
© 20
09

 LA
NDES

 B
IO

SC
IE

NCE.
 D

O N
OT D

IS
TR

IB
UTE

.

Recent evidence on the genomic integrity of non-malignant 
cells surrounding carcinoma cells has reinvigorated the discussion 
about the origin of the altered phenotype exhibited by carcinoma 
associated fibroblasts. Many hypotheses have been proposed for the 
origin of these altered cells, including standard connective tissue 
acute phase and stress response, fibroblast senescence, reciprocal 
interactions with the cancer cells, fibroblast specific somatic muta-
tions, differentiation precursors and infiltrating mesenchymal stem 
cells. Here we review the definition of CAF phenotype and the 
evidence for each of those hypotheses, in the context of our current 
understanding of cancer etiology.

Attempts have been made to reach the goal of medical art—the 
prevention and cure of disease—by many different paths. New and 
reliable opportunities have become practicable as our knowledge 
of the nature of the different diseases has widened (Nobel prize 
committee presentation speech of the 1945 award for the discovery of 
Penicillin). One recent discovery that offers an opportunity for novel 
treatments of cancer involves the cells that are adjacent to epithelial 
cancer cells, collectively termed stromal cells, and particularly for 
this review, carcinoma associated fibroblasts (CAFs).1-5 CAFs are 
different from resident fibroblasts of normal tissue in both molecular 
constitution as well as their functional impact on the neighboring 
epithelial cells. In animal models of prostate and breast cancer, non-
malignant oncogene-expressing epithelial cells can become malignant 
when surrounded by fibroblasts that are either oncogene induced, 
or derived from a primary carcinoma mass.1 Stroma encoded genes 
that may modulate the oncogenic potential of adjacent epithelia 
have been identified,2,3 some of which result from signals received 
from the tumor and some are driven by somatic events within the 
fibroblast itself. Excellent reviews have been written on the nature of 
these cells, and their effects on cancer.4-8 In this review we focus on 
the hypothetical origins of CAFs. Recent evidence shows that unlike 

cancer cells, where many changes occur via somatic mutations, 
the changes in cancer neighboring cells do not stem from somatic 
mutations.9,10 We will therefore try to consider the reason for this 
mechanistic disparity between cancer cells and their neighboring 
cells. “In describing genetic mechanisms, there is a choice between 
being inexact and incomprehensible” (Nobel prize committee presen-
tation speech of the 1965 award for the discovery of transcription 
regulation). In this review we shall try to be as inexact as conscience 
permits, in order to consider as many hypothetical mechanisms as 
possible for the emergence of CAFs. This aspect of cancer has long 
been appreciated (desmoplastic stroma11-13), and has been broadly 
associated with a poorly differentiated tumor cell phenotype and 
worse patient outcome14-17 both in terms of metastatic potential as 
well as resistance to treatment. Therefore, the origins of CAFs will 
be considered in both the patient’ body as well as from an historical 
point of view.

Two Parallel Schools in the Research of Cancer Etiology

As research tools developed to allow us to observe smaller and 
smaller scales of biological structures, it was gradually realized that 
deformation is the common denominator of a multitude of events 
in the course of malignancy. Firstly, at the tissue architecture cellular 
scale in the way cells align relative to neighbors to form tissues, and 
migrating cells such as inflammatory cells infiltrate the tissue, in the 
cellular and nuclear morphology and, as noticed by Bovery,18 in the 
molecular scale of genomic integrity. The cause and effect relation-
ship between the molecular genomic level and that of the cellular 
level fits the paradigm of nature versus nurture conflict of perspec-
tives, and not surprisingly is the focus of substantial debate that 
perpetuates along the history of cancer research.

Genomic Deformation

While the clinical and practical definition of the cancer is 
morphological, most cancer researchers believe, in spite of opposi-
tion,19 that cancer is the outcome of DNA-mutational events.20 The 
DNA-centered view of cancer etiology begins with the discovery 
that cancer cells carry chromosomal imbalance,18 that chromosomes 
carry our heritable material,21 that DNA therein is the molecule of 
heredity,22 and that somatic DNA changes occur in and modulate 
the behavior of cancer cells.23,24 It is hard to strictly apply Koch’s 
postulates to the etiology of cancer; while organisms with inherited 
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oncogenic mutations often develop into cancer prone individuals, 
the mere viability of these mutants suggests that cancer is a complex 
multigenic syndrome. Single oncogene-transformed cells still require 
additional changes in order to exhibit the phenotype of full blown 
cancer.25,26 Correlating with this, the majority of cells from prema-
lignant human tissues already harbor multiple mutations27,28 in that 
precursor state. Nevertheless, in a broader sense the DNA-centered 
view of cancer fulfils all Koch’s postulates. Mutations found in cancer 
have been successfully isolated from a diseased organism,24,29,30 
have been shown to cause disease when introduced into a healthy 
organism,31,32 and usually the sustainable presence of these muta-
tions is necessary for maintenance of the disease state.33,34 Thus, 
with some exceptions, re-deriving the mutation from the disease 
state is possible at any stage of the disease. The phenotype of a 
cancer cell involves multiple incremental changes35 that accumulate 
in an escalating manner through extensive in vivo selection25,36,37 
and evolutionary dynamics.38-40 Furthermore, the one-gene-one-
function paradigm is systematically substituted with models where 
multiple gene products regulate a single phenotype, and single hits 
in any of those independent loci can give rise to the same outcome. 
Consequently, cancer causing mutations, from an etiological point of 
view, may be better categorized into pathways. If so, then even the 
first of Koch’s postulates, i.e., that the oncogenic mutations must be 
found in all individuals suffering from the disease is fulfilled if you 
collate them into pathway groups. Indeed this is the case for canon-
ical pathways, such as RAS and PI3K, where any given mutation is 
present in an average of 5% of the patients, and yet those pathways 
are deregulated in almost all cases.26,41 A bigger discrepancy with 
Koch’s postulates is the finding that many premalignant conditions 
carry such mutations, somehow without the full blown disease.42-45 
Extrinsic control of tumorigenesis and progression, which likely 
affect the genomic integrity indirectly via the selective pressure that 
premalignant cells are exposed to could therefore demark the prema-
lignant to malignant transition.19,46,47

Cellular Deformation

The first notion of stromal control of cancer comes from the 
microscopic observation of Virchow that there is a strong association 
between morphological features of wounded tissue and inflam-
mation and cancer (elevated levels of infiltrating inflammatory 
and immune cells).48,49 Inflammation is also associated with an 
elevated risk of cancer.49-52 In addition, by examining more than 
900 autopsy records of patients with different primary tumors, Paget 
documented a non-random pattern of metastasis to visceral organs 
and was struck by the discrepancy between the relative blood supply 
and the frequency of metastases in certain organs, such as breast and 
prostate cancer spread to bones. This lead him to suggest what is now 
termed the “seed and soil” hypothesis, which assigns a role for both 
cancer and stromal cells in the establishment of distant metastasis, 
and consequently organ specific metastatic destiny preference.53,54 
In 1951, it was shown that skin irritation by carcinogen increased 
the efficiency of carcinogen-unexposed epithelial cell transforma-
tion.55 Even in the context of cells expressing an activated oncogene, 
tumor formation still depended on wounding.56,57 This suggested 
that carcinogenesis is reliant on higher order cell-cell interactions 
rather than on a simple cell autonomous DNA damage phenomena 
as suggested by Ames and colleagues.58

Integrating the Two Levels of Deformation in Cancer

Normal solid tissue is composed of multiple cell lineages, such as 
endothelial cells which constitute blood vessel walls, epithelial cells 
that make up body surfaces and provide glandular functions, and 
fibroblasts which comprise and direct the maintenance of connec-
tive tissue and the extracellular matrix. Between these major cell 
lineages, there is a dense protein barrier called basement membrane. 
To ensure that the basement membrane is properly positioned at the 
interface, heterotypic interactions between those cell lineages induce 
the mutual deposition of basement membrane components, laminins 
or collagens, by the epithelial or fibroblast cells, respectively. This 
barrier not only demarks the location of cells according to lineage 
commitment, but also plays a critical role in coordinating the func-
tions, life span and behavior of the cells mainly through molecular 
attachment. As a result of this symbiotic mutual dependence of 
metazoan cells, the overall function of the organism depends on 
proper ratios and relative positioning of different cell types in the 
space of tissues. This remarkably complex tissue structure is achieved 
by a coordinate choreography, during which cells propagate and 
acquire identity concomitantly in response to their tissue location 
(Spemann-Mangold organizer effect as paradigm).59-61 Perturbation 
to this morphological homeostasis, and the basement membrane in 
particular, either via mechanical injury or enzymatic degradation, 
induces a response generally termed as wound healing or inflam-
mation. The desired outcome of this homeostatic response is the 
recovery of proper tissue structure and function. A malignant cell 
that invades and destroys this barrier violates this vital tissue archi-
tecture and morphological equilibrium and elicits a perpetual wound 
healing response in the cancer microenvironment.62 In the context 
of malignancy, the wound healing response turns the invaded stroma 
from harmless boundary into an active tumor promoter.

Evolutionary Context for Cancer Promotion by Spontaneous 
Inflammatory Reaction

“Everywhere in nature we observe adaptations to the finest 
degree one can think of” (Schroedinger, 1998). It therefore seems 
counterintuitive that an unaltered healthy stroma would respond to 
the cancer in a manner that ameliorates the pathology and become 
an accomplice by spontaneous response, without a change in the 
stromal cells themselves. Yet, spontaneous cross talk between epithe-
lial and stromal cells induces the expression of genes in both the 
stroma and cancer cells.63-71 These genes include classical cancer 
stroma markers that reportedly may promote oncogenic potential of 
adjacent epithelia.2,3,72-74 This is possibly due to the late presentation 
with carcinoma disease in human life span. Diseases that present in 
individuals at post reproductive age, are not expected to be selected 
against in human evolution.75 By contrast, inflammation, which 
is an acute response to infection provides evolutionary advantage 
at reproductive age. Since recovery of the epithelial cell function 
is critical to wound healing, inflammation activates proto-onco-
genes,76 increases genomic instability, via oxidative radicals52,77 and 
protects oncogene-transformed epithelial cells from apoptosis.50,51,78 
Considering the microevolution of cancer cells via somatic altera-
tions, at the rate of somatic mutations observed in normal cells, 
it is difficult to envisage how cancer cells get to accumulate their 
typical havoc genome damage. It therefore follows that events 
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The Reciprocal Interactions Model of CAFs

In the cancer epithelial cell-centered model for carcinogenesis, 
CAFs are merely an inevitable response to the cancer causing muta-
tions and are fundamentally no different from normal fibroblasts 
(as part of the inflammatory reaction described above).115-118 The 
fibroblast response is hardwired in the genome as part of the cancer’s 
resemblance to a chronic wound, aiming at support of epithelial cell 
survival and expansion.119-128 In addition to parsimony, this hypoth-
esis offers clear predictions to scientifically test against corresponding 
null hypotheses; (1) That co-culture of cancer cells with normal 
fibroblasts will induce expression of CAF-specific genes in the fibro-
blasts,63-71 (2) that wounded fibroblasts should promote cancer in 
a way that is indistinguishable from CAFs,129 and (3) that normal 
fibroblasts can transform into CAFs via co-cultivation with cancer 
cells in vivo for extended period of time (our unpublished work does 
not provide evidence for this prediction). Gene expression profiling 
of tumor-stromal interactions between co-cultured cancer cells and 
stromal fibroblasts have previously been performed for cancer cells 
with the corresponding organ-specific fibroblasts.63-71 Many of the 
genes shown to be activated in these co-cultures are known markers 
of CAFs in vivo, such as MMP1, MMP3, collagens, TNC, etc. 
Evidence that this reciprocal interaction promotes cancer includes 
the anti-cancer effect of Imatinib, on carcinoma animal models. It 
was shown that inhibition of the PDGFRB in cancer stroma leads to 
attenuated bFGF signaling, and consequent attenuation of the carci-
noma.130 However, many of the genes that are elevated in CAFs do 
not undergo a change of expression in co-cultures. It is possible that 
some other cells in the tumor microenvironment and missing in the 
co-cultures, such as tumor associated macrophages, play a key role in 
regulating the phenotype of CAFs. Alternatively, some other aspect 
of the CAF-origin is not recapitulated by co-culture experiments.

The Mutational Model of CAFs

The impressive progress in the identification and characteriza-
tion of tumor-causing mutations in oncogenes or tumor suppressor 
genes has in a sense indoctrinated our thinking about the underlying 
molecular basis of alterations in cell behavior.26,35,131 Following the 
success with genome analysis of the cancer cell itself, it was only 
natural to use the same hypotheses for the exploration of all aspects 
of cancer, including the cancer microenvironment. Molecular genetic 
studies in breast cancer have reported somatic mutations in TP53 and 
PTEN as well as gene copy number alteration at other loci in adja-
cent stroma91,93,132 suggesting that much of the tumor promoting 
activity of stromal cells may be mutation based. The co-existence of 
mutations in two (or more) cell lineages, was initially claimed to be 
the product of sequential mutagenesis, where the oncogenic muta-
tions occurred in the cancer cell first, and then in the consequent 
host infiltrate, as an inevitable outcome.20 It was also suggested that 
multiple cell lineages concomitantly incur somatic mutations that 
favored cancer promoting symbiotic relationships between the cancer 
cell and the adjacent supporting connective tissue.99 However, this 
concept is still contentious.133 Considering the potential increased 
mutation rate in inflamed microenvironment, it is possible that the 
resident stromal cells could accumulate a random set of mutations. 
On the other hand, the classical working hypotheses on carcinogenesis 
assumes the mutation rate is affected by overall rate of  proliferation, 

early in premalignant conditions79 lead to an intrinsic increase in 
mutation rate, as well as loss of mechanisms that monitor genomic 
integrity and control the appropriate cellular response, such as DNA 
repair or cell death. Since inflammation accelerates almost all of the 
milestones of cancer progression, it follows that chronic inflamma-
tion is linked with increased risk of a few different cancer types. We 
consider the CAFs as part of these cancer microenvironment changes 
that occur in tissue lesions and serve as precursors for malignant 
disease. Several hypotheses have been presented for the origin of 
these altered cells, including standard connective tissue acute phase 
and stress response,55,80,81 and fibroblast senescence,82-85 reciprocal 
interactions with the cancer cells,5,20,86-90 fibroblast specific somatic 
mutations,91-95 differentiation precursors and infiltrating mesen-
chymal stem cell.96,97

Connective Tissue Acute Phase and Stress Response Model  
of CAFs

The first investigation of the role of altered stroma in cancer 
etiology was reported as early as 1951 where transplanted carcinogen 
(methylachollantrene)-treated skin mesenchymal cells were shown to 
induce an increased incidence of skin carcinoma. While these early 
experiments did not have methodologies to exclude the possibility 
that the cancers arose from contaminating epithelial cells, they 
nevertheless raised the compelling hypothesis that carcinogens affect 
tumor stroma, which then plays an initiator role in cancer etiology. 
More recently, this experiment was reproduced in rats for breast 
cancer,81 however, again, the data lacks definitive proof that the 
malignancy is not a product of direct mutagenesis of epithelial cells 
contaminating the stromal adaptive transfer. It is also not clear if the 
cancer promotion was due to carcinogen induced somatic mutations 
or simply stress-related alterations in gene expression.80,98,99

The Fibroblast Senescence Model of CAFs

One of the prime barriers to oncogenic transformation is the 
limited license to proliferate in vitro that differentiated somatic cells 
exhibit, which means that by enlarge, elevated proliferation is unsus-
tainable.100-105 Cancer usurps this barrier by various intracellular 
mechanisms, but on the level of cancer microenvironment, senes-
cence may also promote cancer.106-108 The linear increase in cancer 
incidence with age fits the model of cumulative somatic mutations 
for cancer etiology109-112 but other contributions of age are possible. 
In particular, age is correlated with generalized chronic increase in 
tissue inflammation.49,50,85,107,113,114 Since senescent fibroblasts 
spontaneously express a host of inflammatory cytokines linked 
with cancer promotion85 it has been proposed that normal fibro-
blasts of aging individuals play an initiating role in cancer etiology 
through an inherent CAF phenotype.114 The majority of reports 
for CAFs however record that CAFs promote cancer to a greater 
extent than fibroblasts derived from distant tissue within the same 
patient, suggesting that CAFs arise from further biological events. 
Additionally, expression profiles of senescent fibroblasts partially, 
but not completely phenocopy the expression signatures of CAFs. 
Nevertheless, since proliferation accelerates senescence, it is possible 
that moderate increase in local mitogenic signals to the fibroblasts 
within cancer microenvironment (see next model), contribute 
to specific accumulation of senescent fibroblasts within cancer  
microenvironment beyond the normal tissues of the patient.
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Unfortunately, these experiments were not performed side-by-side 
with CAFs and normal fibroblasts from the same individuals. Since 
the activity of precursor cells is defined by in vitro colony forming 
capacity, it is hard to predict the expected result in the case that 
these cells are indeed the source of CAFs in cancer tissue. The simple 
prediction would be that a large fraction of the fibroblastic cell 
population in tumors would be progeny of mesenchymal precursor 
cells that migrated from an external body pool. While some evidence 
suggest this indeed is the case,138 using βGal+ ROSA 26 bone 
marrow—derived mesenchymal cells we only observed small numbers 
of such progeny in tumor cross sections (manuscript in preparation). 
Precursor cells may convey tissue regeneration by coordinating the 
proliferation and migration of other cells, and play a critical role in 
the process, without contributing a large fraction of the ultimate cell 
numbers. In fact, in the case of tumor vasculature it was observed 
that endothelial precursor cells only produce a small fraction of 
progeny cells that are recognized within tumor vasculature, yet their 
infiltration into tumors is critical for the overall formation of tumor 
vasculature.139 Whilst this is a plausible model, there is no evidence 
for this model to date. Another source of differentiation intermediates 
potentially contributing to CAF activity may be from tissue pericytes. 
These peri-vascular cells share a large number of cell markers with 
CAFs including PDGFRB, Thy-1 and NG2. In tumors however, 
these markers are not restricted to the peri-vascular position as they 
are in normal tissues.140 Evidence supporting the link between peri-
cytes and CAF-like cancer support comes from analysis of the effect 
of STI-571 in mouse carcinoma models.130 While these models are 
compelling, the ultimate validation would come from animal model 
experiments where adaptive transfer of mesenchymal precursor, either 
from the bone or normal tissue, could be assayed for the capacity to 
promote cancer growth as compared to original CAFs.

Concluding Remarks

It is important to note that the models described in this review 
are not mutually exclusive, both across different patients, as well as 
across different fibroblastic cells in any given tissue since cell marker 
studies indicate that fibroblasts are quite heterogeneous.140 The 
heterogeneity of the tissue fibroblasts is critical, since the biological 
activity that CAFs convey onto to cancer has not been purified to 
homogeneity, nor is there an assessment of the specific activity for 
these assays, i.e., how many of the fibroblasts deliver the functional 
effect, in the background of irrelevant fibroblast cells. Thus, either 
of those populations could be responsible for the observed support 
of cancer, in addition to expressing distinct sets of gene products. 
This also means that the tumor stromal cells that promote cancer in 
the animal assays for CAFs may in fact carry a unique set of somatic 
mutations, which were obscured by the diploid genome of the 
majority of the stromal fibroblasts, which may be viewed as innocent 
bystanders. However, this possibility cannot explain the previous 
publications claiming accumulation of mutations in the bulk carci-
noma fibroblasts, nor can this possibility be addressed until the cells 
that promote cancer are further purified to homogeneity.
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which would be orders of magnitude lower in the stromal cells 
compared to the cancer cells. It was nevertheless exciting to see that 
somatic alterations were consistently observed at a high frequency 
(>30%) in tumor juxtaposed fibroblasts suggesting that these were 
the underlying molecular basis for the sustained cancer promoting 
attributes of CAFs.91,93 Unfortunately, technical aspects of this body 
of work raised serious doubt as to whether these apparently frequent 
somatic mutations were genuine.134 Our own studies have revealed 
only a single loss of heterozygosity event on chromosome 22 in one 
CAF population among 35 breast and ovarian cancers. Our data and 
the consensus of molecular genetic studies of CAFs where technical 
artifacts were avoided is that somatic alterations in clonal populations 
of CAFs are at best exceedingly rare.9,10

Hypothetically, the idea of co-evolution of two cell lineages in the 
body that carry independent somatic mutations is not implausible. 
An altered fibroblast that somehow entices the neighboring epithelia 
to secrete a support signal for other fibroblasts would be expected to 
consequently expand further. The altered fibroblast might propagate 
more rapidly than distant normal fibroblast counterparts since it is 
the source of the supporting environment and the effect might be 
expected to be much localized. However, in such scenario, unaltered 
fibroblasts immediately adjacent to this altered fibroblast are expected 
to expand at a similar rate in a manner reminiscent to satellite bacte-
rial colonies that emerge in selective bacterial culture if the ampicillin 
selection was extended so long that the secreted β-lactamase fully 
eliminated the ampicillin in the vicinity of a resistant colony. This 
model predicts that if CAF mutations existed they would generate 
clonal expansion in the midst of unaltered bystander normal fibro-
blasts and they would not reach homogeneity of mutant cells. This 
means that even if a mutant fibroblast that promotes cancer was to 
benefit from this mutation directly, it might not be detectable with 
current technologies. If this co-evolution model of CAF mutations 
is correct, one would still expect to observe evidence for fibroblast 
proliferation which would be needed to drive the clonal expansion. 
However, Ki67 and PCNA staining of tumor sections invariably 
failed to detect proliferating fibroblasts. Similarly, in instances where 
immunohistochemistry is capable of detecting mutant proteins, such 
as p53, the signal is invariably centered on the cancer cells. Of course, 
speckled signal is sometimes observed for the stroma, but not neces-
sarily above background. Overall, any model which incorporates 
somatic mutations in CAFs is not supported by empirical data and in 
our view is not a tenable explanation for the CAF phenotype.

Differentiation Intermediates and Mesenchymal Precursors 
Model of CAFs

The comparison between cancer and wounds62 is based on the fact 
that both tissue regeneration and carcinogenesis involve cell prolifera-
tion, survival and migration that are controlled by growth factors and 
cytokines as well as inflammatory and angiogenic signals. In partic-
ular, tissue injury leads to acute recruitment of immune cell infiltrates, 
which are early markers of basement membrane breakdown, followed 
by more sustainable fibrosis.135,136 Whereas it is possible that this 
fibrosis results from responses in local fibroblasts, mesenchymal 
precursors are also known to be recruited to injured tissue,137 as well 
as cancer.138 Most compellingly, knee aspirate-derived human mesen-
chymal stem cells were shown to support not only primary cancer 
growth,97 but most importantly overall breast cancer metastasis. 
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