An Introduction to Generalized Estimating Equations

Cancer Prevention and Control Tutorial

16 October 2008

Repeated measures ANOVA limitations

- Unbalanced design (missing data) causes problems in estimation of expected mean squares \Rightarrow F-tests
- Subjects with incomplete response profile deleted from analysis
- Constrained to continuous responses

Generalized linear model

- Unifies in a single method
 - Linear regression (continuous response)
 - Logistic regression (binary response)
 - Poisson regression (count response)
- Specify distribution of random component, \boldsymbol{Y}
 - ∘ Linear regression \Rightarrow *Y* ~ Normal
 - Logistic regression $\Rightarrow Y \sim \text{Bernoulli}$
 - $\circ~$ Poisson regression $\Rightarrow Y \sim$ Poisson
- Systematic component of model is linear combination of predictors called *linear predictor*

$$\beta_0 + \beta_1 X_1 + \ldots + \beta_k X_k$$

Generalized linear model (cont.)

- Relate mean of Y to linear predictor through *link function*
- $Y \sim \text{Normal}$
 - $\circ~$ Mean of Y is $\mu,$ the center of the distribution
 - Link function is *identity link* (i.e. no transformation of mean required)

$$\circ \ \mu = \beta_0 + \beta_1 X_1 + \ldots + \beta_k X_k$$

- $Y \sim \text{Bernoulli}$
 - $\circ~$ Mean of Y is p, probability of success
 - Link function is usually *logit link*

•
$$\operatorname{logit}(p) = \log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X_1 + \ldots + \beta_k X_k$$

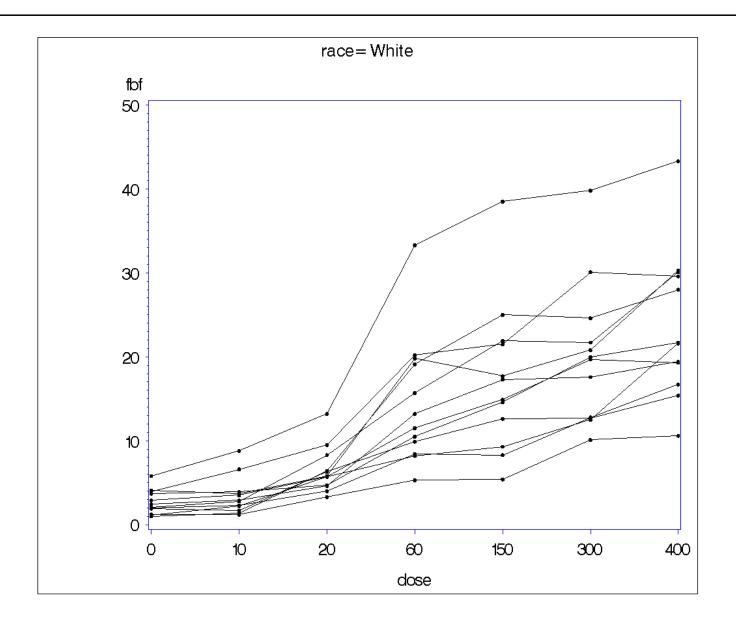
Generalized linear model (cont.)

- $Y \sim \text{Poisson}$
 - $\circ~$ Mean of Y is $\lambda,$ rate per unit time of events
 - Link function is *log link*
 - $\circ \log(\lambda) = \beta_0 + \beta_1 X_1 + \ldots + \beta_k X_k$

Generalized Estimating Equations

- Extends generalized linear model to accommodate correlated Ys
 - Longitudinal (e.g. Number of cigarettes smoked per day measured at 1, 4, 8 and 16 weeks post intervention)
 - Repeated measures (e.g. Protein concentration sample from primary tumor and metastatic site)
- Need to specify distribution
- Link function
- Correlation structure

Visualizing correlation



Describing correlation mathematically

Exchangeable correlation: Responses within subjects are equally correlated

	cigs1	cigs2	cigs3	cigs4
cigs1	1	ρ	ρ	ρ
cigs2	ρ	1	ho	ho
cigs3	ρ	ho	1	ho
cigs4	ρ	ho	ho	1

Describing correlation mathematically (cont.)

First-order Auto Regressive (AR1): Correlation among responses within subjects decays exponentially

	cigs1	cigs2	cigs3	cigs4
cigs1	1	ρ	$ ho^2$	$ ho^3$
cigs2	ho	1	ho	$ ho^2$
cigs3	$ ho^2$	ho	1	ho
cigs4	$ ho^3$	$ ho^2$	ho	1

Describing correlation mathematically (cont.)

Unstructured: Correlation among responses within subjects completely unspecified

	cigs1	cigs2	cigs3	cigs4
cigs1	1	$ ho_{1,2}$	$ ho_{1,3}$	$ ho_{1,4}$
cigs2	$ ho_{2,1}$	1	$ ho_{2,3}$	$ ho_{2,4}$
cigs3	$ ho_{3,1}$	$ ho_{3,2}$	1	$ ho_{3,4}$
cigs4	$ ho_{4,1}$	$ ho_{4,2}$	$ ho_{4,3}$	1

Describing correlation mathematically (cont.)

Independence: No correlation among responses within subjects

	cigs1	cigs2	cigs3	cigs4
cigs1	1	0	0	0
cigs2	0	1	0	0
cigs3	0	0	1	0
cigs4	0	0	0	1

GEE analysis

- Specify distribution
- Specify link function
- Specify correlation structure ⇒ working variance-covariance matrix
- Estimate model parameters using *quasi-likelihood* $\Rightarrow \hat{\beta}s$
- Estimate variance-covariance matrix of model parameters using sandwich estimator \Rightarrow confidence intervals, inference for the β s

The wonderful thing about GEEs... even if the working variance-covariance matrix is mis-specified, the sandwich estimator converges to the true variance-covariance matrix of the model parameters.

Caution!

- Convergence of sandwich estimator to true var-cov matrix requires
 - Diminishing fraction of missing data

OR

- Missing completely at random
- Asymptotics for inference about β s hold if
 - Number of subjects (n) is large

AND

- Cluster sizes (m) are small
- If n small relative to m, better to use generalized score tests as opposed to Wald tests for CIs and tests associated with $\beta {\rm s}$

Data structure

Wi	de									
	ID	Cigs1	Cigs2	Cigs3	Cigs4	Cię	Cigs0		Sex	
	1	12	10	8	2	1	10		1	
	2	15	16	15	18	1	18		0	
Loi	ng	ID	Cigs	Time	Cigs0	Trt	Sex	X		
		1	12	1	10	1	1			
		1	10	2	10	1	1			
		1	8	3	10	1	1			
		1	2	4	10	1	1			
		2	15	1	18	1	0			
		2	16	2	18	1	0			
		2	15	3	18	1	0			
		2	18	4	18	1	0			