
Cell Cycle 9:9, 1706-1710; May 1, 2010; © 2010 Landes Bioscience

 Extra ViEw

1706 Cell Cycle Volume 9 issue 9

Key words: p53, cancer cell metabolism, 
GAMT, creatine metabolism, fatty acid 
oxidation

Submitted: 02/05/10

Accepted: 02/10/10

Previously published online: 
www.landesbioscience.com/journals/cc/
article/11473

*Correspondence to: Sam W. Lee; 
Email: swlee@partners.org

The p53 protein functions to prevent 
tumor development by restricting 

proliferation, motility and survival of 
abnormal or stressed cells. In addition to 
well-established roles, recent discoveries 
indicate a role for p53 in the regulation 
of pathways involved in energy metabo-
lism. The metabolic functions of p53 
can inhibit the shift to glycolysis that 
is characteristically seen in cancer cells, 
while favoring the energy production by 
mitochondrial oxidative phosphoryla-
tion. Identification of guanidinoacetate 
methyltransferase (GAMT) as a new p53 
target connects p53 to creatine metabo-
lism critical in the regulation of ATP 
homeostasis. The involvement of GAMT 
in both genotoxic and metabolic stress-
induced apoptosis, as well as the require-
ment of p53-dependent upregulation of 
GAMT in glucose starvation-mediated 
fatty acid oxidation (FAO), demonstrate a 
further role of p53 in coordinating stress 
response with changes in cellular metab-
olism. Such activities of p53 would help 
to bring a better understanding of how 
cancer cells acquire unique metabolic 
features to maintain their own survival 
and proliferation, and might provide 
interesting clues toward the development 
of novel therapies.

Introduction

Since its discovery 30 years ago, the p53 
protein has emerged as a key tumor sup-
pressor protein, and beyond doubt, a cru-
cial player in cancer biology. p53 invokes 
its tumor-suppressive ability by acting as 

a mediator of various kinds of stress, such 
as DNA damage, oxidative stress and 
oncogene activation.1 Through its activ-
ity as a transcription factor, p53 regulates 
the expression of various target genes to 
prevent tumor development, mainly by 
inducing cell cycle arrest and DNA repair 
or triggering cell death and senescence to 
maintain genomic stability.2-6 Under mild 
or transient stress conditions, activated p53 
targets several genes involved in cell cycle 
arrest and DNA repair to stop cells from 
proliferating and allow repair of any dam-
aged DNA, preventing potentially onco-
genic mutations from being passed on to 
the daughter cells. However, when stress-
induced DNA damage is too severe to be 
reparable, p53 initiates programmed cell 
death/apoptosis and cellular senescence 
to eliminate or permanently arrest cells, 
respectively, that may have acquired irrepa-
rable and potentially oncogenic mutations. 
Relevantly, the human p53 gene (TP53) is 
frequently mutated or inactivated in more 
than 50% of human cancers of different 
types.7 Furthermore, mice with a p53 gene 
(Trp53) deletion can develop normally 
but develop cancer before the age of 6 
months.8 Thus, the importance of p53 
in the inhibition of tumor development 
is indisputable; however, the function of 
p53 is far from simplicity. To date, emerg-
ing evidence indicates that p53 is involved 
in numerous pathways and is capable of 
much broader cellular functions, rang-
ing from fertility, development and aging 
to energy metabolism and autophagy.9-14 
Furthermore, it is clear that the activity 
of p53 by modulating metabolic pathways 
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cells that lack functional p53 show lower 
oxygen consumption by mitochondrial 
respiration and a shift to glycolysis for the 
production of energy.

p53 has been further implicated in 
metabolic control through its commu-
nication with two key regulatory fac-
tors, AMPK (AMP-activated protein 
kinase) and mTOR (mammalian tar-
get of rapamycin).25,26 Reduced nutrient 
or energy levels result in the activation 
of AMPK and failure to stimulate the 
AKT-mTOR pathway, both of which can 
induce p53, leading to enhanced macroau-
tophagy and fatty acid oxidation.27,28 The 
aforementioned p53 regulation of energy 
metabolism is merely a subset among the 
various aspects of metabolism that p53 
can regulate, and without a doubt, this 
complex network of p53 will have more 
additions.

p53 and Creatine Metabolism

The creatine-phosphocreatine system 
plays an important role in phosphate-
bound energy storage and transmission. 
The reversible phosphorylation of cre-
atine by creatine kinase with ATP/ADP 
provides a high-energy phosphate buffer-
ing system.29 This system is essential in 
cells and tissues with high and fluctuat-
ing energy demands. Creatine is synthe-
sized in a two-step mechanism by two 
enzymes: AGAT (arginine:glycine amidi-
notransferase) and GAMT (guanidinoac-
etate methyltransferase). AGAT, primarily 
expressed in the kidney and pancreas, 
catalyzes the first biosynthetic step of 
creatine by taking glycine and arginine 
to produce ornithine and GAA (guanidi-
noacetate). Subsequently, GAA enters the 
blood stream to reach the liver where it is 
methylated by GAMT to yield creatine. 
Creatine is then exported back into the 
blood stream to be taken up by tissues 
requiring creatine, such as muscle, brain 
and heart, through active creatine trans-
porters. Loss of GAMT causes a creatine 
deficiency syndrome, first described in 
1994, that is characterized by developmen-
tal delay, mental retardation, neurological 
and motor dysfunction.30-34 Aside from the 
more commonly known function and dis-
orders of creatine metabolism, other roles 
of creatine metabolism exist. Since creatine 

widely used in diagnosing human solid 
tumors using  fluorodeoxyglucose posi-
tron emission tomography (FDG-PET) to 
detect the much higher uptake of glucose 
by the tumor than the adjacent normal 
tissues. In addition, an increasing under-
standing of the molecular mechanisms 
that control metabolism highlights the 
realization that metabolic transformation 
can have an essential role in maintaining 
tumorigenic state.

Role of p53 between Glycolytic 
and Respiratory Pathways

Recent studies have demonstrated the 
ability of p53 in the regulation of both 
glycolysis and oxidative phosphorylation, 
consequently contributing to prevent the 
increase in glycolysis that is character-
istic of cancers. p53 can reduce glucose 
uptake into the cells through inhibiting 
the expression of glucose transporters 
GLUT1 and GLUT4 as the first defense.19 
Glucose uptake is further limited by p53’s 
regulation of NFκB pathway.20 Expression 
of p53 can restrict the activity of IκB 
kinase-α (IKKα) and IKKβ, thereby 
leading to a reduction in NFκB activity 
and decreased expression of GLUT3. p53 
can also repress the levels of PGM (phos-
phoglycerate mutase), which acts at the 
later stages of the glycolytic cascade,21 and 
TIGAR (TP53-induced glycolysis and 
apoptosis regulator), which functions to 
direct glucose to an alternative pathway, 
the pentose phosphate pathway (PPP).22 
Loss of p53 is associated with increased 
PGM and decreased TIGAR expression, 
which can enhance glycolysis and the 
Warburg effect.

The modulation of glycolytic rate by 
p53 is paralleled by the ability of p53 to 
help maintain mitochondrial function 
and promote oxidative phosphorylation. 
SCO2 (synthesis of cytochrome oxidase 
2), a target gene of p53, regulates the 
cytochrome c oxidase complex, which is 
essential for mitochondrial respiration and 
utilization of oxygen to produce energy 
(ATP).23 Another p53 target gene AIF 
(apoptosis-inducing factor) plays a role 
in regulating various cell death pathways 
and, as an oxidoreductase, is a key factor 
in maintaining the integrity of complex 1 
in the electron transport chain.24 Thus, 

will have consequences beyond cancer, 
influencing various other aspects of dis-
ease and longevity.

Cancer Cell Metabolism

Rapid cell growth and proliferation are 
representative features of tumor cells. 
Consequently, tumor cells need ample 
amount of energy to generate macromol-
ecules (DNA, RNA, proteins and lipids) 
necessary for cell proliferation. To ful-
fill such demand for energy, tumor cells 
undergo modifications in cellular metabo-
lism and metabolic adaptation to support 
its enhanced cell growth and proliferation 
and to survive periods of metabolic stress 
and maintain viability. Among various 
nutrients, glucose is the primary energy 
source for most normal cells. Under con-
ditions of normal oxygen level, glucose is 
metabolized via mitochondrial oxidative 
phosphorylation to efficiently generate 
32 molecules of ATP per one molecule 
of glucose. However, when oxygen level 
is low, mitochondrial function is sup-
pressed and normal cells undergo anaero-
bic glycolysis to produce only a fraction 
of the maximum energy from glucose  
(two molecules of ATP per one molecule 
of glucose). Thus, normal cells would not 
use this less efficient pathway to produce 
energy under aerobic conditions. On the 
contrary, tumor cells, which require sub-
stantial amount of energy, preferentially 
utilize the less efficient glycolytic path-
way even though sufficient level of oxy-
gen is available (also known as “aerobic 
glycolysis”). This striking discovery was 
first documented by Otto Warburg in the 
1920s when he observed that liver can-
cer cells, compared to normal liver cells, 
displayed an increase in glycolytic activ-
ity despite the presence of oxygen.15 He 
further hypothesized that this increase 
in aerobic glycolysis is due to mitochon-
drial dysfunction and may be the prime 
cause of cancer.16 Whether this metabolic 
shift in glucose metabolism from oxida-
tive phosphorylation to aerobic glycolysis 
is the origin of cancer or a consequence of 
tumorigenesis, this phenomenon, termed 
the “Warburg effect,” has been reported 
in most cancers and is recognized as a key 
metabolic hallmark of virtually all cancer 
cells.17,18 This metabolic change is now 
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containing region of low oxygen and low 
glucose. When glucose is not available, 
FAO is reported to be the first alternate 
pathway used by most tissues to generate 
energy.56,57 Our results show that increased 
FAO ensues and that this requires p53 
and GAMT in response to glucose depri-
vation.45 Further examinations reveal 
that creatine increases phosphorylation 
of AMPK and ACC (acetyl-CoA car-
boxylase), indicating that FAO has been 
switched on. Moreover, similar evidence 
came from the observation that increased 
FAO in liver occurs upon starvation of 
wild-type but not p53 deficient animals, 
and p53 deficient animals have gener-
ally lower levels of liver FAO than their 
wild-type counterparts, indicating p53 
in energy maintenance by FAO path-
way. FAO connects to Krebs cycle by 
converting Acyl-CoA to Acetyl-CoA 
and contributes to maintaining oxidative 
phosphorylation, and increased FAO can 
inhibit glycolysis.58 Thus, p53-GAMT 
regulation of FAO may function to keep 
the balance between glycolytic and respi-
ratory pathway to oppose the metabolic 
shift (Warburg effect) in tumorigenic 
state (Fig. 1).

Concluding Remarks

In summary, p53 can communicate with 
creatine biosynthetic and FAO pathways 
through its target gene GAMT to regu-
late energy metabolism. It still remains a 
challenge to understand when and how 
each of the p53 metabolic target genes or 
outcomes is all coordinated. Metabolic 
changes are emerging as key contributors 
to malignant progression and most cancer 
cells show the characteristic increase in 
aerobic glycolysis known as the Warburg 
effect. Better understanding of p53 and 
its targets in energy metabolism may hold 
the key to effective therapeutic approaches 
against cancer and metabolism-related 
diseases.
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in an increase in intracellular ROS level 
that is inhibited by creatine circuit inhibi-
tor, and creatine treated cells produced an 
increase in intracellular ROS level. These 
findings suggest a new role for GAMT 
and creatine metabolism in p53-depen-
dent apoptosis. Since some reports have 
also shown anticancer effects of creatine 
by leading to the increased formation of 
nitric oxide,48 emerging possibility impli-
cates that p53-creatine metabolic path-
way might function as tumor suppressing 
mechanism, although further examina-
tions are required.

Altered Lipid Metabolism in  
Cancer Cells

Although the Warburg effect has been 
recognized for 90 years, alterations in 
lipid metabolism are less well appreciated. 
Several studies reveal that many tumors 
have high rates of de novo fatty acid bio-
synthesis regardless of the concentration 
of extra cellular lipids, which primarily 
reflects dietary fats.49-51 Fatty acid syn-
thase (FASN) and the enzymatic activity 
of ATP citrate lyase are increased to sup-
port the synthesis of fatty acids.52 FASN 
is a lipogenic enzyme which catalyzes 
the de novo synthesis of long-chain fatty 
acids from acetyl-CoA, malonyl-CoA and 
NADPH precursors and is overexpressed 
in several human cancers.53 It is reported 
that PI3K/Akt pathway stimulates fatty 
acid synthesis via activation of ATP cit-
rate lyase and inhibition of fatty acid 
oxidation (FAO) via reduced expression 
of CPT1 (carnitine palmitoyltransferase 
1). CPT1, which catalyzes the transport 
of long-chain fatty acids into mitochon-
dria for FAO, is recently reported to be 
decreased in human cancer specimens.54 
Furthermore, mouse mammary carci-
noma models and human primary breast 
cancer often show diminished expres-
sion of DecR1 (2,4-dienoyl-coenzyme 
A reductase), another enzyme involved 
in FAO. More importantly as well, ecto-
pic expression of DecR1 reduced tumor 
growth and decreased de novo fatty acid 
synthesis,55 providing the therapeutic 
potential of targeting tumor cell fatty acid 
synthesis.

The tumor microenvironment is spa-
tially and temporally heterogeneous, 

metabolism is intimately connected with 
ATP homeostasis and tumor cells have 
high demand for ATP, the role of creatine 
metabolism in cancer cells is conceivable 
and may be of importance. In fact, the 
association between creatine metabolism 
and cancer has long been reported in 
the literature.35-42 However, when levels 
of creatine content and creatine kinase 
activity were examined in malignant cells 
and tumor-bearing animals, the results 
are somewhat inconsistent. Some reports 
show increased creatine content and ele-
vated creatine kinase activity in various 
human carcinoma tissues,35,36,38,42 while 
some show downregulation of the creatine 
kinase system in malignant tissues and 
tumor-bearing mice.37,39,41,43 It is possible 
that the specific role of creatine shuttle 
in cancer is tissue and isoform specific, as 
several tissue-related isoforms of creatine 
kinase exist: muscle, mitochondrial and 
brain creatine kinase.

In connection with p53 and creatine 
metabolic pathway, mouse p53 has been 
reported to repress the expression of rat 
brain creatine kinase but activate the rat 
muscle creatine kinase gene, although it 
is unclear of how p53 and creatine kinase 
function in cell metabolism.44 Recently, 
GAMT was identified as a novel p53 target, 
demonstrating another metabolic pathway, 
namely creatine metabolism, by which p53 
can control to adapt to metabolic stress.45 
Overexpression of p53 or inducing p53 by 
etoposide treatment leads to an increase in 
creatine level that is reduced upon abla-
tion of GAMT. Moreover, depletion of 
creatine by treating cells with creatine 
circuit inhibitor produces less etoposide-
mediated apoptosis. In response to glucose 
deprivation, GAMT is induced in a p53-
dependent manner, and levels of GAMT 
and creatine are increased in several tissues 
of nutrient-deprived p53 wild-type mice 
while remaining unchanged in the same 
tissues of p53 null mice. GAMT ablation 
also reduces glucose depletion-induced 
apoptosis, demonstrating that GAMT is 
not only involved in p53-dependent apop-
tosis in response to genotoxic stress but is 
important for apoptosis induced by nutri-
ent starvation. It is well established that 
increased level of reactive oxygen species 
(ROS) can initiate apoptotic pathway.46,47 
Therefore, etoposide treated cells result 
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