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ReviewAn Open-and-Shut Case?
Recent Insights into the Activation
of EGF/ErbB Receptors

plains several of its unique properties. We outline a
mechanistic view of ErbB receptor homo- and hetero-
dimerization, which suggests new approaches for in-
terfering with these processes when they are impli-
cated in human cancers.
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It is well established that growth factor binding to the
extracellular region of EGFR promotes dimerization of

Recent crystallographic studies have provided signifi- the monomeric receptor and increases the tyrosine ki-
cant new insight into how receptor tyrosine kinases nase activity of its intracellular domain (Schlessinger,
from the EGF receptor or ErbB family are regulated 2000). Receptor molecules in the ligand-induced EGFR
by their growth factor ligands. EGF receptor dimeriza- dimer become tyrosine autophosphorylated in trans.
tion is mediated by a unique dimerization arm, which The resulting phosphotyrosines recruit the SH2 domains
becomes exposed only after a dramatic domain re- of multiple downstream signaling molecules, thus initiat-
arrangement is promoted by growth factor binding. ing an array of intracellular signaling pathways (Schles-
ErbB2, a family member that has no ligand, has its singer, 2000). There has been considerable confusion
dimerization arm constitutively exposed, and this ex- about the precise mechanism of EGFR kinase activation

by extracellular ligand binding. Ligand availability is
clearly paramount in controlling the biological activity*Correspondence: mlemmon@mail.med.upenn.edu
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Table 1. Structural Analysis of ErbB Family Extracellular Regions

Family Member Receptor
(pdb ID) Fragment Ligand Conformation Reference

hEGFR (1mox) 1–501 TGF-� extended Garrett et al., 2002
hEGFR (1ivo) 1–619 EGF extended Ogiso et al., 2002
hEGFR (1nql) 1–621 EGF tethered Ferguson et al., 2003
hErbB2 1–509 N/A extended Garrett et al., 2003
hErbB2 (1n8y) 1–631 N/A extended Cho et al., 2003
rErbB2 (1n8z) 1–631 N/A extended Cho et al., 2003
hErbB3 (1m6b) 1–621 – tethered Cho et al., 2002

N/A, not applicable.

of EGFR family members. However, receptor display, signaling responses (Holbro et al., 2003; Yarden and
Sliwkowski, 2001). Thus, the signaling characteristics ofdynamics, affinity, and competency also play important

regulatory roles. EGFR appears to exist in two different the 4 ErbB receptors are strongly interdependent.
The extracellular region of ErbB receptors is quiteaffinity classes at the cell surface (Ullrich and Schles-

singer, 1990), with 2%–5% of receptors binding EGF heavily glycosylated. In the case of EGFR, 9 of 11 poten-
tial glycosylation sites are utilized (Zhen et al., 2003),with high affinity (KD � 0.1 nM) and 92%–95% binding

with lower affinity (KD 6–12 nM). The affinity classes are and carbohydrate accounts for an estimated 20% of the
thought to represent different receptor conformations
and/or oligomers. In addition to understanding the
mechanism of ligand-induced dimerization per se, ex-
plaining the functional and structural characteristics of
the different EGFR affinity states is an important goal.
The recently determined structures of ErbB receptor
extracellular regions in different activation states pro-
vide significant insight into both of these issues.

Growth Factor Ligands that Regulate
the Four ErbB Receptors
EGFR is regulated by a family of at least seven distinct
peptide ligands (Groenen et al., 1994; Harris et al., 2003),
including EGF, transforming growth factor-� (TGF-�),
amphiregulin, betacellulin, epigen, epiregulin, and hepa-
rin binding EGF-like growth factor (HB-EGF). ErbB2 has
no known direct activating ligand (Citri et al., 2003), while
ErbB3 and/or ErbB4 function as receptors for the four
known neuregulins (NRGs) (Falls, 2003). All EGFR ligands
are expressed as type I integral membrane proteins
(Harris et al., 2003) and are proteolytically processed to
yield the 49–85 amino acid mature growth factor that
consists largely of the EGF-like domain (Harris et al.,
2003). The bioactive core of mature NRG isoforms is
also their EGF-like domain (Falls, 2003).

Domain Organization and Relationships
with the ErbB Receptor Family
The four ErbB receptors are closely related single-chain
modular glycoproteins with an extracellular ligand bind-
ing region (�620 residues), a single transmembrane do-
main (�23 residues), and an intracellular tyrosine kinase
domain (�260 residues) that is flanked by juxtamem-
brane (�40 residues) and C-terminal (�232 residues)
regulatory regions (Figure 1). It is intriguing that this
family includes an orphan receptor that nonetheless has
robust tyrosine kinase activity (ErbB2) and a demon-

Figure 1. Domain Organization of ErbB Receptors
strated NRG receptor (ErbB3) that lacks tyrosine kinase

Throughout this report, the domains are referred to using the I, II,activity (Guy et al., 1994). Each ErbB receptor is thought
III, IV nomenclature (Lax et al., 1988b). An alternative nomenclature

to have a distinct physiological role, which can be using domain names L1, CR1, L2, CR2 (Ward et al., 1995) is also
modified by ligand-induced formation of ErbB receptor used in the literature. Residue numbers for domain boundaries are

for EGFR.heterooligomers that are capable of generating unique
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Figure 2. Structural Characteristics of Individual Domain Types

(A) Domain I (L1) from sEGFR (Garrett et al., 2002) is shown in two orthogonal orientations as a representative � helix or solenoid domain.
(B) Domain IV (CR2) from sEGFR (Ferguson et al., 2003) is shown as a representative cysteine-rich domain. The ladder of disulfide bonds can
be seen clearly. The order of disulfide-bonded modules in this domain is C2-C1-C1-C2-C1-C1-C2, as marked beside the domain. Disulfides
in C2 modules are gray; those in C1 modules are black.
(C) EGF from the sEGFR•EGF complex (Ogiso et al., 2002) is shown as a representative ligand molecule. EGF contains two small (2-stranded)
� sheets. As labeled here, it can be viewed as containing two modules: one related to a C2 module and the other to a C1 module.

molecular mass (Lax et al., 1990). Four distinct protein and by X-ray crystal structures (Table 1). Domain II of
ErbB receptors contains 8 disulfide-bonded modules indomains, of two different types, constitute the ErbB

receptor extracellular regions. There are two homolo- the order C2-C2-C2-C1-C1-C1-C1-C1. Domain IV con-
tains 7 modules, in the order C2-C1-C1-C2-C1-C1-C2.gous large (L) domains, and two cysteine-rich (CR) do-

mains, which occur in the order L1-CR1-L2-CR2 (Ward For comparison, a single laminin repeat contains 3 mod-
ules in the order C2-C1-C1 (Adams et al., 2000). Theet al., 1995). These four domains have alternatively been

named L1-S1-L2-S2 (Bajaj et al., 1987), and I-II-III-IV first C2 module of each ErbB receptor CR domain has
an intimate relationship with its preceding L domain,(Lax et al., 1988b). For the sake of clarity, and to assist

readers outside the EGFR field, we use only the I-II-III- and appears to be required for proper L-domain folding.
Intriguingly, the �50 amino acid EGF-like domain ofIV nomenclature in this review (see Figure 1). Related

domains are also found in the extracellular regions of ErbB ligands, characterized by a distinct pattern of 6
disulfide-bonded cysteines, can also be thought of asreceptor tyrosine kinases from the insulin receptor fam-

ily (Ward and Garrett, 2001), which are disulfide-linked containing two related disulfide-bonded modules in the
order C2-C1 (Figure 2C) (Abe et al., 1998; Ward et al.,dimers (by contrast with ErbB receptors), and bind to

quite different sets of ligands. The L domains (domains 2001).
I and III in ErbB receptors) are members of the leucine
rich repeat (LRR) family. The CR domains (domains II Structures of ErbB Receptor Extracellular Regions

The recently described crystal structures of ErbB recep-and IV in ErbB receptors) were predicted to contain
multiple small disulfide-bonded modules similar to tor extracellular regions (Table 1) showed that their L

and CR domains adopt the right-handed � helix (or “so-those in laminin (Figure 2). These modules are defined
either by a single disulfide bond (a C1 module) or by lenoid”) and laminin-like folds, respectively, which were

previously seen in the extracellular region of the insulin-two intertwined disulfides that link side chains in the
pattern Cys1-Cys3 and Cys2-Cys4 (a C2 module) (Ward like growth factor-1 receptor (IGF-1R) (Garrett et al.,

1998; Ward et al., 2001). As shown in Figure 2A, domainset al., 1995). This prediction has been confirmed experi-
mentally by disulfide bond mapping (Abe et al., 1998) I and III of ErbB receptors form a six-turn right-handed
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Figure 3. Schematic of Ligand-Induced Conformational Changes in sEGFR and Dimerization

A transition between two sEGFR structures is shown in both ribbons and cartoon representation. The unactivated (tethered) sEGFR structure
(Ferguson et al., 2003) is shown on the left. A model of the EGF-induced dimer is shown on the right. This model uses the coordinates of
Ogiso et al. (2002), which lacked 5 of the 7 disulfide-bonded modules of domain IV. We have added the missing modules of domain IV using
the structure of unactivated sEGFR, and assuming that the domain III/IV relationship in sEGFR is unaltered upon ligand binding.
L domains in the receptor (domains I and III) are colored red, and CR domains (domains II and IV) are green. Ligand is colored cyan. Domains
I and III are distinguished from one another by the addition of gray to the outer surfaces of strands and helices. The two subunits in the dimer
are distinguished by the fogging of the right-hand dimerization partner. Individual domains are labeled. The mutual “hooking” of the two
domain II dimerization arms across the dimer interface can be observed in the center of the structure. The additional domain II contacts
across the interface, at module 2 (2nd C2 module) and module 6 (3rd C1 module), are marked with asterisks. The speculated position of the
plasma membrane is depicted as a gray bar.
EGF binding is proposed to induce a 130� rotation of a rigid body containing domains I and II, about the axis represented by a filled black
circle (at the domain II/III junction). This exposes the dimerization arm and allows dimerization of sEGFR, as depicted on the right.

� helix that is capped at each end by an � helix and a Paradigm of Receptor Dimerization Mediated
by Bivalent Ligand Bindingdisulfide bond. Domains II and IV contain 8 and 7 disul-

fide-bonded modules, respectively, with the predicted It was previously suggested that EGF induces EGFR
dimerization by binding simultaneously to two receptordisulfide bond arrangements (Ward et al., 1995). It is

remarkable that in less than a year we have progressed molecules, and thus “crosslinking” them into a dimer
(Gullick, 1994; Lemmon et al., 1997; Tzahar et al., 1997).from having no detailed structural information on the

EGFR family to having 7 different crystal structures, with This hypothesis followed largely from the paradigm es-
tablished for human growth hormone (hGH), which formsdistinct arrangements of the receptor domains, that rep-

resent snapshots of both inactive and activated configu- a 1:2 complex with the extracellular regions of two hGH
receptor molecules (de Vos et al., 1992). Structural stud-rations (Table 1). This wealth of data has revolutionized

our view of how ErbB receptors are regulated, and (as ies of several other RTK dimers located a bivalent (usu-
ally dimeric) ligand species at the receptor-receptor in-discussed in detail below) provides satisfying explana-

tions for the unique biological properties of the orphan terface where it directly mediates dimerization. This
arrangement has been seen for portions of the vascularreceptor ErbB2.
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endothelial growth factor (VEGF) receptor Flt-1 (Wies- Ligand Binding to an EGFR Dimer
mann et al., 1997), the nerve growth factor (NGF) recep- Although EGF and TGF-� clearly do not span the dimer
tor TrkA (Wiesmann et al., 1999), and EphB2 (Himanen interface, each ligand simultaneously contacts two sep-
et al., 2001). In the case of EGFR, it was well established arate binding surfaces in the same EGFR molecule. The
that two ligand molecules (which are monomeric when two ligand binding surfaces are contributed by the �
studied alone) are bound in an EGF-induced dimer of helix or solenoid domains I and III, as indicated by earlier
the EGFR extracellular region (Domagala et al., 2000; affinity crosslinking studies (Lax et al., 1988a; Sum-
Lemmon et al., 1997; Odaka et al., 1997). This stoichiom- merfield et al., 1996; Woltjer et al., 1992; Wu et al., 1990),
etry is consistent both with mechanisms where EGF domain-swapping experiments (Lax et al., 1989), and
binding induces conformational changes that promote analysis of proteolytic EGFR fragments (Kohda et al.,
receptor-mediated EGFR dimerization, and with mecha- 1993). The bound EGF or TGF-� molecule resembles a
nisms in which two ligand molecules span the dimer wedge between domains I and III (Figure 3).
interface to mediate receptor dimerization directly (Lem- The types of interaction made with ligand are quite
mon et al., 1997). different for domains I and III (Garrett et al., 2002; Ogiso

et al., 2002). While domain I contacts are primarily back-
EGFR Dimerization Is Mediated Exclusively bone mediated, ligand binding to domain III is primarily
by Receptor Contacts side chain mediated and involves many of the ligand
Contrary to most expectations, the crystal structures of side chains found to be important in earlier mutational
ligand-bound sEGFR showed that dimerization is en- studies (reviewed by Groenen et al., 1994). In particular,
tirely receptor mediated (Garrett et al., 2002; Ogiso et a highly conserved arginine in the ligand (R42 in TGF-�,
al., 2002). The structures confirmed that two individual R41 in EGF) interacts with a conserved aspartate in
ligand molecules are present in the dimer. However, the EGFR, and a critical aliphatic ligand side chain (L48 in
two bound TGF-� (Garrett et al., 2002) or EGF (Ogiso et TGF-�, L47 in EGF) projects into a well-defined hy-
al., 2002) molecules could hardly be further from the drophobic pocket on the domain III surface.
dimer interface (Figure 3, right). Almost all receptor-
receptor contacts observed in the crystal structures are Structures of Unactivated ErbB3 and EGFR
mediated by domain II. At the center of the dimer inter- Suggest an “Autoinhibited” Monomer
face is a prominent loop (residues 242–259 of EGFR) The sEGFR dimer structures provide a clear view of
that extends from the second C1 module (module 5) interactions that stabilize the receptor dimer, but do
of each domain II and reaches across the interface to not explain how ligand binding actually drives receptor
interact primarily with domain II of its dimerization part- dimerization. By binding simultaneously to both do-
ner (Figure 3). This domain II loop, which is specific to mains I and III, the ligand may alter the relative orienta-
ErbB receptors, has been termed the “dimerization arm” tions of these two domains. This could in turn change
(Ogiso et al., 2002), and deletions or mutations in this the conformation of the intervening domain II, so that
region completely prevent ligand-induced EGFR activa- its ability to dimerize is enhanced (Garrett et al., 2002).
tion (Garrett et al., 2002; Ogiso et al., 2002). In addition As mentioned below, domain II conformational changes
to the dimerization arm contacts, there are two smaller

of this sort almost certainly play an important role in
interaction sites in the dimer that involve side chains

ligand-induced EGFR dimerization. However, an addi-
from the second and the sixth disulfide-bonded modules

tional layer of regulation, involving an unexpected roleof domain II, and are marked with asterisks in the right-
for domain IV, was suggested by crystal structures ofhand side of Figure 3 (Garrett et al., 2002). Moreover, it
both unliganded sErbB3 (Cho and Leahy, 2002) and anis possible that the dimer interface extends into domain
unactivated form of sEGFR (with EGF bound only toIV. It has been reported that peptides modeled on disul-
domain I) (Ferguson et al., 2003).fide-bonded modules 6 and 7 of domain IV can disrupt

All four domains in the extracellular region were wellErbB receptor homo- and heterodimerization (Berezov
defined in these unactivated structures. The relationshipet al., 2002), and domain IV mutations can impair the
between domains I and II is essentially identical to thatability of ligand to bind and induce tyrosine phosphoryla-
seen in IGF-1R and in the activated sEGFR dimer, im-tion of EGFR (Saxon and Lee, 1999). The position of
plying that ligand binding does not greatly influence thedomain IV could not be defined in the initial sEGFR dimer
relative orientation of these two domains. By contrast,structures, because most of this domain was absent
the relationship between domains II and III differs dra-from the crystallized protein (Garrett et al., 2002) or was
matically in the activated and unactivated structuresnot well ordered (Ogiso et al., 2002). In the right-hand
(Figure 3). A direct intramolecular interaction betweenside of Figure 3, we have added the rest of domain
cysteine-rich domains II and IV restrains the domain II/IIIIV to the dimer model, assuming that the relationship
relationship that characterizes the unactivated configu-between domains III and IV in unactivated sEGFR is
ration. This interdomain “tether” is stabilized by essen-preserved in the active dimer. This places domain IV of
tially identical interactions between the two cysteine-the two receptors very close to one another in the dimer,
rich domains (II and IV) in inactive sErbB3 (Cho andsuggesting that they may directly interact. In very recent
Leahy, 2002) and sEGFR (Ferguson et al., 2003). Interdo-studies, most of domain IV in the sEGFR•EGF dimer
main hydrogen bonds are made by four or five residuescomplex has now been traced (Ishitani and Yokoyama,
that are well conserved in EGFR, ErbB3, and ErbB4 butunpublished data), and occupies the position shown in
not in ErbB2. Some of these residues are in the domainFigure 3. The two receptor molecules approach one
II dimerization arm and appear to have dual roles—another very closely toward the C terminus of domain IV,

although a well-defined, tight interface is not observed. contributing alternatively to the intramolecular domain
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II/IV tether in the inactive receptor or to dimerization in gand will drive the equilibrium shown in Figure 3 to the
right, trapping receptor molecules in the extended statethe activated receptor. Most intriguingly, the intramolec-

ular domain II/IV tether precisely buries the dimerization that can dimerize. EGFR dimerization will thus be pro-
moted, leading to receptor activation.arm of domain II against domain IV, so that the tethered

configurations of sErbB3 and sEGFR cannot dimerize While exposure of the dimerization arm is clearly nec-
essary, it is not sufficient on its own to drive EGFRin the manner shown in Figure 3, and thus appear to be

autoinhibited (Cho and Leahy, 2002; Ferguson et al., dimerization. Indeed, a truncated form of sEGFR that
lacks most of domain IV does not dimerize without ligand2003; Schlessinger, 2003). Moreover, the two ligand

binding surfaces on domain I and III are too far apart in (Elleman et al., 2001; Garrett et al., 2002), despite being
unable to form the intramolecular tether and thereforethe tethered configuration for a single ligand to bind to

both simultaneously. Consequently, the tethered config- presumably having its dimerization arm exposed. It is
possible that the dimerization arm must cooperate withuration can only form low-affinity interactions with li-

gand, using just one of its ligand binding surfaces at additional contact sites in order to drive efficient recep-
tor association. Two such sites, in modules 2 and 6 ofa time.
domain II, are marked with asterisks in Figure 3, as
mentioned above. Binding of ligand to domains I and IIILigand-Induced Activation of EGFR
appears to promote (or trap) a spine-like bend in domainA substantial domain rearrangement is required to
II that may bring these two contact sites and the dimer-switch between the unactivated and activated configu-
ization arm into the appropriate register for them all torations of sEGFR (Figure 3). For a single ligand molecule
cooperate with one another at the dimer interface.to contact binding surfaces on both domains I and III

simultaneously, these domains must be drawn toward
one another, requiring the receptor to become “ex- The Intracellular Tyrosine Kinase Domain of EGFR

Lacks Autoinhibitory Interactionstended” as shown in going from left to right in Figure 3.
Starting from the tethered configuration, and holding While the extracellular region of EGFR is distinguished

by autoinhibitory intramolecular interactions, a recentdomain III in place, simultaneous binding of ligand to
both domains I and III requires a �130� counterclock- structure of its intracellular tyrosine kinase domain is

notable for an absence of autoinhibitory interactionswise rotation of the rigid domain I/domain II pair about
the black circle drawn in Figure 3, in addition to a �20 Å (Stamos et al., 2002). The kinase domains of most RTKs

are catalytically inactive until ligand-induced dimeriza-translation into the page. This domain rearrangement
gives rise to the extended configuration, and breaks the tion causes them to become autophosphorylated within

the activation loop (Hubbard and Till, 2000). Withoutintramolecular domain II/IV tether so that the dimeriza-
tion arm is exposed for participation in inter-, rather than phosphorylation, the activation loop normally adopts a

conformation that inhibits substrate binding and holdsintramolecular interactions. Thus, only the extended
configuration of sEGFR is capable of both high-affinity critical catalytic side chains in a nonfunctional arrange-

ment (Huse and Kuriyan, 2002). Activation loop phos-ligand binding and efficient dimerization.
Although the crystal structures provide snapshots of phorylation normally induces significant conformational

changes that remove the inhibition of substrate bindingtethered and extended (dimeric) configurations of ErbB
receptors, they do not explain the mechanism of activa- and place the catalytic groups ideally for phosphotrans-

fer. The tyrosine kinase domain of EGFR is highly un-tion. It remains unclear whether ligand binding actively
induces conformational changes required for dimeriza- usual in not requiring such activation loop phosphoryla-

tion to promote its activity (Gotoh et al., 1992).tion, although the fact that no significant (static) struc-
tural differences are found between the EGF-bound and The crystal structure of the unphosphorylated EGFR

kinase domain (Stamos et al., 2002) suggests one expla-unliganded states of domain III (Ferguson et al., 2003;
Ogiso et al., 2002) argues against this possibility. We nation for this distinction. Even without phosphorylation,

the EGFR activation loop adopts the conformation nor-therefore currently favor a model in which ligand binding
traps the extended configuration (in a monomeric or mally observed only in phosphorylated and activated

kinases (Figure 4). An unmodified tyrosine side chaindimeric state) from the ensemble of conformations sam-
pled by a flexible and dynamic receptor molecule. It (Y845) in the EGFR activation loop occupies almost ex-

actly the same position as a phosphotyrosine (pY1163)should be noted, though, that such conformational vari-
ability has not been demonstrated experimentally. We in the activated insulin receptor kinase. Nearby acidic

side chains in EGFR are proposed to hold the Y845 sideestimate the strength of the intramolecular domain II/IV
tether in EGFR to be �1–2 kcal/mole. Disrupting the chain in this position, perhaps replacing the need for its

phosphorylation. The most straightforward interpreta-tether (by mutation or domain IV deletion) increases
ligand binding energy by 1–2 kcal/mol (Elleman et al., tion of this finding is that the activation loop of the EGFR

kinase domain constitutively adopts the “activated”2001; Ferguson et al., 2003), which we ascribe to loss
of the tether as an energetic barrier to domain re- conformation, and is constitutively active.

There are several caveats to this simple interpretation.arrangement. Assuming free equilibration between teth-
ered and untethered configurations, this estimate sug- For example, it is possible that the activated conforma-

tion is not adopted spontaneously in solution but isgests that at any given time �95% of sEGFR molecules
will be tethered, and the remaining 5% will not. Since promoted by interactions between kinase domains

within the crystal. Since the EGFR activation loop doesEGF will bind most strongly to the relatively rare ex-
tended form—because it can simultaneously contact not participate in any crystal contacts, this could only

occur though indirect, allosteric, effects. Several piecesbinding sites on domains I and III—the presence of li-
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trans-autophosphorylation, or it could involve the re-
moval of barriers (such as in a preformed inactive recep-
tor dimer) that restrict accessibility of the active site.

Structure of the ErbB2 Extracellular Region Explains
Several of Its Unique Properties
The second member of the ErbB family to be identified,
ErbB2/HER2, has several unique properties. First, ErbB2
has no known direct ligand, suggesting that it may func-
tion primarily as a coreceptor (or heterodimerization
partner) for other ErbB receptors that do have ligands
(Citri et al., 2003; Yarden and Sliwkowski, 2001). Second,
unlike other ErbB receptors, ErbB2 overexpression can
cause cell transformation even in the absence of added
ligand (Di Fiore et al., 1987; Yarden and Sliwkowski,
2001). The rodent ortholog of ErbB2, named Neu, was
recognized over 20 years ago as a potent transforming
oncogene product (with a transmembrane domain muta-
tion) in rats treated with ethylnitrosourea (Padhy et al.,
1982; Schechter et al., 1984). The unaltered, wild-type,
human ErbB2 gene is amplified or overexpressed in a
subset of breast cancers (Slamon et al., 1987, 1989),
and this correlates with an aggressive tumor phenotype
including tumor size, lymph node involvement, high per-
centage of S-phase cells, aneuploidy, and lack of steroid
hormone receptors (Paik and Liu, 2000; Ross and
Fletcher, 1998). ErbB2/HER2 amplification or overex-
pression is also observed in some ovarian, gastric, and

Figure 4. The Activation Loop of the EGFR Kinase Is Fixed in an salivary cancers (Koeppen et al., 2001; Press et al.,
Activated Conformation Even without Phosphorylation 1994). Consistent with its ability to transform cells when
A ribbons representation of the EGFR tyrosine kinase domain is overexpressed, these observations suggest that ErbB2
shown (pdb code 1m14), with its activation loop colored blue has a high level of constitutive (ligand-independent) ac-
(Stamos et al., 2002). Superimposed on this view are the configura-

tivity, and that its expression above a certain thresholdtions of the activation loop in the unphosphorylated insulin receptor
level can drive tumor growth (Yarden and Sliwkowski,(IR) kinase (1irk) in magenta (Hubbard et al., 1994), and the phosphor-

ylated (activated) IR kinase domain (1ir3) in cyan (Hubbard, 1997). 2001). These properties of ErbB2 have made it a key
The activation loop in the unphosphorylated EGFR kinase domain target of breast cancer therapies, such as the human-
overlays remarkably well with its counterpart in the activated IR ized anti-ErbB2/HER2 Herceptin antibody (Carter et
kinase. Y845 of the EGFR kinase domain, and the phosphorylated al., 2000).
tyrosine pY1163 of IR kinase, which occupy very similar positions

Three independent X-ray crystal structures of intact(see text), are marked.
(Cho et al., 2003) or truncated (Garrett et al., 2003)
sErbB2 have provided satisfying explanations for some
of ErbB2�s unique properties. The structures of the indi-of data support the idea that intracellular domains within

a ligand-induced receptor dimer must associate with vidual domains are very similar to their sEGFR and
sErbB3 counterparts, with the exception of differencesone another in a particular way for normal receptor acti-

vation (Chantry, 1995; Walker et al., 1998), possibly re- in the relative orientations of domain II disulfide-bonded
modules (Garrett et al., 2003). Unliganded sErbB2 isflecting a requirement for such allosterically induced

activation loop changes. This may be the process dis- unique, however, in the arrangement of its four constit-
uent domains (Figure 5). Even without a bound ligandrupted by mutations in the intracellular domain “LVI” se-

quence (residues L955-V956-I957) implicated in ErbB2 (there is no known ErbB2 ligand), the sErbB2 structure
resembles the extended configuration of sEGFR, sug-activation by homodimerization and by heterodimeri-

zation with ErbB3 (Penuel et al., 2002; Schaefer et al., gesting that it may be “autoactivated.” There is no intra-
molecular domain II/IV tether in sErbB2: three of the1999). Another possibility that we cannot exclude is that

ErbB receptor kinase activation involves the displace- seven conserved residues important for stabilizing the
tether in unactivated sErbB3 and sEGFR are differentment of inhibitory interactions that were not visualized

in this crystallographic study (Stamos et al., 2002), which in ErbB2, presumably reducing the strength of this inter-
action. Instead, the configuration of sErbB2 is domi-focused on only the kinase domain and did not include

the juxtamembrane or C-terminal regulatory regions nated by a unique interface between the two ligand
binding domains I and III, which contact one another(�200 amino acids) of EGFR (Figure 1). If the EGFR

kinase domain is truly constitutively active, however, directly in a way that appears to mimic the bridging of
these two domains by bound ligand in activated EGFRthe key event regulated by ligand-induced receptor di-

merization must be delivery of substrate to the kinase (Figure 5). The extensive and highly complementary do-
main I/III interface buries much of the ErbB2 surfacedomain active site. This could involve delivery of a di-

merization partner’s C-terminal regulatory region for that corresponds to the EGFR ligand binding sites, and
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Figure 5. The ErbB2 Extracellular Region Adopts an Extended Configuration that Resembles Ligand-Bound Activated sEGFR

(A) A ribbons representation of human sErbB2 (pdb code 1n8z) is shown (Cho et al., 2003), from which the bound trastuzumab has been
omitted. Individual domains are labeled as for other structures (red for domains I and III, green for domains II and IV). The close proximity of
domains I and III is notable, as discussed in the text. The sErbB2 dimerization loop is also clearly exposed.
(B) One-half of the sEGFR dimer model from Figure 3 is shown for comparison, referenced to the orientation of domain III in sErbB2.

would undoubtedly block the formation of any recep- constitutively display maximal activity when expressed
in cells, and that it must be overexpressed to quite hightor•ligand complex that resembles sEGFR•EGF. Fur-

thermore, several residues that play important ligand levels to cause cell transformation, suggests that ErbB2
homodimerization is rather weak. Accordingly, homodi-binding roles in EGFR are replaced in ErbB2 by residues

expected to impair ligand binding (e.g., M10, R13, and merization of sErbB2 alone may simply not be strong
enough to detect in solution. Indeed, electrostatic calcu-P15 in ErbB2) (Garrett et al., 2003). These features pro-

vide a satisfying explanation for why no ErbB2 ligand lations suggest that both the dimerization arm of sErbB2
and its docking site in domain II are quite negativelyhas ever been identified: the ErbB2 ligand binding site

is both obstructed and mutated. charged and may repel one another (Garrett et al., 2003).
The ErbB2 extracellular domain may instead be uniquelyThe finding that ErbB2 constitutively adopts an ex-

tended configuration, with its dimerization arm exposed, suited to its role as the preferred heterodimerization
partner (or coreceptor) for other ErbB receptors (Graus-suggests that ErbB2 is always poised to homodimerize

or to form heterodimers with ligand-activated forms of Porta et al., 1997; Karunagaran et al., 1996)—only being
able to form (dimerization arm-mediated) heterodimersother ErbB receptors. At first consideration, this might

explain the unique ability of ErbB2 to transform cells with other family members that have been activated by
their appropriate ligands.(and to cause cancer) when overexpressed. However,

biophysical studies have failed to detect significant
sErbB2 dimerization in solution (Ferguson et al., 2000; Hetero- versus Homodimerization of ErbB2

To achieve maximum ErbB2 autophosphorylation atHoran et al., 1995) or in crystals (where sErbB2 concen-
trations are � 10 mM) (Cho et al., 2003; Garrett et al., normal expression levels, other ErbB receptors in the

same cell must be activated (Yarden, 2001). This argues2003). Some constitutive homodimerization of intact
ErbB2 may occur in vivo, but is likely to require coopera- that ErbB2 heterooligomerizes with other ErbB recep-

tors more efficiently than it can homodimerize. More-tion of extracellular interactions with additional dimer-
ization sites that have been identified in the ErbB2 trans- over, while sErbB2 homodimerization has never been

observed in biophysical studies, there is evidence formembrane (Mendrola et al., 2002) and kinase (Penuel et
al., 2002) domains. Indeed, the fact that ErbB2 does not NRG-induced heterodimerization (albeit weak) of sErbB2
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Figure 6. Model for NRG-Induced Heterodimerization of ErbB2 and ErbB3

At left, a tethered ErbB3 monomer is depicted. Binding of NRG (red) is proposed to promote the extended configuration of ErbB3, with the
dimerization arm exposed. Extended ErbB3 is thought to form homodimers only very inefficiently. On the right are shown ErbB2 molecules,
constitutively in the extended configuration, that are thought to be primarily monomeric (although homodimerization can presumably be
driven by substantial overexpression). When NRG-bound ErbB3 molecules are present in the cell membrane, ErbB2 preferentially forms
heterooligomers with ErbB3, leading to receptor activation and mitogenic signaling (Citri et al., 2003). Additional interactions involving the
transmembrane and kinase domains may also contribute to receptor oligomerization.

with sErbB3 or sErbB4 (Ferguson et al., 2000). A similar domain II interaction surfaces that are capable of either
interacting with themselves or with ErbB2. In these cases,preference for heterodimerization is also seen for ErbB3.

NRG does not induce sErbB3 homodimerization (Cho mixtures of homodimers and heterodimers should form.
Confirmation (or otherwise) of this view awaits determi-and Leahy, 2002; Ferguson et al., 2000; Horan et al.,

1995; Landgraf and Eisenberg, 2000), yet may promote nation of the structure of a heteromeric sErbB recep-
tor complex.sErbB2/sErbB3 heteromer formation (Ferguson et al.,

2000), and certainly promotes formation of ErbB2/ErbB3
heteromers in cells (Agus et al., 2002; Citri et al., 2003). Structural Basis for Action of Therapeutic Antibodies

Directed to ErbB Receptor Extracellular RegionsErbB2/ErbB3 heteromers are considered to be the most
prevalent and mitogenically potent ErbB receptor/ligand The structural view outlined here suggests several ways

to inhibit or prevent ErbB receptor activation—an impor-complexes (Citri et al., 2003).
As seen with sEGFR (Elleman et al., 2001), exposure tant aim in current cancer research (Arteaga, 2003). So

far, all of the promising therapeutic approaches thatof the dimerization arm is not sufficient for homodimer-
ization of sErbB2 or sErbB3. For sEGFR, the correct target ErbB receptor extracellular regions are antibody

based (Arteaga, 2003; Sliwkowski et al., 1999). Human-register of several domain II dimerization sites (marked
in Figure 3) is thought to provide a self-complementary ized or chimeric antibodies raised against the extracellu-

lar regions of EGFR and of ErbB2 have shown clinicalinterface that can drive efficient homodimerization. It
seems reasonable to suggest that the equivalent sur- promise and/or value (Arteaga, 2003; Ranson and Sliw-

kowski, 2002; Sliwkowski et al., 1999). Several of thefaces of sErbB2 and extended sErbB3 lack shape (and/
or electrostatic) self-complementarity, and that this ex- anti-EGFR antibodies are in clinical trials. Some of these

inhibit EGF binding and act as antagonists, but theirplains their failure to homodimerize. If ErbB2 and ErbB3
instead present surfaces that pack well against (or com- precise epitopes and modes of action are not yet clear.

The best-known therapeutic anti-ErbB receptor anti-plement) one another, this could explain their preference
for heterodimerization. body is trastuzumab (Herceptin), which was developed

as a therapeutic option for women whose tumors over-A simple hypothesis for ligand-induced ErbB receptor
heterodimerization is depicted schematically in Figure express ErbB2 (Carter et al., 2000; Slamon et al., 2001)

and approved by the FDA in 1998. The efficacy of trastu-6 (see also Citri et al., 2003). In an unactivated cell, ErbB2
molecules are extended but predominantly monomeric. zumab requires the presence of an intact Fc region,

implying a role for antibody-dependent cellular cytotox-ErbB3 molecules are mostly tethered and monomeric.
When NRG is added, it binds to ErbB3 and promotes icity (ADCC) in its action. Trastuzumab binds strongly

to tumor cells that overexpress ErbB2. Since it containsadoption of the extended configuration. Rather than
forming homodimers, the extended ErbB3 molecules a human IgG1 Fc region, the antibody will then serve as

a “beacon” for infiltrating immune effector cells, leadingpreferentially heterodimerize with ErbB2, and a potent
mitogenic response is induced (Citri et al., 2003). Ac- to ADCC. Indeed, trastuzumab has been shown to have

very little antitumor activity in mice that lack Fc� recep-cording to this hypothesis, the extended forms of EGFR
and ErbB4, which both homodimerize efficiently and tors (Clynes et al., 2000).

The structure of the trastuzumab Fab fragment boundcan also form heterodimers with ErbB2, should possess
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to sErbB2 revealed that its epitope is toward the C termi- the crystallographic studies of the possible nature of
“preformed” ErbB receptor dimers, not discussed here,nus of domain IV (Cho et al., 2003). The trastuzumab

binding site includes the counterparts of the domain also need to be followed up. The structural information
suggests explanations for the specific biological rolesIV residues that participate in the intramolecular tether

observed in sEGFR and sErbB3. Trastuzumab actually of each ErbB receptor; in particular the coreceptor role
for ErbB2. The visualization of quite different configura-acts as a weak agonist of ErbB2 in cell culture experi-

ments (Sliwkowski et al., 1999), and does not signifi- tions for the monomeric and dimeric extracellular re-
gions has also revealed sites for targeting the bindingcantly impair the ability of ErbB2 to form heterodimers

with ErbB3 (Agus et al., 2002). It therefore seems reason- of agents that will inhibit receptor activation, and thus
provides exciting opportunities for the design of novelable to argue that trastuzumab does not block important

sites of receptor-receptor interaction. Domain IV does anticancer agents.
include, however, the cleavage site used when the ErbB2
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