvty minday (251-2100) - 0.15
Freq fast food (&never 57+ timesweek) — 0.06
Limit food you eat - 0.05
Marital status (Married) -0.088 -0.11
Moderate activity miyday (2101-5900) - -0.05
Frequency self-weigh éhever 5=every day) - -0.08
Freq restaurajweek - -0.10
TFEQ Hunger — -0.16

Table 3: Coéicients for the optimal ThrEEBoost & 0.4) and LASSO models selected by cross-
validated MSE. Small cd&cients (magnitude: 0.05) are omitted. “—" indicates that the variable
was not selected in the model.
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ThrEEBoostr
0O 02 04 06 08 1.0]|LASSO
CVMSE| 0.72 0.78 0.60 0.66 0.660.75| 0.83

Table 4: Estimated mean squared prediction error for ThrEEBoost and LASSO models. (CV MSE)
denotes models selected by minimizing cross-validated MSE.
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Figure 1: Averagé.; distances from the tryg(top row), estimated caicient values (middle row)

and MSPE (bottow row) across iterations for various values, efhen data are generated from

a very sparse true regression model with an intra-individual correlatign6f0.3. The solid,
dashed, and dotted lines in the @o®ent plots (middle row) represent deients with true values

of 0.5, 0.2, and 0.0 respectively. Results are based on 1000 simulations, each with 500 ThrEEBoost
iterations. The solid vertical lines show the iteration where the minimum mean squared error is
achieved in each scenario.
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Figure 2: The distribution of selected/alues via cross-validation. For each valug ahe median
Tcv Selected was 0.58.
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Figure 3: Averagé.; distances from the tryg(top row), estimated caicient values (middle row)
and MSPE (bottow row) across iterations for various values @fhen data are generated from a
less sparse true regression model with an intra-individual correlatior-dd.3. The solid, dashed,
and dotted lines in the céiecient plots (middle row) represent déeients with true values of 0.5,

0.2, and 0.0 respectively. Results are based on 1000 simulations, each with 1500 ThrEEBoost
iterations. The solid vertical lines show the iteration where the minimum mean squared error is

achieved in each scenario.
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Figure 4: The distribution of selected/alues via cross-validation. For each valug ohe median
Tcv Selected were 0.38, 0.40, and 0.38.
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Figure 5: Average QIC when data are generated from a less sparse true regression model with an
intra-individual correlation op = 0.3. Results are based on 1000 simulations, each with 1500

ThrEEBooOst iterations.
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Figure 6: Coéicient magnitudes for the optimal models (chosen by cross-validated MSE) for
different values of. Each row corresponds to didirent variable; darker shades of gray correspond

to higher coéficient magnitudes. The names of the variables are displayed on the right; a data
dictionary giving the variable descriptions is provided in the Supplementary Materials.
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