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Didactic example: Overall response

From Ohtsu et al., JCO 2011, page 4:

“Overall response rate was improved significantly with the
addition of bevacizumab (46.0% v 37.4% in the placebo
group; P = .0315.)”
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The hypothesis testing paradigm

1. Assume a null condition for population parameter(s).

2. Formulate a statement in terms of the population
parameter(s) that reflects an effect.

3. Collect data

4. Organize the evidence in favor of the null condition. This
evidence takes the form of a statistical test that is usually
constructed from the estimate of the population
parameter based on the data.

5. Under the assumption of no effect, construct a
probabilistic statement (called a P value) based on the
evidence in the data.

6. Reject the null or fail to reject the null, depending on the
probability statement.
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What is a population parameter?

Statisticians differentiate between that which is being
estimated and the estimate itself. That which is being
estimated is called a population parameter and we (typically)
assume it has a true but unknown value. In this example,
there are two population parameters.

• True (but unknown) ORR for the population of patients
represented by those in the study receiving bevacizumab
- pB

• True (but unknown) ORR for the population of patients
represented by those in the study receiving placebo - pP

Comparing groups and statistical decision-making – p. 4/31



1. Assume a null condition

Statistical testing starts with a statement of the null
hypothesis - i.e. the hypothesis of no effect. It is a statement
about the population parameter(s).

The notation for the null hypothesis is H0 (read “H naught”).
For the ORRs, the null hypothesis is:

H0 : pB = pP .

This can also be written

H0 : pB − pP = 0.
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2. Formulate a statement of effect

We next state the alternative hypothesis. This is the state of
nature we will accept if the evidence in the data suggests that
the null is implausible.

The notation for the alternative hypothesis is HA (read “H A”).
For the ORRs, let’s assume the alternative hypothesis is:

HA : pB > pP .

This can also be written

HA : pB − pP > 0.

This is called a one-tailed or one-sided test. Note that we
don’t actually specify a value for pB − pP under the
alternative. We simply state the direction of the effect - is the
ORR for B greater than, less than, or simply different from the
ORR for P?
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3. Collect data

• How to collect data?

• How much data to collect?

• Not trivial - should utilize resources of statistician

• We’ll talk about this a little more in next lecture
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4. Construct test based on data

Intuitively, it makes sense that any ‘test’ for a comparison of
ORRs should be constructed from their estimates, namely p̂B

and p̂P . The circumflex (or hat -ˆ) notation indicates the
estimate of the population parameter based on sample data.
From the results stated in the paper,

p̂B = 46.0% and p̂P = 37.4%,

or equivalently
p̂B − p̂P = 8.6%.

Are these estimates meaningfully different, or is the
magnitude of their difference a chance occurrence - the luck
of the draw?
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4. Construct test based on data (cont.)

The test is constructed based on the data, i.e. based on
p̂B − p̂P . Our goal is to determine how unlikely it is to observe
a difference in the estimated ORRs at least as large as the
one we’ve observed in our data under the assumption that
there is actually no difference in the ORRs. This will allow us
to make a probabilistic statement about the likelihood of the
observed difference in ORRs being attributable to chance and
not to the intervention.

This requires understanding the sampling distribution of
p̂B − p̂P .
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The sampling distribution

You can think of a sampling distribution as a histogram of all
the possible values of p̂B − p̂P you could observe if in fact the
true ORRs, pB and pP , are equal. This is what we mean when
we say that the test is constructed based on the null condition.
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Example based on ORRs

p̂B = 46.0% and p̂P = 37.4%. The null hypothesis states that
pB = pP . If the null hypothesis is true, then our best estimate
of the true underlying ORR (for either arm) is a pooled
estimate. From Table 2, we obtain the frequencies of overall
response in each arm. Then,

p̂B = 143/311 .
= 0.460

and
p̂P = 111/297 .

= 0.374.

Then
p̂pooled = (143 + 111)/(311 + 297) .

= 0.418.
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Repeated sampling under H0

Simulate 10,000 data sets with sample sizes of 311 and 297,
and assume pPB = pP =0.418. For each sample, compute p̂B

and p̂P and construct their difference.

Sample no. p̂B p̂P p̂B − p̂P

(n = 311) (n = 297)

1 0.447 0.364 0.083
2 0.463 0.421 0.042
3 0.414 0.428 -0.014
...

...
...

...
9,999 0.415 0.431 -0.016
10,000 0.412 0.414 -0.002

Comparing groups and statistical decision-making – p. 12/31



Histogram of resulting differences
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What is a P value?

Question: How can we decide how unusual the observed
difference is? That is to say, if the histogram on slide 13
shows us what differences in proportions should look like
when they are coming from the same underlying distribution,
how do we quantify the ‘extremeness’ of the observed
difference?

Answer : We estimate the probability of observing a difference
in ORRs as or more extreme than the one we observed in our
study. This probability is called a P value.
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P value for our example
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P value for our example (cont.)

We approximate the theoretical distribution of the differences
(blue line overlaying the histogram) using a normal
distribution. The p-value is the red-shaded area in the plot. In
this example, the p-value is approximately 0.016. (This is
different than what was reported in the paper. We’ll explain
why in a minute.) This means that the likelihood of observing
a difference of 8.6% (or one even larger) by chance alone is
less than 2%.
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Other alternatives

Another one-tailed test would be:

HA : pB < pP

Here, the P value would be approximated by the relative area
to the left of the observed difference.
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P value in the paper

A two-tailed or two-sided test is given by the alternative
hypothesis

HA : pB 6= pP

The p-value is approximated by the sum of the relative areas
to the left of -0.086 and to the right of 0.086. The authors of
the Ohtsu paper performed a two-sided test and report a
p-value of 0.0315.
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Definition of P value

The P value is the probability of observing a result at least as
extreme as the one you observed if the null is true. Another
way of thinking about a p-value is this: the p-value is the
probability of observing by chance alone a result at least as
extreme as yours.
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5. Make a decision

Once you have your p-value, you make a judgement about
the null hypothesis. When the p-value is very small (i.e.
observing the outcome or one more extreme due to chance
alone is highly improbable), we reject the null hypothesis in
favor of the alternative and call the finding statistically
significant. It is common practice to require a p-value to be
less than 0.05 before we declare a finding to be “... significant
at level 0.05.” When the p-value is not small (i.e. observing
the outcome or one more extreme due to chance alone is
probable), we fail to reject the null. When we fail to reject the
null hypothesis, we are unable to rule out random chance as
a plausible explanation for any observed difference.

Notice that we don’t say we accept the null. The only actions
the statistical model allows us to take are reject or fail to reject
the null hypothesis.

Comparing groups and statistical decision-making – p. 20/31



Actions and errors

Of course it is always possible to make a mistake. The table
below details the two types of errors one can commit in
conducting a statistical test.

H0 true HA true

Reject H0 Type I error No error

Fail to reject H0 No error Type II error

• A type I error is the probability of rejecting the null given
that the null is true.

• We denote the probability of a type I error as α.

• A type II error is the probability of failing to reject the null
given that the alternative is true.

• We denote the probability of a type II error as β.
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Type I errors and the α-level of a test

When and how frequently does a type I error occur?

1. A type I error occurs when the null hypothesis is true, but
you’ve had the bad luck of drawing a sample resulting in
extreme differences. You reject the null, but you really
shouldn’t.

2. If the null hypothesis is true, then an unusual sample will
be drawn with probability α (definition of probability of a
type I error).

3. To reject the null, the p-value has to be smaller than some
threshold, usually set at 0.05.

4. If the threshold is set at, say, 0.05, then we would expect
to reject the null by mistake less than 5% of the time - that
is, we expect to make a type I error less than 5% of the
time.
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Type I errors and the α-level of a test (cont.)

Therefore, when you specify the type I error rate you’re willing
to allow in your testing scheme, you are also specifying the
upper limit of the p-value for which statistical significance is
declared.

The α-level of a test is also called the significance level of the
test.
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Power

H0 true HA true

Reject H0 α 1 - β = Power

Fail to reject H0 1 - α β

The power of a test is the probability of correctly rejecting the
null in favor of the alternative. A well-designed study will strike
a balance between acceptable levels of type I error (usually
0.05) and power (often set at a minimum of 0.8).
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Common endpoints to compare groups

• Difference in means
◦ Compares a continuous variable between two groups
◦ Null value is 0
◦ two-sample t-test or Wilcoxon rank sum test

(independent groups)
◦ paired t-test or Wilcoxon signed rank test (paired

groups)

• Difference in proportions
◦ Compares a categorical variable between two groups
◦ Null value is 0
◦ Chi-square test or Fisher’s exact test (independent

groups)
◦ McNemar’s test (paired groups)
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Common endpoints to compare groups (cont.)

• Odds ratio (OR) = odds of being a “1” for subjects in
group A/odds in of being a “1” for subjects in group B
◦ Compares a binary variable between groups A and B

(e.g. 1 = disease present, 0 = disease absent)
◦ OR > 0
◦ Null value is 1
◦ E.g. OR = 1.3 means there is a 30% increase in the

odds of being diseased comparing subjects in group A
to those in group B

◦ E.g. OR = 0.8 means there is a 20% reduction in the
odds of being diseased comparing subjects in group A
to those in group B

◦ Chi-square test or logistic regression
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Common endpoints to compare groups (cont.)

• Hazard ratio (HR) = hazard of death in group A/hazard of
death in group B
◦ Compares a time-to-event variable between groups A

and B
◦ HR > 0
◦ Null value is 1
◦ E.g. HR = 1.3 means there is a 30% increase in the

risk of death comparing subjects in group A to those in
group B

◦ E.g. HR = 0.8 means there is a 20% reduction in the
risk of death comparing subjects in group A to those in
group B

◦ Log rank test or Cox proportional hazards regression
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Putting some of this together ...

From page 3 of Ohtsu et al., JCO 2011:

“On the basis of a systematic literature review, it was
assumed that median OS in the placebo group would be 10
months. The study was powered to test the hypothesis that
the addition of bevacizumab would improve median OS to
12.8 months, equivalent to a hazard ratio (HR) of 0.78
between study groups, assuming an exponential distribution
for the time-to-death variable. ... To detect an HR of 0.78, 509
deaths were necessary to ensure 80% power for a two-sided
log-rank test at a significance level of 0.05.”
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Confidence intervals

A confidence interval is an estimated range of values that
provides a measure of uncertainty associated with an
estimated parameter. The wider the interval the greater the
uncertainty in the estimate. The more narrow the interval the
greater our faith in the estimate. Typically, a 95% CI is
reported. The “95%”-part of the interval means that if you
were able to replicate the exact same study an infinite
number of times, 95% of the resulting CIs would contain the
true parameter of interest. Of course, no one is ever going to
actually repeat the study over and over again.

Here is an example from the Ohtsu paper, page 4.

“PFS was prolonged significantly in the bevacizumab group
compared with the placebo group (HR, 0.80; 95% CI, 0.67 to
0.93; P = .0037).”
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Confidence intervals (cont.)

How do we interpret this information? Our best estimate of
the true HR is 0.80, but our data are consistent with a HR
ranging from 0.67 to 0.93.

Notice that the CI does not contain 1.0, the null value for a
HR, and the p-value of the test indicates significance. In
general, let S be the statistic used to perform a test that
compares two groups. For example, S could be a difference
in sample means, a difference in sample proportions, an
estimated OR, or an estimated HR. If the test is significant at
α-level 0.05, then the 95% CI constructed with S will not
contain the relevant null value.
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Confidence intervals (cont.)

A final word about confidence intervals.

A CI is an estimated range of values that indicates the
uncertainty in any estimated parameter, whether or not that
parameter is used to compare two groups.

For example, in Table 2 of Ohtsu, the estimated 1-year
survival rate for the bevacizumab group is 50.2% with a
corresponding 95% CI of 45.1% to 55.3%. Based on our
data, we estimate that slightly more than half of
bevacizumab-treated subjects will survive to one year, but our
data are consistent with one-year survival rates as low as
45% and as high as 55%.
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