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Introduction

Survival analysis is a general term describing the analytic
techniques for data in which the endpoint is the time
measured from a defined beginning to the occurrence of a
specified event. The endpoint is the event time.

• In a cancer clinical trial, the outcome of interest is the
survival time of patients from the start of treatment until
death.

• In a study of married couples, the outcome of interest is
the time from the wedding until the birth of the first child.

• In a study of the carcinogenicity of a chemical, rats are
exposed to the chemical and the outcome of interest is
the time until a tumor develops.
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Censoring

Event-time data are subject to censoring. Censoring occurs
when the event of interest is not observed for some of the
subjects in the study. The most common causes of censoring
are

• The subject has not yet had the event when the study is
terminated.

• The subject is lost to follow-up or withdrawn from the
study.

• The subject dies from causes not relevant to the study.

In general, we assume that censoring is non-informative.
That is to say, censoring should not convey information about
the patient’s outcome (event versus non-event).
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Types of censoring

• Right-censoring
◦ Event occurs after a given time point
◦ E.g. In a clinical trial with overall survival as the

primary endpoint, the subject has not had the event
when the study is terminated. For this subject the
event is assumed to occur after the study’s
termination.

• Left-censoring
◦ Event occurs before a given time point
◦ E.g. Three months following surgical removal of the

primary tumor, patients are examined to see if cancer
has recurred. Events for these patients are assumed
to have occurred prior to three months post surgery.
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Types of censoring (cont.)

• Interval-censoring
◦ Event occurs between two time points
◦ E.g. In a clinical trial with progression-free survival as

the primary endpoint, subjects are examined every
three months to determine if cancer has progressed
from baseline. At a six-month follow-up visit, a patient
has not progressed, but at the nine-month follow-up
visit, progression has occurred. The event for this
subject is assumed to have occurred between six and
nine months.

In this presentation, we will focus on right-censored data.
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Event-time data

ID Entry End Time (mos) Event

1 01/01/90 03/01/91 14 Death
2 02/01/90 02/01/91 12 Lost to FU
3 06/01/90 12/31/91 19 Study ended
4 09/01/90 04/01/91 7 Death
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Event-time data depiction
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Data issues

• Distribution of event times tends to be positively skewed
◦ Some observations have much longer event times

than others
◦ Non-normal distribution

• Censoring
◦ Event times only partially observed
◦ Comparison of mean event time between groups not

appropriate
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Terminology and notation

• T is the time to the specified event and its observed value
for a given subject is denoted as t.

• The survival function, S(t), expresses the probability of
surviving at least t time units. For example, a “five year
survival rate” is simply the probability of surviving at least
five years (from some pre-defined time point). The
definition of the survival function is

S(t) = Prob(T > t).
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Properties of S(t) = Prob(T > t)

• Non-increasing function of t

• S(0) = 1. In words, at the beginning of observation, no
subject has had the event of interest.

• S(∞) = 0. In words, if subjects were observed forever,
everyone would eventually experience the event.
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Estimation of S(t)

The most common estimator of the survival function is the
Kaplan-Meier estimator, also known as the Product-limit
estimator. It is a non-parametric estimator of survival, which
means that it requires no distributional assumptions about the
event times.

We first introduce the following useful terminology and
notation.
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Kaplan-Meier estimator of S(t)

• Let k index the ordered (from smallest to largest)
non-censored event times in the data. These event times
are represented as tk.

• The risk set at event time tk refers to the collection of
subjects at risk of failure just before time tk.

• nk is the size of the risk set associated with event time tk.

• dk is the number of events at event time tk.

Then the Kaplan-Meier estimator of S(t) is

ŜKM(t) =
∏

{k:tk≤t}

(
1 −

dk

nk

)
.
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KM estimation - example

Consider the following ordered event times for ten subjects.
The variable CENSOR is equal to 1 if an event is observed
and 0 if the event time is censored.

ID 1 2 3 4 5 6 7 8 9 10

t 3 5 5 7 7 8 10 11 13 13
CENSOR 1 1 0 1 1 0 1 0 1 0

The five observed event times are summarized below.
k tk nk dk dk/nk 1 − dk/nk

1 t1 = 3 10 1 1/10 9/10
2 t2 = 5 9 1 1/9 8/9
3 t3 = 7 7 2 2/7 5/7
4 t4 = 10 4 1 1/4 3/4
5 t5 = 13 2 1 1/2 1/2
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KM estimation - example (cont.)

ŜKM(t) =
∏

{k:tk≤t}

(
1 −

dk

nk

)
,

t {k : tk ≤ t} ŜKM(t)

t ∈ [0, 3) none 1
t ∈ [3, 5) k = 1 9/10 = 0.9

t ∈ [5, 7) k = 1, 2 (9/10) (8/9) = 0.8

t ∈ [7, 10) k = 1, 2, 3 (9/10) (8/9) (5/7)
.
= 0.57

t ∈ [10, 13) k = 1, 2, 3, 4 (9/10) (8/9) (5/7) (3/4)
.
= 0.43

t = 13 k = 1, 2, 3, 4, 5 (9/10) (8/9) (5/7) (3/4) (1/2)
.
= 0.21
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Graphing KM estimator

Note ŜKM(t) changes at observed event times and remains
constant between observed event times.
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German Breast Cancer Study

The German Breast Cancer Study was a randomized 2×2
trial evaluating hormonal treatment and the duration of
chemotherapy in node-positive breast cancer patients. The
data are described in the handout provided.
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Comparing survival functions

Suppose we want to compare survival experiences for
subjects with zero or one nodes involved to those with two or
more nodes involved. The most common method to compare
survival functions is the log-rank test.
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The Log-Rank test

Let S1(t) be the survival function for Group 1.
Let S2(t) be the survival function for Group 2.
The log-rank test tests the following null versus alternative
hypothesis:

H0 : S1(t) = S2(t) for all t

HA : S1(t) 6= S2(t) for at least one t

The idea behind the log-rank test is to construct a 2 × 2
contingency table of group membership versus survival for
each event time, t. The data from the sequence of tables are
accumulated using the Mantel-Haenszel test statistic.
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The Log-Rank test (cont.)
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Some words of caution

The log-rank test is the most powerful test for the specific
alternative

HA : S1(t) = [S2(t)]
c, c 6= 1.

It is not as powerful for other alternatives for which S1(t) is
different from S2(t). This means that failing to detect a
significant difference between the survival functions for two
groups can be attributed to any of the following:

1. H0 is true

2. Lack of power because of inadequate sample size

3. Lack of power due to departure from the assumption of
the alternative for which the log-rank test is most
powerful.
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Checking for proportional hazards

S1(t) = [S2(t)]
c, c 6= 1 is known as the proportional hazards

assumption (more on this later). To assess the validity of this
assumption, we use the following fact.

log S1(t) = c log S2(t)

⇐⇒ − log S1(t) = c(− log S2(t))

⇐⇒ log(− log S1(t)) = log c + log(− log S2(t))

If we plot log [− log[S1(t)]] on the same graph with
log [− log[S2(t)]] we should see two curves that are separated
by a constant distance, log c. We can construct this plot
directly in SAS.
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Log-minus-log-survival plots
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The hazard function

While the survival function addresses a patient’s question
about how long they have to live following a diagnosis, the
hazard function addresses the question, “How likely am I to
die right now?”

The hazard function, h(t), is the instantaneous risk of failure
at time t for an individual surviving to time t. It is sometimes
referred to as the intensity rate or the force of mortality.
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Key relationships

1. S(t) = Prob(T > t)

2. h(t) = lim∆t→0

[
Prob(t≤T≤t+∆t|T≥t)

∆t

]

3. h(t) = −dS(t)/dt
S(t)

4. H(t) =
∫ t

0
h(u)du

5. H(t) = − ln S(t)
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Proportional hazards revisited

Recall the log-rank test is most powerful for the alternative

S1(t) = [S2(t)]
c, c 6= 1.

We said that this assumption was called the proportional
hazards assumption. We now have the tools to demonstrate
where this name comes from.
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Proportional hazards revisited (cont.)

As a quick review, recall that two quantities are proportional if
their ratio is a constant. That is, X is proportional to Y (and
vice versa) if X/Y = c, where c is some constant.

S1(t) = [S2(t)]
c

⇐⇒ ln S1(t) = c ln S2(t)

⇐⇒ − ln S1(t) = c(− ln S2(t))

⇐⇒ H1(t) = cH2(t)

⇐⇒
H1(t)

H2(t)
= c
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Proportional hazards revisited (cont.)

Therefore, when we plot ln(− ln S1(t)) and ln(− lnS2(t)) on
the same set of axes, we are actually plotting ln(H1(t)) and
ln(H2(t)). It follows from properties of logarithms that if H1(t)
and H2(t) are proportional to one another, then their
logarithms should differ by a constant.
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Regression models for survival data

We approach the problem of modeling event time via the
hazard function. We impose a regression model-type
structure on the hazard function that is the product of two
components. One factor captures the effect of the event time
on the hazard and the second expresses the effects of
covariates associated with survival, such as age, race, sex,
etc. The form of the model is

h(t|X1, . . . , Xk) = h0(t)e
β1X1+...+βkXk .
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Regression models for survival data (cont.)

h(t|X1, . . . , Xk) = h0(t)e
β1X1+...+βkXk

• h0(t) is called the baseline hazard. It characterizes how
the hazard function changes as a function of time.

• eβ1X1+...+βkXk characterizes how the hazard function
changes as a function of covariates.

• h(t|X) is referred to as the Cox model or Cox proportional
hazards model or simply the proportional hazards model.

• h(t|X) is linear in the covariates on the log scale. That is,
ln h(t|X) = ln h0(t) + (β1X1 + . . . + βkXk)
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Why “proportional hazards”?

The proportional hazards assumption implies that the ratio of
the instantaneous failure rates for two subjects is a constant.
To see why this assumption is implicit in the form of the
model, consider two subjects, A and B with covariates XA

and XB, respectively. Then

• h(t|XA) = h0(t)e
X

′

Aβ

• h(t|XB) = h0(t)e
X

′

Bβ

so that

h(t|XA)

h(t|XB)
=

h0(t)e
X

′

Aβ

h0(t)eX
′

B
β

=
eX

′

Aβ

eX
′

B
β
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Why “proportional hazards”? (cont.)

Since eX
′

Aβ

e
X′

B
β

is just a constant, the hazards for the two subjects

are proportional to one another. Notice that the ratio of their
hazards does not depend on time. The proportional hazards
assumption means we assume that the ratio of the hazards is
constant over time.
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Multivariable models

Consider modeling the hazard of death as a function of

• hormone treatment (Yes or No)

• nodal involvement (0,1 versus 2+)

• tumor grade (1,2,3)

The model is

h(t|hormone, node, grade) = h0(t)e
β1HM+β2ND+β3G2+β4G3.

(Segue to fitting in SAS)
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Interpretation of parameter estimates

The fitted model is

h(t|hormone, node, grade) = h0(t)e
−0.25HM+0.74ND+1.23G2+1.84G3.

We can use the fitted model to obtain estimates of hazard
ratios. Specifically, suppose we want to compare the hazard
of failure for subjects with and without hormone treatment,
controlling for nodal involvement and tumor grade.

• For the subject randomized to hormone treatment,
h(t|HM=1, node, grade) =

h0(t)e
−0.25×1+0.74ND+1.23G2+1.84G3.

• For the subject randomized to no hormone treatment,
h(t|HM = 0, node, grade) =

h0(t)e
−0.25×0+0.74ND+1.23G2+1.84G3.
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Interpretation of parameter estimates

• The hazard ratio is

h(t|HM = 1, node, grade)

h(t|HM = 0, node, grade)
=

h0(t)e
−0.25+0.74ND+1.23G2+1.84G3

h0(t)e0.74ND+1.23G2+1.84G3

= e−0.25 .
= 0.78.

In words, there is a 22% reduction in the hazard of death for
subjects randomized to hormone treatment relative to those
randomized to the no hormone treatment arm, after
controlling for nodal involvement and tumor grade. However,
the p-value corresponding to the chi-square test for the
parameter is non-significant (p = 0.13), so this reduction in
the hazard is not statistically significant.
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Hazard ratios for categorical predictors

In general, let X be a k-level categorical variable. Let
Z1, Z2, . . . , Zk−1 be the k − 1 dummy variables (reference cell
coding) associated with X. Assume βj is the regression
coefficient of Zj obtained from a Cox-PH regression model,
where j = 1, . . . , k − 1. Then eβj is the hazard ratio comparing
the jth level of X to the reference level, controlling for the
other variables in the model.
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Confidence intervals for hazard ratios

A 95% confidence interval for the HR is simply

eβ̂ ± 1.96 dSE(β̂).

Therefore, from the SAS output, a 95% CI for the HR of death
for those randomized to hormone treatment relative to those
not randomized to hormone treatment, is

e−0.24563 ± 1.96×0.16380 .
= (0.57, 1.08).

Because the CI contains the null value of 1, we conclude the
difference in the hazard of death for subjects in these two
arms is not statistically significant.
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HRs and CIs for continuous model covariates

Consider inclusion of the variable SIZE. The default HR and
corresponding 95% CI are 1.02, 95% CI = 1.01 to 1.03, with p
= 0.0002. Clearly tumor size is strongly associated with the
hazard of death, but the HR and 95% CI do not convey this.
This is because the default HR indicates the change in the
hazard for a unit increase in tumor size, a change that is not
likely to have any clinical value.

A Quick and Gentle Introduction to Survival Analysis – p. 37/38



Constructing other HRs and CIs

To compute the hazard ratio and corresponding 95% CI
comparing subjects with values for a continuous covariate
that differ by a fixed amount, say ∆x, we use the following
principle:

ĤR = e∆xβ̂

and the 95% CI is

(e∆xβ̂−1.96×|∆x|×SE(β̂), e∆xβ̂+1.96×|∆x|×SE(β̂)).
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