A semiparametric Bayesian model for examiner agreement in periodontal research

Elizabeth G. Hill¹ and Elizabeth H. Slate²

1 Division of Biostatistics and Epidemiology, MUSC 2 Department of Statistics, FSU

May 8, 2012

Dental anatomy

From http://dentalimplants-usa.com/generalinfo/toothnumbering.html

2/31

Calibrating examiners

- Larger clinical periodontal studies require multiple examiners
- Accurate measurement of PD requires training
- Calibration studies demonstrate degree of agreement among examiners and with a gold standard examiner
- Agreement varies with examiner, but may also depend on characteristics of the site

Calibrating examiners

- Larger clinical periodontal studies require multiple examiners
- Accurate measurement of PD requires training
- Calibration studies demonstrate degree of agreement among examiners and with a gold standard examiner
- Agreement varies with examiner, but may also depend on characteristics of the site

Goals:

- Quantify agreement
- Determine targets for enhanced training

Pocket and probing depth

(Task Force)

Examiner agreement in oral health

э May 8, 2012 4/31

ъ

・ロト ・ 日 ト ・ ヨ ト ・

Pocket and probing depth

True pocket depth

A B > A B >

May 8, 2012 4 / 31

Pocket and probing depth

True pocket depth PD = 5.6 mm

May 8, 2012 4 / 31

A B > A B >

Pocket and probing depth

True pocket depth PD = 5.6 mm

Observed probed pocket depth

May 8, 2012

4/31

Pocket and probing depth

True pocket depth PD = 5.6 mm

Observed probed pocket depth 5 mm < Obs PPD < 6 mm

May 8, 2012

4/31

Pocket and probing depth

True pocket depth PD = 5.6 mm

Observed probed pocket depth 5 mm < Obs PPD < 6 mm

Recorded PPD

May 8, 2012

4/31

Pocket and probing depth

True pocket depth PD = 5.6 mm

Observed probed pocket depth 5 mm < Obs PPD < 6 mm

Recorded PPD Rec PPD = 5 mm

- 4 ∃ →

May 8, 2012 4 / 31

Examiner calibration pilot study

- Three hygienists (A, B, C) and one standard examiner (S)
- Nine study subjects
- Subjects' quadrants randomized to examiner pairs
- Pocket depth measured at six sites for all available teeth by two examiners at each site
- As many as 168 sites (336 measurements) per subject
- 1080 duplicate observations (2160 measurements) total
- Inter- (AS, BS, CS, AB, AC, BC) and intra-examiner (AA, BB, CC, SS) measurements collected

• • • • • • • • • • • •

Observed agreement measures

Examiner			Exact		Exact ±1 mm		κ_{W}
pair	k	n	%	95% CI	%	95% CI	
AS	5	180	62	(36,88)	94	(83, <mark>100</mark>)	.71
BS	5	156	49	(25,73)	88	(71, <mark>100</mark>)	.67
CS	5	180	43	(34,51)	92	(82, <mark>100</mark>)	.69
AB	3	108	45	(28,63)	81	(50, <mark>100</mark>)	.63
AC	3	96	44	(<mark>0</mark> ,89)	88	(64, <mark>100</mark>)	.59
BC	3	120	47	(13,80)	81	(59, <mark>100</mark>)	.62
AA	2	60	73	NA	98	(77, <mark>100</mark>)	.90
BB	2	72	56	(44,67)	94	(36, <mark>100</mark>)	.58
CC	2	78	79	(59,100)	97	(67, <mark>100</mark>)	.73
SS	1	30	80	NA	100	NA	.97

Our approach

- Use model-based approach that naturally incorporates dependence among observations
- Use ALL data to borrow strength
- Construct reliability measures (κ_w, % agreement) from realizations from posterior predictive distribution

A I > A = A A

1. TRUE pocket depth

$$\mathsf{log}(heta_{ij}) = \mu + m{b}_i + arepsilon_{ij}$$

- θ_{ij} is pocket depth for jth site of ith subject
- $b_i | \sigma_b^2 \sim \text{Normal}(0, \sigma_b^2)$
- $\varepsilon_{ij} | \sigma_{\varepsilon}^2 \sim \text{Normal}(0, \sigma_{\varepsilon}^2)$
- b_i and ε_{ij} independent

< 6 b

2. **OBSERVED** probed pocket depth

$$\log(O_{ijk}) = \underbrace{\log(\theta_{ij})}_{truth} + \underbrace{\mathbf{X}'_{ijk}\beta_{ij}}_{bias} + \underbrace{\gamma_{ijk}}_{noise}$$

- O_{ijk} is depth observed on probe for kth replicate of jth site of ith subject
- $\mathbf{X}_{ijk} = (X_{A,ijk}, X_{B,ijk}, X_{C,ijk})'$ examiner indicators
- $\beta_{ij} = (\beta_{A,ij}, \beta_{B,ij}, \beta_{C,ij})'$ associated parameter vector
- $\gamma_{ijk} \sim \text{Normal}(\mathbf{0}, \sigma_E^2)$
- σ_E^2 subscripts are A, B, C or S

4 6 1 1 4

3. *RECORDED* probed pocket depth

$$T_{ijk} = \left\{ egin{array}{cc} \lfloor O_{ijk}
floor & ext{if } 0 \leq O_{ijk} < 15 \ 15 & ext{otherwise} \end{array}
ight.$$

- *T_{ijk}* is recorded probed pocket depth for *k*th replicate of *j*th site for *i*th subject
- PPD recorded as floor of observed PPD
- Manual probe scored to a maximum depth of 15 mm

4 6 1 1 4

3. *RECORDED* probed pocket depth (cont.)

$$\pi_{t,ijk} = \operatorname{Prob}(T_{ijk} = t | \log(\theta_{ij}), \beta_{ij}, \sigma_E)$$
$$= \begin{cases} \zeta_{t+1} & \text{if } t = 0\\ \zeta_{t+1} - \zeta_t & \text{if } t = 1, \dots, 14\\ 1 - \zeta_t & \text{if } t = 15 \end{cases}$$

•
$$\zeta_t = \Phi\left(\frac{\log(t) - \log(\theta_{ij}) - \mathbf{X}'_{ijk}\beta_{ij}}{\sigma_E}\right)$$

• $\Phi(\cdot)$ is standard normal CDF

Likelihood

Conditional likelihood proportional to

$$\prod_{i=1}^{n} \prod_{j=1}^{m_{i}} \prod_{k=1}^{2} \prod_{t=0}^{15} \pi_{t,ijk}^{V_{t,ijk}}$$

V_{ijk} = (V_{0,ijk}, V_{1,ijk},..., V_{15,ijk})' is vector of 15 zeros and a single one

•
$$T_{ijk} = t \Rightarrow V_{t,ijk} = 1$$

•
$$\mathbf{V}_{ijk} | \log(\theta_{ij}), \beta_{ij}, \sigma_E^2 \sim \text{Multinomial}(1; \pi_{0,ijk}, \pi_{1,ijk}, \dots, \pi_{15,ijk})$$

Prior and hyperprior specifications

- Mean of true distribution (μ) vague mean zero Normal
- Error terms (five) and random effect Normal(0, $1/\sigma_{\nu}^2)$
- Standard deviations ($\sigma_{
 u}$) Uniform(0, a) (Gelman, Bayesian Analysis 2005)

"Non"parametric Component:

- Rater bias parameters ($\beta_{E,ij}$ s) Dirichlet process prior (DPP)
 - DPP naturally gives rise to clusters
 - Reasonable to assume latent class structure
 - Preliminary analysis indicates site-level characteristics cause examiners to be more (less) prone to bias

Dirichlet process prior overview

- $y_i \sim f(y_i | \phi_i), i = 1, ..., n$, with ϕ_i unknown
- ϕ_i is centered around base distribution G_0
- Candidate values for φ_i are drawn from G₀ according to concentration parameter α
- Traditional Bayesian approach places prior on ϕ_i
- DPP places prior on ϕ_i 's distribution

$$\phi_i | \Gamma \sim \Gamma$$

 $\Gamma \sim DP(\alpha G_0)$

 Assignment of a given candidate value from G₀ to multiple φ_i may be expected so that φ_is cluster based on similarities among the y_is

Antoniak 1974, Escobar 1995, and Escobar and West 1998

(Task Force)

Dirichlet process prior overview (cont.)

Practical approach based on finite implementation (Sethuraman 1994)

- Draw $M \le n$ candidate values from G_0 , denoted ϕ_m^* with $m = 1, \ldots, M$
- $M^* \leq M$ of these are allocated to one or more of the ϕ_i
- Assignment of φ_i to φ^{*}_m determined by a multinomial distribution with probability vector **P** ~ Dirichlet(αG₀(B₁),...,αG₀(B_M))
- Assignment of multiple φ_i to the same candidate value φ^{*}_m results in the formation of a cluster
- Empty clusters result when none of the φ_i are assigned to one or more of the *M* candidate values.

Dirichlet process prior overview (cont.)

- ϕ_i 's density is discrete and the fineness of the discretization increases with α
 - α large \Rightarrow density of ϕ_i resembles G_0
 - α small \Rightarrow density of ϕ_i similar to a finite mixture model
- Dirichlet Process Mixture Model (DPMM)

DPMM for examiner biases

For our application

$$\beta_{E,ij}|\Gamma_E \sim \Gamma_E$$

$$\Gamma_E \sim DP(\alpha_E G_{E,0})$$

- $G_{E,0} \equiv G_0$ vague mean zero Normal
- DPMM identifies latent classes of periodontal sites that "cluster" based on examiner-specific biased rating behavior
- $\alpha_E \equiv 8$ (tried $\alpha = 0.5, 1, 2, ..., 10, 20$)
- Total number of classes, $M_E \equiv 6$ (tried 2, 3, 4, 5, 6)
- *M* limited by number of distinct data values (Congdon 2001)
 - In our data, recorded PPD ranged from 0mm to 8mm
 - Differences in duplicate recorded PPD ranged from -4mm to 4mm
 - *M_E* ≤ 9

A (10) A (10)

Posterior clustering inference

- Least-squares clustering identifies examiner-specific classes of biased ratings (Dahl 2006)
- c_{E,1},..., c_{E,D} are D draws from posterior clustering distribution of β_{E,ij}s
- For each c_E in c_{E,1},..., c_{E,D}, construct L × L association matrix, δ(c_E) (L = total number of sites)
- $\delta(\mathbf{c}_E)_{\ell\ell'} = 1$ when sites ℓ and ℓ' jointly classified, 0 otherwise
- Δ_E = element-wise average of collection of association matrices

Examiner *E*'s least-squares cluster $\mathbf{c}_{E}^{\text{LS}} = \underset{\mathbf{c}_{E} \in \{\mathbf{c}_{E,1}, \dots, \mathbf{c}_{E,D}\}}{\operatorname{argmin}} \sum_{\ell=1}^{\mathcal{L}} \sum_{\ell'=1}^{\mathcal{L}} \left(\delta(\mathbf{c}_{E})_{\ell\ell'} - \Delta_{E,\ell\ell'} \right)^{2}$ (Task Force) Examiner agreement in oral health May 8, 2012 18/31

Simulation study

Simulation study

- Comparable in size to real calibration data 9 subjects, 3 examiners, 1 standard
- Examiners S, A no bias
- Examiner B biased on deep pockets; C biased, severely on DLMM

True pocket depth model

$$\begin{array}{lll} \log(T_{ijk}) &= & \log(\theta_{ij}) + \beta_{B,ij} \cdot I(\theta_{ij} \geq 4\text{mm}) \cdot I_B + \beta_{C_1,ij} \cdot I_C + \\ & & \beta_{C_2,ij} \cdot I(\text{site } j \text{ is distolingual mand. molar}) \cdot I_C + \gamma_{ijk} \cdot I_C + \end{array}$$

- β_{B,ij} = −0.5
- $\beta_{C_1, ij} = 0.25$
- β_{C₂,ij} = −1

(Task Force)

< 同 > < 三 > < 三 >

Simulation results

10K iterations (50,500 burn-in)

Description	Parameter	Truth	Median	95% CI
Mean true PD	μ	1	1.03	(0.80, 1.18)
SD random effect	σ_{b}	0.2	0.19	(0.11, 0.40)
SD true PD	$\sigma_{arepsilon}$	0.3	0.29	(0.28, 0.30)
SD Ex A obs PPD	$\sigma_{\mathcal{A}}$	0.1	0.11	(0.09, 0.13)
SD Ex B obs PPD	σ_{B}	0.25	0.24	(0.22, 0.28)
SD Ex C obs PPD	σ_{C}	0.15	0.15	(0.12, 0.17)
SD Ex S obs PPD	σ_{s}	0.07	0.08	(0.07, 0.10)

・ロト ・ 日 ・ ・ ヨ ト ・

Estimated $\hat{\kappa}_w$

Examiner Pair	Truth	Median	95% CI
AS	0.89	0.85	(0.77, 0.93)
BS	0.69	0.67	(0.55, 0.82)
CS	0.66	0.61	(0.50, 0.77)
AB	0.68	0.63	(0.47, 0.80)
AC	0.66	0.59	(0.45, 0.76)
BC	0.55	0.50	(0.33, 0.69)
AA	0.87	0.84	(0.73, 0.92)
BB	0.56	0.62	(0.44, 0.79)
CC	0.72	0.82	(0.71, 0.91)
SS	0.91	0.87	(0.78, 0.95)

Simulation study

Estimated $\hat{\kappa}_w$ - Corrects for bias!

Examiner Pair	Observed	Truth	Median	95% CI
AS	0.90	0.89	0.85	(0.77, 0.93)
BS	0.45	0.69	0.67	(0.55, 0.82)
CS	0.59	0.66	0.61	(0.50, 0.77)
AB	0.43	0.68	0.63	(0.47, 0.80)
AC	0.71	0.66	0.59	(0.45, 0.76)
BC	0.45	0.55	0.50	(0.33, 0.69)
AA	0.83	0.87	0.84	(0.73, 0.92)
BB	0.34	0.56	0.62	(0.44, 0.79)
CC	0.85	0.72	0.82	(0.71, 0.91)
SS	0.88	0.91	0.87	(0.78, 0.95)

Guggenmoos-Holzmann and Vonk (SIM 1998) noted this bias in κ

(Task Force)

<ロ> <四> <四> <四> <四> <四</p>

Simulation study

Posterior distributions of examiner effects

- Examiner A 1 class
- Examiners B and C
 - 1 dominant and 1 subordinate class
 - B's class membership significantly associated with deep pockets (p < 0.0001)
 - C's class membership significantly associated with DLMM sites (*p* < 0.0001)

Application to real calibration data

Compared model fits for 4 variants:

- Model 0: No examiner biases, common examiner variances
- Model 1: No examiner biases, unequal variances
- Model 2: Fixed bias for each examiner (β_{E,ij} = β_E), unequal variances
- Model 3: Site-level biases, unequal variances

Application model selection

- Examined posterior predicted distributions for recorded PPD
- Examined DIC₃ values (Celeux et al. 2006)

Model		DIC ₃
0:	No bias, common variance	4560.11
1:	No bias, unequal variance	4402.13
2:	Fixed bias, unequal variance	4129.07
3:	Site-level bias, unequal variance	3381.83

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Agreement measures

Examiner	$\% \pm$	1mm	κ_W	
Pair	Observed	Model	Observed	Model
AS	94 (83, <mark>100</mark>)	95 (89, 99)	.71	.80 (.69, .90)
BS	88 (71, <mark>100</mark>)	89 (78, 95)	.67	.64 (.49, .80)
CS	92 (82, <mark>100</mark>)	92 (83, 97)	.69	.71 (.59,.84)
AB	82 (50, <mark>100</mark>)	85 (73, 94)	.63	.60 (.42, .77)
AC	88 (64, <mark>100</mark>)	88 (76, 96)	.59	.62 (.44, .79)
BC	81 (59, <mark>100</mark>)	88 (77, 96)	.62	.60 (.43, .77)

Agreement measures

Examiner	% ±	1mm		κ_W
Pair	Observed	Model	Observed	Model
AS	94 (83, <mark>100</mark>)	95 (89, 99)	.71	.80 (.69, .90)
BS	88 (71, <mark>100</mark>)	89 (78, 95)	.67	.64 (.49, .80)
CS	92 (82, <mark>100</mark>)	92 (83, 97)	.69	.71 (.59,.84)
AB	82 (50, <mark>100</mark>)	85 (73, 94)	.63	.60 (.42, .77)
AC	88 (64, <mark>100</mark>)	88 (76, 96)	.59	.62 (.44, .79)
BC	81 (59, <mark>100</mark>)	88 (77, 96)	.62	.60 (.43, .77)
A.Truth		96 (91 98)		81 (73 90)
B.Truth		91 (83, 96)		69 (59, 81)
C.Truth		94 (87, 98)		74 (65, 84)
S∙Truth		100 (99,100)		.93 (.87, .97)

(日) (四) (三) (三)

Examiner A posterior clustering inference

- Class 1 predominantly unbiased
- Classes 2 and 4 combine to make one class
 - Negative bias
 - Significantly associated with mid-tooth (p = 0.03) and buccal (p = 0.016) sites
- Class 3 positively biased on anterior teeth (p = 0.028)

Examiner A

Examiner A

Examiners B and C posterior clustering inference

Examiner B - 2 classes

- Dominant class (n = 441) mild negative bias
- Subordinate class (n = 14)
 - All recorded PPD = 0mm on mid-tooth sites
 - Possible association with mandibular sites (p = 0.052)
 - Significant association with shallow sites (p = 0.012)

Examiner C - 2 classes

- Dominant class (n = 414) mild negative bias
- Subordinate class (n = 59)
 - Mild positive bias
 - Possible association with anterior sites (p = 0.052)
 - Significant association with deeper sites (p = 0.0007)

Summary

- Model-based approach naturally incorporates multiple levels of dependence
- Borrowing strength
 - Corrects bias
 - Improves precision
- Accommodates estimation of agreement with truth
- Interpretation of DPMM classes for βs
 - Examiner specific
 - Target follow-up training

A (10) A (10) A (10)

Acknowledgements

- Carlos Salinas, DMD and COBRE clinical core
- Sara Grossi, DDS, MS
- Keith Kirkwood, DDS, PhD and Steve London, DDS, PhD
- NCRR P20 RR17696, NIDCR U24 DE16508, NIDCR K25 DE016863