Infectious Disease Epidemiology
BMTRY 713 (A. Selassie, DrPH)

January 30, 2008
Lecture 6
Outbreak Epidemiology & Investigation

Learning Objectives
1. Define Outbreak, Epidemic, Endemic, & Pandemic
2. Describe the purpose of Outbreak investigation
3. List the main steps in outbreak investigation
4. Illustrate epidemic curves
5. Recognize main types of outbreaks

Outbreak Epidemiology

- Study of a disease cluster or epidemic in order to control or prevent further spread of disease in a population
- It is a specific form of descriptive epidemiology intended to identify immediate threat to public health
- Requires urgent action

Terminology

- Outbreak—a small localized cluster of cases, usually an infectious disease
- Epidemic—the occurrence of cases of a condition in a population in a number greater than expected for a given period of time
- Endemic—a constant presence of a communicable disease in a population
 - Holendemic: high proportion of children affected, conferring immunity in adults (e.g. malaria)
 - Hyperendemic: constant presence in all ages
- Pandemic—an epidemic that transcends national boundary extending to much of the world
Types of epidemics

- **Common source**
 - Single source of contamination
 - Single vehicle
 - Consider distribution patterns

- **Point epidemics**
 - Common source, everyone exposed at the same time

- **Propagated epidemics**
 - Transfer from one host to another
 - Bimodal with secondary cases
 - Overlapping secondary cases

- **Mixed**
 - Include both

Point source epidemics (short)

![Figure 4-7: Salmonella point source airplane epidemic curve on a flight from London to the United States, by time of onset, March 11-16, 1994.](image)

Point source epidemics (Long)

![Figure 4-6: Point source epidemic curve.](image)
Propagated epidemics

Study design

- Case-control
 - Compares those ill with those not
 - Identify the underlying population
 - Useful when you do not know the cause
- Retrospective cohort
 - Suspected agent

Case-control study

- Large event
 - Cases and controls taken from attendees
- When the exposure is unknown
- Benefit
 - Rapid design
 - Less expensive
 - Efficient in collecting data
Cohort study

- Appropriate when it is possible to enumerate persons potentially exposed and contact them in a timely manner
- Suited to outbreaks at a specific event

Classification of infectious disease

- Clinicians -- use clinical manifestations or organ systems
- Microbiologist – by agent
- Epidemiologists – 2 common methods
 - Means of transmission
 - Reservoir of organism

Means of transmission

- Contact -- direct or indirect
- Food- or water-borne -- ingestion
- Airborne -- inhalation of contaminated air
- Vector-borne -- living organism
- Perinatal -- during pregnancy or at time of delivery
Biologic characteristics of the organism

- Infectivity
- Pathogenicity
- Virulence
- Immunogenicity
- Inapparent infections
- Carrier states

Immunogenicity

- Ability of an organism to produce an immune response after an infection that is capable of providing protection against reinfection with the same or a similar organism (antibodies)

Types of immunogenicity

- High, life-long immunity
 - Measles, polio
- Weak, reinfection is common
 - Neisseria gonorrhoeae (gonorrhea)
 - Plasmodium falciparum (malaria)
- Nonprotective, deleterious to the host
 - Streptococci infection resulting in glomerulonephritis or rheumatic fever
- Binding antibodies, markers of prior infection, non-immune
 - Hepatitis C, HIV
Inapparent infections
- Infection that can be documented by the isolation of the organism by culture, identification by PCR, or through a specific immune response but the person remains asymptomatic
- Measure of low pathogenicity, e.g. polio
- Rare in some diseases, e.g. measles, smallpox, hanta virus

Carrier state
- An individual who is asymptomatic but capable of transmitting disease to others
 - HBV infection is acquired perinatally
 - "typhoid Mary"
 - HIV has a long carrier state, average approximately 10 years

Infectivity
- Ability of the agent to cause infection in a susceptible host
- Two measures
 - Minimum number of infectious particles required to establish infection
 - Proportion of susceptible individual who develop infection after exposure, aka as ??
Pathogenicity

- Ability of a microbial agent to induce disease
 - *Helicobacter pylori* with vac A and cag A alleles are much more pathogenic than *Helicobacter pylori* infections without these characteristics
 - Proportion of cases who develop disease

Virulence

- Severity of the disease after infection
- Best measured by
 - Case-fatality rate
 - Proportion of clinical cases who develop severe disease

Identification of an epidemic

- Increase in cases of a disease currently reported to CDC
- Reports from doctor’s office, hospitals, nursing home, laboratory
- May be reported by an individual
Temporal trends in infectious disease

- Seasonal variation
 - Vector-transmitted diseases
- Annual variation
 - Dependent upon the number of susceptible individuals in the community
- Variation over decades
 - Decrease in incidence and mortality in some
 - Large number of new infections occurring

Outbreak investigations

- Usually conducted by facilities or at the local or state public health level
- CDC is consulted for multi-state outbreaks or those requiring special expertise

Steps in conducting an outbreak investigation

- Identify investigative team members and their roles
- Confirm the existence of an outbreak
 - Compare rates with background levels
 - Rule out "spurious" factors (improved surveillance)
 - Verify diagnoses
 - Some diseases are so serious that a single case is investigated
 - Anthrax, human rabies, botulism, polio, bubonic plague
Steps in conducting an outbreak investigation (2)

- Select a case definition
 - May include time and place of exposure, laboratory findings, and clinical symptoms.
 - Initial case definition has a greater emphasis on sensitivity than specificity
 - Subsequent case definitions may have greater specificity
 - Classify cases as confirmed and probable

Classification of Cases

A case definition for plague

PLAGUE (Filled B99)

Clinical presentation

- In humans, plague is transmitted by fleas or by direct exposure to infected tissue or respiratory secretions; the disease is characterized by fever, chills, headache, malaise, prostration, and leukocytosis that may evolve into one of the three forms of the disease (pneumonic, septicemic, or bubonic plague).

- Septicemic plague
 - Involves noninfectious dissemination and can manifest as a disseminated intravascular coagulation (DIC) syndrome
 - Manifestation: noninfectious and noninfectious

- Pneumonic plague
 - Involves spontaneous release from the bacillus (plague bacillus) and can manifest as a self-sustained or self-distributed
 - Manifestation: spontaneous or self-distributed

- Septicemic plague
 - Involves spontaneous release from the bacillus (plague bacillus) and can manifest as a self-sustained or self-distributed
 - Manifestation: spontaneous or self-distributed

Laboratory confirmation criteria

- Spontaneous or self-distributed: noninfectious
 - Manifestation: noninfectious

- Self-sustained or self-distributed: noninfectious
 - Manifestation: noninfectious

- Spontaneous or self-distributed: infectious
 - Manifestation: infectious

- Self-sustained or self-distributed: infectious
 - Manifestation: infectious
Steps in conducting an outbreak investigation (3)

- Identification of cases
 - Case finding techniques reviewing existing surveillance data, surveying hospitals, asking existing cases if they know others who may have been exposed
- Identification of population at risk
 - Range from very few to many
 - Those with a common exposure

Determine study design

- Based upon size and availability of the exposed population, the speed with which results are needed, and available resources.
 - Small enumerable exposed groups
 - Large enumerable exposed groups
 - Groups where exposure can be identified but groups cannot be enumerated
 - Exposed population is unknown

Data collection

- Determine person, place, and time
- Survey administration
 - Variables to define cases
 - As soon as possible
 - Look for similarities among respondents
Complementary analyses

- Laboratory studies
- Environmental assessment
- Implement control measures

Formulate and Test the Hypothesis

- Assess data formally using descriptive and analytic epidemiologic techniques
- Test the hypothesis to determine the source of transmission and the vehicle of the agent (Food, water, milk, etc.)
- Assess the hypothesis to determine risk factors.
 - (E.g., Are those who attended the wedding luncheon at higher risk than those who did not attend the luncheon?)

Summary

- Outbreak investigations are intended to gain information about disease, pathogens, and risk factors so that urgent preventive measures will be implemented
- Involve series of well-planned and executed steps and methods
- Cooperation and communication are key elements