## Multivariate Data and Matrix Algebra Review

Biometry 726 Fall 2010

Multivariate Data and Matrix Algebra Review - p. 1/39

## What is 'multivariate' data?

Data in which each sampling unit contributes more than one outcome.

| Sampling unit      | Multivariate outcome                                   |
|--------------------|--------------------------------------------------------|
| Person             | Duplicate serum concentration measures                 |
|                    | of a panel of cytokines (e.g. IL6, TNF $\alpha$ , etc. |
| Chick embryo heart | Number of cells in the superior and inferior           |
|                    | atrioventricular cushions measured in six              |
|                    | serial confocal planes                                 |
| Elementary school  | Third grade students' test scores                      |
| Twin pair          | Age of death of each member                            |
| Cancer patient     | Tumor response measured at 3 weeks,                    |
|                    | 2 months and 6 months post treatment                   |

What property/ies of multivariate data make commonly used statistical approaches inappropriate or impractical?

Multivariate Data and Matrix Algebra Review – p. 3/39

# Goals of multivariate data analysis

| 1. |  |
|----|--|
|    |  |
| 2. |  |
|    |  |
| 3. |  |
|    |  |
| 4. |  |
|    |  |
| 5  |  |
| 5. |  |

Because each 'subject' contributes multiple outcome measures to the analysis, it is convenient to organize subject *i*'s  $n_i$  outcomes as a column vector.

$$\mathbf{Y}_{i} = \left[ \begin{array}{c} Y_{i1} \\ Y_{i2} \\ \vdots \\ Y_{i,n_{i}} \end{array} \right]$$

- Y<sub>i</sub>'s dimension is .
- $\mathbf{Y}_i$  is a random variable as are its individual elements
- The typeset depiction of a random vector uses *bold face*  $\mathbf{Y}_i$  rather than  $Y_i$
- The handwritten depiction of a random vector is \_

Multivariate Data and Matrix Algebra Review - p. 5/39

Random vectors (cont.)

Representing vectors as columns can take up a lot of space. To get around this, we often use the *transpose* operator to depict vectors. Therefore, we might write

 $\mathbf{Y}_i = (Y_{i1}, Y_{i2}, \dots, Y_{i,n_i})'$ 

where ' means *transpose*. Notice this representation states that  $\mathbf{Y}_i$  is the transpose of a  $1 \times n_i$  row vector, which makes it an  $n_i \times 1$  column vector. Vectors are, by default, column vectors unless otherwise stated.

A rectangular array of real numbers arranged in m rows and n columns is called an  $m \times n$  matrix.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

We write  $\mathbf{A} = \{a_{ij}\}$  to represent the matrix  $\mathbf{A}$  whose ijth element is  $a_{ij}$ .

Multivariate Data and Matrix Algebra Review - p. 7/39

### Matrix operations

- <u>Addition</u>:  $A + B = \{a_{ij} + b_{ij}\}$  for  $m \times n$  matrices A and B
- Matrices A and B are *conformal* for addition (or subtraction) if the row dimensions of A and B are equal, and the column dimensions of A and B are equal.
- Matrix addition is commutative. \_\_\_\_\_\_
- Matrix addition is associative.
- Scalar multiplication:  $c\mathbf{A} = \{ca_{ij}\}$

• Matrix multiplication: For  $m \times n$  matrix A and  $n \times p$ matrix B, the matrix product AB is the  $m \times p$  matrix C where

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

• Matrices A and B are conformal for the product AB if the column dimension of A equals the row dimension of B.

Let 
$$\mathbf{A} = \begin{bmatrix} 2 & -3 & 0 \\ 1 & 4 & 2 \end{bmatrix}$$
 and  $\mathbf{B} = \begin{bmatrix} 3 & 4 \\ -2 & 0 \\ 1 & 2 \end{bmatrix}$ . Find  $\mathbf{AB}$ .

Multivariate Data and Matrix Algebra Review - p. 9/39

## Matrix multiplication (cont.)

- AB is the *pre-multiplication* of B by A or equivalently, the *post-multiplication* of A by B.

• e.g. Let 
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$
 and let  $\mathbf{B} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ . Then  
 $\mathbf{AB} =$  and  $\mathbf{BA} =$ 

- Matrix multiplication is associative.
- Matrix multiplication distributes over addition.

- The transpose of an  $m \times n$  matrix A, denoted A', is the  $n \times m$  matrix whose *ij*th element is the *ji*th element of A.
- More succinctly, let C = A'. Then  $c_{ij} = a_{ji}$ .

$$\bullet \left[ \begin{array}{rrr} 2 & -3 & 0 \\ 1 & 4 & 2 \end{array} \right]' =$$

• 
$$(\mathbf{A}')' = \mathbf{A}$$

• 
$$(\mathbf{A} + \mathbf{B})' = \mathbf{A}' + \mathbf{B}'$$

•  $(\mathbf{AB})' = \mathbf{B}'\mathbf{A}'$ 

Multivariate Data and Matrix Algebra Review - p. 11/39

# Types of matrices

- Square matrices have the same number of rows and columns. The row (or column) dimension is called the *order* of the matrix.
- Note that the matrix product AA is defined only if A is square.
- If  $A^2 = AA = A$  then A is said to be *idempotent*.
- A is a symmetric matrix if A' = A.
- A square matrix A is *diagonal* if  $a_{ij} = 0$  for all  $i \neq j$ , that is to say, if all off-diagonal elements are zero.
- The order *n* identity matrix,  $I_n$ , is a diagonal matrix with diagonal elements equal to 1.

- Square matrix A is upper-triangular if  $a_{ij} = 0$  for i > j.
- Square matrix A is *lower-triangular* if  $a_{ij} = 0$  for i < j.



- $a_{ij}$  i = j
- $a_{ij}$  i < j
- $a_{ij}$  i > j

Multivariate Data and Matrix Algebra Review - p. 13/39

# Matrix inverse definition

• An  $n \times n$  matrix A is said to be *nonsingular* or *invertible* if there exists  $n \times n$  matrix B such that

$$\mathbf{AB} = \mathbf{BA} = \mathbf{I}.$$

**B** is called the *multiplicative inverse* of **A**. We write  $\mathbf{B} = \mathbf{A}^{-1}$ .

• A square matrix with no multiplicative inverse is said to be *singular*.

Matrix inverse - example

Demonstrate that 
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 3 & 3 & 4 \\ 2 & 2 & 3 \end{bmatrix}$$
 is the inverse of  $\mathbf{B} = \begin{bmatrix} 1 & 2 & -3 \\ -1 & 1 & -1 \\ 0 & -2 & 3 \end{bmatrix}$ .

Multivariate Data and Matrix Algebra Review - p. 15/39

#### Matrix determinant

• The determinant of the square  $n \times n$  matrix A is a scalar given by

$$|\mathbf{A}| = \begin{cases} a_{11} & \text{if } n = 1\\ \sum_{j=1}^{n} a_{1j} A_{1j} & \text{if } n > 1 \end{cases}$$

•  $A_{1j}$  is called the *cofactor* of  $a_{1j}$ , and is defined as

$$A_{1j} = |\mathbf{A}_{1j}|(-1)^{1+j}$$

where  $A_{1j}$  is the  $(n-1) \times (n-1)$  matrix obtained by deleting the first row and *j*th column of A.

Determinant of a  $2 \times 2$  matrix

Find 
$$|\mathbf{A}|$$
 where  $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ 

Multivariate Data and Matrix Algebra Review - p. 17/39

#### Determinant of a $3 \times 3$ matrix

Find 
$$|\mathbf{A}|$$
 where  $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ 

• In general,  $A_{ij} = |\mathbf{A}_{ij}|(-1)^{i+j}$  is the *cofactor* of  $a_{ij}$ .

• For 
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 3 \\ 2 & 3 & 2 \end{bmatrix}$$
, find  $A_{21}$ , the cofactor of  $a_{21}$ .

• It can be shown that

$$a_{i1}A_{j1} + a_{i2}A_{j2} + \ldots + a_{in}A_{jn} = \begin{cases} |\mathbf{A}| & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Multivariate Data and Matrix Algebra Review - p. 19/39

### Matrix adjoint

• Let A be an  $n \times n$  matrix. We define a new matrix called the *adjoint* of A by

adj 
$$\mathbf{A} = \begin{bmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{bmatrix}$$

• In words, the adjoint of A is formed by replacing each term by its cofactor, and then transposing the resulting matrix.

$$\mathbf{A} (\mathsf{adj} \mathbf{A}) = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} \begin{vmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{vmatrix} =$$

<u>Result</u>:  $A^{-1} =$ 

Multivariate Data and Matrix Algebra Review - p. 21/39

# Finding matrix inverse

Use the result on the previous slide to find the inverse of

 $\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 3 & 3 & 4 \\ 2 & 2 & 3 \end{bmatrix}.$ 

- A column vector is an  $m \times 1$  matrix.
- A row vector is a  $1 \times n$  matrix.
- By default, vectors are assumed to be column vectors unless indicated otherwise.
- The number of vector elements is called its *dimension*.
- Inner product: The *inner product* or *dot product* of two m-dimensional vectors x and y is defined as

$$\mathbf{x}'\mathbf{y} = \begin{bmatrix} x_1 & x_2 & \dots & x_m \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} = \sum_{i=1}^m x_i y_i$$

• For scalar c,  $c\mathbf{x} = [cx_1 \ cx_2 \ \dots \ cx_m]'$ 

Multivariate Data and Matrix Algebra Review - p. 23/39

#### Linear regression example

Let  $Y_i$  be the response for the *i*th subject with *k* covariates  $x_{i1}, x_{i2}, \ldots, x_{ik}$ . Recall that for multiple linear regression, we assume

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_k x_{ik} + \varepsilon_i.$$

The right hand side of this expression can be written as the inner product of two vectors, as follows:

Let  $\mathbf{x}' = [x_1 \ x_2 \ \dots \ x_m].$ 

- The *norm* (or *length* or *magnitude*) of  $\mathbf{x}$  is given by:
- $\mathbf{z}$  is the vector  $\mathbf{x}$  normalized to unit length if

$$\mathbf{z} = \frac{\mathbf{x}}{||\mathbf{x}||}.$$

To see that  $\mathbf{z}$  has unit length, note that:

Multivariate Data and Matrix Algebra Review - p. 25/39

## Angle between two vectors

Let  ${\bf x}$  and  ${\bf y}$  be two m-dimensional vectors. The angle  $\theta$  between the two vectors is defined such that

$$\cos(\theta) = \frac{\mathbf{x}'\mathbf{y}}{||\mathbf{x}||||\mathbf{y}||}.$$

<u>Proof for 2-dimensional case</u>: (Use fact that  $\cos(\theta_1 - \theta_2) = \cos(\theta_1)\cos(\theta_2) + \sin(\theta_1)\sin(\theta_2)$ ).

#### Orthogonal and orthonormal vectors

- The collection of equally-dimensioned vectors,  $\mathbf{x}_1, \mathbf{x}_2, \ldots$ ,  $\mathbf{x}_p$ , are *orthogonal* if  $\mathbf{x}'_i \mathbf{x}_j = 0$  whenever  $i \neq j$ .
- The collection of equally-dimensioned vectors,  $\mathbf{x}_1, \mathbf{x}_2, \ldots$ ,  $\mathbf{x}_p$ , are *orthonormal* if they are orthogonal and  $||\mathbf{x}_i|| = 1$  for all *i*. That is to say,

$$\mathbf{x}_i' \mathbf{x}_j = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

Multivariate Data and Matrix Algebra Review - p. 27/39

#### Linear dependence

• Let  $x_1, x_2, ..., x_p$  be a collection of vectors of equal dimension. We say  $x_1, x_2, ..., x_p$  are *linearly dependent* if there exist constants  $c_1, c_2, ..., c_p$  not all zero such that

$$c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \ldots + c_p\mathbf{x}_p = \mathbf{0}.$$

Linear dependence means at least one vector in the set can be written as a linear combination of the other vectors.

• Vectors of the same dimension that are not linearly dependent are said to be *linearly independent*.

Row rank and column rank

- The *row rank* of a matrix is the maximum number of linearly independent rows.
- The *column rank* of a matrix is the maximum number of linearly independent columns.
- E.g. Find the row and column rank of

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 4 \\ 3 & 0 & 6 \\ 5 & 3 & 13 \end{bmatrix}$$

Multivariate Data and Matrix Algebra Review - p. 29/39

Rank (cont.)

- row rank = column rank
- If the rank of  $m \times n$  matrix A is min(m, n), then A is said to be of *full rank*. Otherwise, A is said to be *rank deficient*.

#### Linear regression example - dummy variables

```
data one;
                            data two;
   input y group;
                                set one;
   datalines;
                                if group = 1 then x1 = 1; else x1 = 0;
0.62 2
                                if group = 2 then x^2 = 1; else x^2 = 0;
                                if group = 3 then x3 = 1; else x3 = 0;
-0.55 2
-0.50 1
                            run;
0.41 1
-0.55 3
                            proc reg data = two;
0.067 1
                                model y = x1 x2 x3;
1.27 3
                            run;
-0.11 1
-0.33 2
-0.54 3
;
run;
```

Multivariate Data and Matrix Algebra Review - p. 31/39

#### Linear reg example - dummy variables (cont.)

| Output |
|--------|
|--------|

- NOTE: Model is not full rank. Least-squares solutions for the parameters are not unique. Some statistics will be misleading. A reported DF of 0 or B means that the estimate is biased.
- NOTE: The following parameters have been set to 0, since the variables are a linear combination of other variables as shown.

x3 = Intercept - x1 - x2

• Let A be a square  $n \times n$  matrix. The *trace* of A is given by

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}.$$

- Trace is the sum of the diagonal elements of A
- Properties

• 
$$\operatorname{tr}(\mathbf{AB}) = \operatorname{tr}(\mathbf{BA})$$

$$\circ \ tr(\mathbf{AB}) = tr(\mathbf{B'A'})$$

$$\Rightarrow \mathsf{tr}(\mathbf{AB}) = \mathsf{tr}(\mathbf{A'B'})$$

Multivariate Data and Matrix Algebra Review - p. 33/39

### Orthogonal matrices

- An *n* × *n* matrix A is *orthogonal* if its columns, considered as vectors, form an orthonormal set.
- A is an orthogonal matrix if A'A = I.
- From the previous result, we conclude that for orthogonal matrix A,  $A^{-1} =$

- Let A be an n × n matrix. A scalar λ is said to be an eigenvalue of A if there exists x ≠ 0 such that Ax = λx. The vector x is said to be an eigenvector of λ.
- Show that  $\mathbf{x} = \begin{bmatrix} 2 & 1 \end{bmatrix}'$  is an eigenvector for  $\mathbf{A} = \begin{bmatrix} 4 & -2 \\ 1 & 1 \end{bmatrix}$ ,

and find the corresponding eigenvalue.

Multivariate Data and Matrix Algebra Review - p. 35/39

# Characteristic equation

- 1. Recall from Slide 21,  $A^{-1} = \frac{1}{|A|}adjA$ . It follows that A is singular if |A| = 0.
- 2. Further, it can be shown that for any square matrix A, the solution x to the matrix equation Ax = 0 is non-zero only if A is singular.
  - We can rewrite  $Ax = \lambda x$  as  $Ax \lambda x = 0$  or equivalently

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}.$$

From 1 and 2 above, we know that a non-zero solution exists only if

$$|\mathbf{A} - \lambda \mathbf{I}| = 0.$$

•  $|\mathbf{A} - \lambda \mathbf{I}| = 0$  is called the *characteristic equation* and is used to find the eigenvalues of a square matrix.

### Finding eigenvalues and eigenvectors

Find the eigenvalues and corresponding eigenvectors for

 $\mathbf{A} = \begin{bmatrix} 3 & 2\\ 3 & -2 \end{bmatrix}.$ 

Multivariate Data and Matrix Algebra Review - p. 37/39

## Quadratic forms

• Let x be an *n*-dimensional vector and let A be a symmetric  $n \times n$  matrix. The scalar

#### $\mathbf{x}' \mathbf{A} \mathbf{x}$

is called a quadratic form.

• E.g. Find the matrix associated with the quadratic form  $3x_1^2 - 5x_1x_2 + x_2^2$  where  $\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}'$ .

A real symmetric matrix  ${\bf A}$  is said to be

- i. Positive definite if  $\mathbf{x}' \mathbf{A} \mathbf{x} > 0$  for all nonzero  $\mathbf{x}$
- ii. Negative definite if  $\mathbf{x}' \mathbf{A} \mathbf{x} < 0$  for all nonzero  $\mathbf{x}$
- iii. Positive semi-definite if  $\mathbf{x}' \mathbf{A} \mathbf{x} \ge 0$  for all nonzero  $\mathbf{x}$
- iv. Negative semi-definite if  $\mathbf{x}' \mathbf{A} \mathbf{x} \leq 0$  for all nonzero  $\mathbf{x}$

Multivariate Data and Matrix Algebra Review - p. 39/39