Metabolic Presbyacusis: Longitudinal Changes in Hearing for Middle-Aged and Older Adults
Kenneth I. Vaden, Mark A. Eckert, Lois J. Matthews, Judy R. Dubno
Department of Otolaryngology-Head and Neck Surgery
Medical University of South Carolina, Charleston, SC

Introduction
Four distinct phenotypes of age-related hearing loss observed in animal models have been characterized in audiograms from older humans (Dubno et al., 2013; Schmiedt, 2010).

- Older-Normal Hearing.
- Metabolic Presbyacusis (related to cochlear lateral wall deterioration and reduced endocochlear potential).
- Sensory Presbyacusis (damage to sensory and non-sensory cells, loss of cochlear amplifier and nonlinearities).
- Metabolic + Sensory (combined effects of metabolic and sensory loss).

Demographic information (i.e., age, sex, noise exposure history) was used to validate the four phenotypes in cross-sectional audiogram data. Metabolic phenotypes were older, more likely to be female, and less likely to have a positive noise history (Dubno et al., 2013).

The current study used longitudinal audiogram data to determine if the likelihood of metabolic phenotypes increases with age.

Method
Audiograms. Audiograms were collected longitudinally from adults 50-90 years old (N=343; 1987-2015) and averaged by clusters of visits (3+ per year) to produce 1,826 mean audiograms (M=2.7 ear).

Classification of audiograms. Quadratic Discriminant Analysis (QDA) was performed to classify audiograms, based on the similarity of each to 897 expert-labeled cases (training data; Dubno et al., 2013).

Phenotype distributions
Curve parameters (e.g., intercept, slope) for the shape of each audiogram were input to QDA.

Cross-validation tests showed optimal accuracy (80%) with five curve parameters.

Results: Stable and Changing Phenotypes
Stable phenotypes. Audiometric phenotypes did not change for most ears (82%), although thresholds increased with age (Echt et al., 2010; Lee et al., 2005). A majority of right/left ears (90%) had the same phenotype across all time points.

Changing phenotypes. Most of these cases transitioned to Metabolic (22%) or Metabolic + Sensory (54%). Sensory and Metabolic cases that transitioned to Metabolic + Sensory demonstrated patterns of threshold change that were similar to stable Metabolic cases.

Results: Transitional Probabilities
Initial and final phenotypes were counted for all 686 ears to calculate the likelihood of changing to another phenotype.

Conclusions
Analysis of audiograms obtained longitudinally from middle-aged and older adults further validated classifications of phenotypes of age-related hearing loss.

A majority of ears showed stable phenotypes over time, even while hearing loss was increasing. The stable Metabolic and Metabolic + Sensory cases were older, on average, than other phenotype cases.

The remainder showed changes in phenotypes with increasing age, with the most common change to metabolic phenotypes.

These results are consistent with the conclusion that the likelihood of metabolic phenotypes increases with age in older adulthood.

References

Acknowledgements
This work was supported by the National Institutes of Health / National Institute on Deafness and Other Communication Disorders (P50 DC 004492) and South Carolina Clinical and Translational Research (SCCTR) Institute. NIMH/GRANT NUMBER U10MH095682. This investigation was conducted in a facility supported by Research Facilities Improvement Program, NIH/GRANT NUMBER 06313. We thank the study participants.