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Clinical trial definition

A clinical trial is an experiment testing a
medical treatment on human subjects.

Not all human research studies are experimental
The experiment is what distinguishes clinical trials from
other forms of medical research
What do we mean by experiment?

“...the essential characteristic that distinguishes experimental
from non-experimental studies is whether or not the scientist
controls or manipulates the treatment ... under investigation.”
(Piantadosi, Clinical Trials: A Methodologic Perspective, 2005)
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Equipoise

Scientific uncertainty about the superiority of one treatment
versus alternative
Ethical imperative that study participants not be
diasadvantaged
Supports comparative trial design to resolve uncertainty
If consensus about superiority exists, trial is unethical

From the original “... at the start of the trial, there must be a
state of clinical equipoise regarding the merits of regimens to
be tested, and the trial must be designed in such a way as to
make it reasonable to expect that, if it is successfully conducted,
clinical equipoise will be disturbed.” (Freedman, 1987)
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Stages of trial design in drug development

Dose-finding trials
Phase I
Designed to find the best safe dose
Traditionally ≤ 30 patients

Safety and efficacy trials
Phase II
Efficacy signal
Traditionally single arm studies with 20 - 80 patients
Recent increase in randomized studies for targeted
therapies

Comparative trials
Phase III
Definitive trial against standard of care
Multi-center
Hundreds to thousands of patients
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Dose-finding trials
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Phase I trial goals
Classic Phase I trials

Cytotoxic agents - “more is better”
Find the highest dose that is deemed safe = maximum
tolerated dose (MTD)
Determine recommended phase II dose (RP2D)
Monitor dose-limiting toxicities (DLTs)
MTD = highest dose with DLT rate ≤ x%
(usually x% = 20% - 40%)
Determine schedule
Evaluate safety and toxicity
Assess pharmacokinetics

Newer Phase I trials
Molecularly targeted agents
Find dose considered safe with optimal
biologic/immunologic effect
Goal is to optimize ‘biomarker’ response within safety
constraints
Identify ‘target’ population
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Classic phase I assumptions

Efficacy and toxicity both increase with dose
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New paradigm for molecularly targeted agents

Agent selective for a molecular ‘target’
Disrupt carcinogenesis by interfering with specific pathway
Can be less toxic than traditional cyotoxic agents
Implications for phase I design

Toxicity may be extremely low
Need to ensure agent ‘hits’ the target
Efficacy may not increase monotonically with dose
MTD being replaced by optimal biologic dose or maximum
administered dose
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Possible relationships for targeted therapies

-Efficacy not necessarily monotonically increasing with dose
-Low toxicity
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Phase I designs

Algorithmic
Follows a prescribed set of decision rules for
dose-escalation
Standard 3+3 design
Accelerated titration

Model-based
Uses accumulating toxicity data to determine dose for next
patient
Continual reassessment method (CRM) (or other flavors -
mCRM, TITE-CRM)

Good overview of Phase I designs and relative merits - Ivy,
et al. Clin. Cancer Res 2010; 16:1726-36.
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Classic phase I “3+3” design

Dose escalation/de-escalation decision rules
For a pre-specified set of doses (usually between 3 and 10),
treat 3 patients at dose-level k

1 If 0 of 3 patients experience a DLT, escalate to dose k + 1
2 If 2 or more of 3 patients experience a DLT, de-escalate to

level k − 1
3 If 1 of 3 patients experiences a DLT, treat 3 more patients

at level k
1 If 1 of 6 experiences a DLT, escalate to dose k + 1
2 If 2 or more of 6 experience a DLT, de-escalate to level k −1

MTD = highest dose at which at most 1 out of 6 patients
experiences a DLT
Therefore, target DLT rate is 33%
Common to include expansion cohort at MTD to obtain
additional safety data
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Accelerated titration design

Original version - Simon, et al. J Natl Cancer Inst 1997;
89:1138-47.
Starts with single patient cohorts
Approximate doubling of successive doses (96% - 100%
dose escalation)
First DLT or second moderate toxicity in any dose cohort
⇒ expand cohort to 3 patients
Revert to 3+3 design for subsequent cohorts with 40%
dose escalation steps
Advantages over 3+3

Requires fewer patients overall (efficiency)
Fewer patients treated at non-efficacious doses
Increase precision of RP2D
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Continual reassessment method

Original version - O’Quigley, et al. Biometrics 1990;
46:33-48.
Bayesian - uses both accumulating data and prior beliefs
to determine actions
Dose cohorts not specified in advance
Learn best dose assignment for next patient based on
toxicity data accumulated at all prior and current dose
levels
Assumes mathematical model relating dose to toxicity
Requires specification of targeted DLT rate (not 33% by
default)
Patient cohort size must be specified
Stopping rule - usually based on a pre-specified total
sample size
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The Bayesian paradigm

Prior beliefs Data 

Posterior inference 

Update prior 
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CRM dose-toxicity curves

Ivy S P et al. Clin Cancer Res 2010;16:1726-1736 
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Pros and cons

Algorithmic designs ...
Are simple and easy to understand
Are efficient - small sample sizes
Can be implemented without involvement of a statistician
Enjoy wide-spread acceptance (PRCs, IRBs, FDA)

Model-based designs ...
Are more challenging to understand
Treat more patients at efficacious doses
Treat fewer patients at toxic doses
Identify the MTD with greater precision
Require ongoing involvement of statistician
Can be difficult to implement at multiple institutions
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Safety and efficacy trials
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Phase II safety and efficacy trials

Provide additional information about toxicity profile
Provide preliminary information on whether a treatment is
efficacious
Small⇒ only large treatment effects are detectable
Quick⇒ efficacy measured using short-term endpoints
Phase II endpoints

Surrogates for phase III gold standard, overall survival
Response is conventional endpoint for cytotoxic agents that
cause tumor shrinkage
Progression free survival (time from enrollment to
documented disease progression) is increasingly the
endpoint for MTAs
MTAs may not cause tumor shrinkage, but may prolong
time to progression
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Conventional phase II designs
Single arm

Efficacy rate in study population compared to historical
control rate
Control rate may not be well-defined
Study population may lack comparability to historical control
population

Randomized selection design
“Pick the winner”
Patients randomized to two (or more) arms
No head-to-head comparison of arms, but rather
comparisons to null historical rate
Goal is to identify best dose/schedule/regimen to take
forward into phase III when there is no a priori information
that one is preferable

Randomized with control arm
Control arm ensures historical rate “on target”
Control arm not included for head-to-head comparison (due
to small sample size)

, 22/50



Conventional phase II design issues

Issues with respect to molecularly targeted agents
Lack of reliable historical control population⇒ no
comparator historical rate
Response inappropriate endpoint when tumor shrinkage
not expected
Lack of historical data for appropriate endpoint like PFS

General issues
Lack of randomization⇒ no internal control
Treatment-trial confounding (Estey and Thall, Blood 2003;
102:442-8)
Unmeasured trial effects (e.g. differences in supportive
care, institutional practices, unknown patient
characteristics) can not be distinguished from treatment
effects
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Phase II randomized trials
Head-to-head comparison
Increasingly the “norm” for phase II oncology trials
Requires 2 - 4 times the number of patients as
conventional designs
Increased demand on resources (time and money)
Standard of care (SOC) + “A” versus SOC (or SOC +
placebo)
Adaptive designs (Gallo et al., J Biopharm Stat 2006;
16:275-83)

Trial characteristics modified ‘as-you-go’ based on
cumulative data
Design-based rather than ad hoc modifications
Trial validity and integrity remains intact
Adaptive randomization - increase patients assigned to arm
with more efficacious agent
Adaptive sample size - re-estimation based on revision of
underlying assumptions
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Biomarker incorporated designs

Randomized phase II designs that utilize biomarker status
Focus on predictive markers
Often goal is to assess treatment efficacy and validate
marker
Sargent et al, JCO 2005; 23:2020-27
Selected designs

Enroll patients most likely to benefit - marker positive
patients
Requires biologic accuracy of selected marker
Reliable marker measurement
Fails to identify other patient populations who may benefit
Does not allow assessment of marker-outcome association

Unselected designs
Marker-by-treatment interaction design
Marker-based strategy design
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Marker-by-treatment interaction design

Sargent D J et al. JCO 2005;23:2020-2027 
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Marker-based strategy design

Sargent D J et al. JCO 2005;23:2020-2027 
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Statistical and design considerations
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Hypothesis testing
Didactic example - Randomized phase II trial of
paclitaxel/carboplatin ± enzastaurin (PCE/PC) in
advanced ovarian cancer patients (Vergote et al., JCO
2013; 31:3127-3132)
To compare competing treatments, we begin with rival
hypotheses of their relative effect.

Null hypothesis - statement of no effect (H0)
Alternative hypothesis - statement reflecting conclusion if
trial results suggest null is implausible (HA)

H0: Advanced ovarian cancer patients derive no addi-
tional clinical benefit from the addition of enzastaurin to
paclitaxel/carboplatin relative to those treated with pacli-
taxel/carboplatin alone.

HA: Advanced ovarian cancer patients derive significant clinical
benefit from the addition of enzastaurin to paclitaxel/carboplatin
relative to those treated with paclitaxel/carboplatin alone.
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Formalizing hypothesis testing

‘Clinical benefit’ needs to be articulated in terms of a
measureable quantity
Depends on the trial’s primary endpoint
If endpoint is response, benefit measured by difference in
response rate
If endpoint is a time-to-event measure, benefit measured
by hazard ratio (HR)
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Hazard ratio detour

HR = risk of event in trt grp
risk of event in ctl group

HR > 1 indicates increased risk of event in treatment
group relative to control
HR < 1 indicates decreased risk of event in treatment
group relative to control
HR = 1 indicates equivalent risk of event in treatment and
control groups
Interpretation

HR = 0.80⇒ “There is a 20% reduction in the risk of death
(progression, recurrence) comparing treated to control
patients.”
HR = 1.20⇒ “There is a 20% increase in the risk of death
(progression, recurrence) comparing treated to control
patients.”
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Back to our hypotheses

If endpoint is response ...

H0: pPCE = pPC

HA: pPCE > pPC

where pPCE is the response rate in the PCE arm and pPC is the
response rate in the PC arm.

If endpoint is a time-to-event measure

H0: HRPCE:PC = 1

HA: HRPCE:PC < 1
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Conducting inference and quantifying evidence
Based on the evidence in the data, one of two decisions is
made

1. Reject H0 in favor of HA ⇒ sufficient evidence to rule out
the null

2. Fail to reject H0 ⇒ insufficient evidence to rule out the null
Evidence is quantified using a P-value
If the null hypothesis is true, it is possible to observe what
looks like a treatment effect by pure chance
P-value is the probability of observing a result at least as
extreme as what was observed in the current study if the
null is true (i.e. if there really is no difference)
P-value quantifies the probability of a spurious finding
Usually require p-value < 0.05 to reject H0 and declare
statistical significance
p-value ≥ 0.05⇒ fail to reject H0 and conclude we can’t
rule out chance as a plausible explanation for any
observed difference
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Confidence intervals

Provides range of values quantifying uncertainty
associated with an estimated parameter
The wider the interval the greater the uncertainty in the
estimate
The more narrow the interval the greater our faith in the
estimate
Typically report 95% CI
The “95%”-part of the interval means that if you were able
to replicate the exact same study an infinite number of
times, 95% of the resulting CIs would contain the true
parameter of interest (not a particularly practical
interpretation)
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Putting some of this together ...

In the randomized phase II PCE vs PC trial in ovarian cancer,

“A comparison of ... PFS for the two regimens ... was not sta-
tistically significant (P = 0.367). HR at the time of final analysis
was 0.80 (95% CI, 0.50 to 1.29).”
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Interpretation and conclusions
Enzastaurin does not significantly increase time to
progression when added to a regimen of
paclitaxel/carboplatin in advanced ovarian cancer patients
(P = 0.367 ≥ 0.05)
Adding enzastaurin to paclitaxel/carboplatin therapy
conferred a 20% reduction in the risk of progression (HR =
0.80), although this finding was not significant. That is to
say, although we observed an improvement, we can not
rule out chance as a plausible explanation for the reduction
in risk.
Our best estimate of the hazard ratio is 0.80, but the data
are also consistent with a HR ranging from 0.50 to 1.29
(95% CI, 0.50 to 1.29). Thus, the data are consistent with
equivocal conclusions - a hazard ratio of 0.50 indicates a
50% reduction in the risk of progression while a hazard
ratio of 1.29 indicates a 29% increase in the risk of
progression.
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Actions and errors

Of course it is always possible to make a mistake. The table
below details the two types of errors one can commit in
conducting a statistical test.

H0 true HA true
Reject H0 Type I error No error
Fail to reject H0 No error Type II error

A type I error is the probability of rejecting the null given
that the null is true.
We denote the probability of a type I error as α.
A type II error is the probability of failing to reject the null
given that the alternative is true.
We denote the probability of a type II error as β.
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Power

H0 true HA true
Reject H0 α 1 - β = Power
Fail to reject H0 1 - α β

The power of a test is the probability of correctly rejecting the
null in favor of the alternative. A well-designed study will strike
a balance between acceptable levels of type I error (usually
0.05) and power (often set at a minimum of 0.8).

Remember ...
A type I error is rejecting the null when you shouldn’t
Power is the probability of rejecting the null when you
should
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Planned early data looks

Early stopping for efficacy
Is there sufficient evidence to conclude treatment is
significantly better?
Ethical imperative not to continue to randomize patients to a
therapy known to be inferior
Inflates type I error rate

Early stopping for futility
No hope of being able to demonstrate treatment efficacy
Sufficient data to answer scientific question
Unethical to continue to randomize patients in a trial with no
additional benefit
Inflates type II error rate (decreases power)

Early stopping for safety
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Bias and error
Control of bias and reduction of random error are two major
objectives in statistical design considerations
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Sources of bias

1. Selection bias
Patients in arms systematically different with respect to
prognostic factors

Bias the observed treatment effect
Can influence internal validity

Study cohort not representative
Can influence external validity
Compromises generalizability

2. Treatment/procedure selection bias
Healthier patients selected for a particular treatment
Systematic difference in composition of treatment groups
Can bias treatment difference
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Sources of bias (cont.)

3. Postentry exclusion bias
Inappropriate exclusion of eligible and enrolled subjects
from the analysis
Exclusion often due to seemingly reasonable clinical
reasons
Breaks the ‘experimental paradigm’
Example - subjects that fail to complete therapy are
excluded from the analysis
Example - subjects that die due to ‘other’ causes are
excluded from an analysis of overall survival
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Sources of bias (cont.)

4. Selective loss of data
Loss of data resulting from unworkable or suboptimal
outcomes or errors in study conduct
Endpoint poorly selected for patient population
Frequency of follow-up inappropriate for assessment of
desired endpoint or is not followed as specified in protocol
Example - patient population is seriously ill cohort and
endpoint is based on patient self-report; endpoint may
suffer from survivor bias
Example - endpoint is time to progression; follow-up with
patients every 6 months may be inadequate for accurate
assessment
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Sources of bias (cont.)

5. Assessment bias
Patient self-assessment lacks objectivity
Clinician assessment can be influenced by expectation of
treatment effect
Can bias endpoint in direction of prior expectation

6. Uncontrolled confounders
Confounder is a variable that masks the true treatment
effect
Common confounders are age, race, gender, disease
severity, comorbidities
Example - treatment arm is significantly younger than
placebo arm, and outcomes in older patients are more
severe
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Controlling for bias by design - Randomization

Patients randomly assigned to treatment
Controls for:

Selection bias
Treatment bias
Uncontrolled confounders

Types of randomization
Simple
Permuted block
Stratified permuted block
Adaptive
Group

Allocation ratio (1:1, 2:1, etc.)
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Blinding

Blinding = treatment masking
Treatment masked from the patient - single blind
Treatment masked from both the patient and the study
personnel - double blind
Blinding controls for

Treatment/procedure bias
Assessment bias

No blinding for members of DSMB
Blinding isn’t always possible

Drugs being compared have different modes of delivery -
infusion versus tablet
Blinding in trials of devices or surgical procedures is difficult
or impossible
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Study populations

Intention-to-treat (ITT) is the idea that patients in a randomized
clinical trial should be analyzed as part of the treatment group
to which they were assigned, even if they did not actually
receive the intended treatment. For assessing efficacy, analysis
of the ITT population is preferred.

Treatment received (TR) is the idea that patients should be
analyzed according to the treatment actually given, even if the
randomization calls for something else. For assessing safety,
analysis of the TR population is preferred. This is sensible
since we want to attribute any severe adverse events to the
treatment actually received.
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Efficacy based on the ITT population

Many factors contribute to a patient’s inability to complete
the intended therapy or patient adherence

Side effects
Disease progression
Patient/physician preference for a different treatment

Failure to complete therapy as randomized is almost
always an outcome of the study itself
If ITT population is not analyzed, can result in post-entry
selection bias
Results from efficacy analysis using ITT population is a
test of treatment policy/program effectiveness
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Correlative biomarker studies
Secondary or exploratory aims of trial
Examine association of predictive marker with clinical
endpoint
Example (used with permission) from M Regan, DFCI
Phase II trial to evaluate response of patients with
muscle-invasive urothelial cancer treated with neoadjuvant
dose-dense methotrexate, vinblastine, doxorubicin,
cisplatin (ddMVAC), followed by radical surgery with
curative intent (Choueiri, ASCO 2013, 4530)
Single-arm, 2-stage design (futility look) - α = 0.1, power =
0.85, n = 37
Correlative objective: Investigate tumor expression levels
of DNA repair genes (e.g. ERCC1) in relation to response
High tumor tissue levels of ERCC1 mRNA have been
associated with clinical resistance to cisplatin-based
chemotherapy in ovarian, gastric, cervical, colon and
NSCLC patients
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ddMVAC example: ideal versus reality

Ideal (n=37)
55% response

Reality (n=37)
55% response

Reality (n=27) successful assays
55% response

P<.001P<.001 P=.03 P=.24

Result the investigator anticipates: 
large, clear difference
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ddMVAC example: ideal versus reality

Ideal (n=37)
55% response

Less ideal (n=37)
55% response

Reality (n=27) successful assays
55% response

P<.001P<.001 P=.03 P=.24

Statistician’s anticipation: 
smaller difference, 
greater variability
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