Multivariate Data and Matrix Algebra Review

Biometry 726
Fall 2010

What is 'multivariate' data?

Data in which each sampling unit contributes more than one outcome.
$\left.\left.\begin{array}{l|l}\hline \text { Sampling unit } & \text { Multivariate outcome } \\ \hline \text { Person } & \begin{array}{l}\text { Duplicate serum concentration measures } \\ \text { of a panel of cytokines (e.g. IL6, TNF } \alpha, \text { etc. } \\ \text { Chick embryo heart }\end{array} \\ \text { Number of cells in the superior and inferior } \\ \text { atrioventricular cushions measured in six } \\ \text { serial confocal planes }\end{array}\right\} \begin{array}{l}\text { Third grade students' test scores } \\ \text { Age of death of each member } \\ \text { Twin pair } \\ \text { Cancer patient }\end{array} \begin{array}{l}\text { Tumor response measured at 3 weeks, } \\ 2 \text { months and 6 months post treatment }\end{array}\right]$.

Multivariate data properties

What property/ies of multivariate data make commonly used statistical approaches inappropriate or impractical?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multivariate Data and Matrix Algebra Review - p. 3/39

Goals of multivariate data analysis

1. \qquad
\qquad
2. \qquad
\qquad
3. \qquad
\qquad
4. \qquad
\qquad
5. \qquad

Random vectors

Because each 'subject' contributes multiple outcome measures to the analysis, it is convenient to organize subject i 's n_{i} outcomes as a column vector.

$$
\mathbf{Y}_{i}=\left[\begin{array}{c}
Y_{i 1} \\
Y_{i 2} \\
\vdots \\
Y_{i, n_{i}}
\end{array}\right]
$$

- Y_{i} 's dimension is \qquad
- Y_{i} is a random variable as are its individual elements
- The typeset depiction of a random vector uses bold face \mathbf{Y}_{i} rather than Y_{i}
- The handwritten depiction of a random vector is

Random vectors (cont.)

Representing vectors as columns can take up a lot of space. To get around this, we often use the transpose operator to depict vectors. Therefore, we might write

$$
\mathbf{Y}_{i}=\left(Y_{i 1}, Y_{i 2}, \ldots, Y_{i, n_{i}}\right)^{\prime}
$$

where ' means transpose. Notice this representation states that \mathbf{Y}_{i} is the transpose of a $1 \times n_{i}$ row vector, which makes it an $n_{i} \times 1$ column vector. Vectors are, by default, column vectors unless otherwise stated.

Matrix algebra - basic terminology
A rectangular array of real numbers arranged in m rows and n columns is called an $m \times n$ matrix.

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

We write $\mathbf{A}=\left\{a_{i j}\right\}$ to represent the matrix A whose $i j$ th element is $a_{i j}$.

Matrix operations

- Addition: $\quad \mathbf{A}+\mathbf{B}=\left\{a_{i j}+b_{i j}\right\}$ for $m \times n$ matrices \mathbf{A} and \mathbf{B}
- Matrices \mathbf{A} and \mathbf{B} are conformal for addition (or subtraction) if the row dimensions of A and B are equal, and the column dimensions of A and B are equal.
- Matrix addition is commutative. \qquad
- Matrix addition is associative.
- Scalar multiplication: $c \mathbf{A}=\left\{c a_{i j}\right\}$

Matrix multiplication

- Matrix multiplication: For $m \times n$ matrix \mathbf{A} and $n \times p$ matrix \mathbf{B}, the matrix product $\mathbf{A B}$ is the $m \times p$ matrix \mathbf{C} where

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} .
$$

- Matrices A and B are conformal for the product AB if the column dimension of \mathbf{A} equals the row dimension of \mathbf{B}.

Let $\mathbf{A}=\left[\begin{array}{rrr}2 & -3 & 0 \\ 1 & 4 & 2\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{rr}3 & 4 \\ -2 & 0 \\ 1 & 2\end{array}\right]$. Find $\mathbf{A B}$.

Matrix multiplication (cont.)

- AB is the pre-multiplication of B by A or equivalently, the post-multiplication of A by B.
- Matrix multiplication does not necessarily commute.

That is, \qquad

- e.g. Let $\mathbf{A}=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ and let $\mathbf{B}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Then $\mathrm{AB}=\quad$ and $\mathrm{BA}=$
- Matrix multiplication is associative.
- Matrix multiplication distributes over addition.
- The transpose of an $m \times n$ matrix \mathbf{A}, denoted \mathbf{A}^{\prime}, is the $n \times m$ matrix whose $i j$ th element is the $j i$ th element of \mathbf{A}.
- More succinctly, let $\mathbf{C}=\mathbf{A}^{\prime}$. Then $c_{i j}=a_{j i}$.
- $\left[\begin{array}{rrr}2 & -3 & 0 \\ 1 & 4 & 2\end{array}\right]^{\prime}=$
- $\left(\mathbf{A}^{\prime}\right)^{\prime}=\mathbf{A}$
- $(\mathbf{A}+\mathbf{B})^{\prime}=\mathbf{A}^{\prime}+\mathbf{B}^{\prime}$
- $(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime}$

Types of matrices

- Square matrices have the same number of rows and columns. The row (or column) dimension is called the order of the matrix.
- Note that the matrix product $\mathbf{A} \mathbf{A}$ is defined only if \mathbf{A} is square.
- If $\mathbf{A}^{2}=\mathbf{A} \mathbf{A}=\mathbf{A}$ then \mathbf{A} is said to be idempotent.
- \mathbf{A} is a symmetric matrix if $\mathbf{A}^{\prime}=\mathbf{A}$.
- A square matrix \mathbf{A} is diagonal if $a_{i j}=0$ for all $i \neq j$, that is to say, if all off-diagonal elements are zero.
- The order n identity matrix, \mathbf{I}_{n}, is a diagonal matrix with diagonal elements equal to 1 .

Triangular matrices

- Square matrix \mathbf{A} is upper-triangular if $a_{i j}=0$ for $i>j$.
- Square matrix A is lower-triangular if $a_{i j}=0$ for $i<j$.

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right]
$$

- $a_{i j} \quad i=j$
- $a_{i j} i<j$
- $a_{i j} i>j$

Matrix inverse definition

- An $n \times n$ matrix \mathbf{A} is said to be nonsingular or invertible if there exists $n \times n$ matrix \mathbf{B} such that

$$
\mathbf{A B}=\mathbf{B A}=\mathbf{I}
$$

B is called the multiplicative inverse of A . We write $\mathbf{B}=\mathbf{A}^{-1}$.

- A square matrix with no multiplicative inverse is said to be singular.

Matrix determinant

- The determinant of the square $n \times n$ matrix \mathbf{A} is a scalar given by

$$
|\mathbf{A}|= \begin{cases}a_{11} & \text { if } n=1 \\ \sum_{j=1}^{n} a_{1 j} A_{1 j} & \text { if } n>1\end{cases}
$$

- $A_{1 j}$ is called the cofactor of $a_{1 j}$, and is defined as

$$
A_{1 j}=\left|\mathbf{A}_{1 j}\right|(-1)^{1+j}
$$

where $\mathbf{A}_{1 j}$ is the $(n-1) \times(n-1)$ matrix obtained by deleting the first row and j th column of A.

Determinant of a 2×2 matrix

Find $|\mathbf{A}|$ where $\mathbf{A}=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$

Determinant of a 3×3 matrix

Find $|\mathbf{A}|$ where $\mathbf{A}=\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$

- In general, $A_{i j}=\left|\mathbf{A}_{i j}\right|(-1)^{i+j}$ is the cofactor of $a_{i j}$.
- For $\mathbf{A}=\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 5 & 3 \\ 2 & 3 & 2\end{array}\right]$, find A_{21}, the cofactor of a_{21}.
- It can be shown that

$$
a_{i 1} A_{j 1}+a_{i 2} A_{j 2}+\ldots+a_{i n} A_{j n}=\left\{\begin{array}{cc}
|\mathbf{A}| & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array}\right.
$$

Multivariate Data and Matrix Algebra Review - p. 19/39

Matrix adjoint

- Let A be an $n \times n$ matrix. We define a new matrix called the adjoint of \mathbf{A} by

$$
\operatorname{adj} \mathbf{A}=\left[\begin{array}{cccc}
A_{11} & A_{21} & \ldots & A_{n 1} \\
A_{12} & A_{22} & \ldots & A_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
A_{1 n} & A_{2 n} & \ldots & A_{n n}
\end{array}\right]
$$

- In words, the adjoint of \mathbf{A} is formed by replacing each term by its cofactor, and then transposing the resulting matrix.

Matrix inverse revisited

$\mathbf{A}(\boldsymbol{a d j} \mathbf{A})=\left[\begin{array}{rrlr}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}\end{array}\right]\left[\begin{array}{rrrr}A_{11} & A_{21} & \ldots & A_{n 1} \\ A_{12} & A_{22} & \ldots & A_{n 2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1 n} & A_{2 n} & \ldots & A_{n n}\end{array}\right]=$

Result: $\mathbf{A}^{-1}=$

Multivariate Data and Matrix Algebra Review - p. 21/39
Finding matrix inverse
Use the result on the previous slide to find the inverse of
$\mathbf{A}=\left[\begin{array}{lll}1 & 0 & 1 \\ 3 & 3 & 4 \\ 2 & 2 & 3\end{array}\right]$.

Vectors

- A column vector is an $m \times 1$ matrix.
- A row vector is a $1 \times n$ matrix.
- By default, vectors are assumed to be column vectors unless indicated otherwise.
- The number of vector elements is called its dimension.
- Inner product: The inner product or dot product of two m-dimensional vectors x and y is defined as

$$
\mathbf{x}^{\prime} \mathbf{y}=\left[\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{m}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]=\sum_{i=1}^{m} x_{i} y_{i}
$$

- For scalar $c, c \mathbf{x}=\left[\begin{array}{llll}c x_{1} & c x_{2} & \ldots & c x_{m}\end{array}\right]^{\prime}$

Linear regression example

Let Y_{i} be the response for the i th subject with k covariates $x_{i 1}, x_{i 2}, \ldots, x_{i k}$. Recall that for multiple linear regression, we assume

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{k} x_{i k}+\varepsilon_{i}
$$

The right hand side of this expression can be written as the inner product of two vectors, as follows:

Vector norm

Let $\mathbf{x}^{\prime}=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{m}\end{array}\right]$.

- The norm (or length or magnitude) of x is given by:
- z is the vector x normalized to unit length if

$$
\mathrm{z}=\frac{\mathrm{x}}{\|\mathrm{x}\|}
$$

To see that z has unit length, note that:

Angle between two vectors

Let x and y be two m -dimensional vectors. The angle θ between the two vectors is defined such that

$$
\cos (\theta)=\frac{\mathbf{x}^{\prime} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}
$$

Proof for 2-dimensional case:
(Use fact that $\left.\cos \left(\theta_{1}-\theta_{2}\right)=\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)+\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)\right)$.

Orthogonal and orthonormal vectors

- The collection of equally-dimensioned vectors, $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots$, \mathbf{x}_{p}, are orthogonal if $\mathbf{x}_{i}^{\prime} \mathbf{x}_{j}=0$ whenever $i \neq j$.
- The collection of equally-dimensioned vectors, $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots$, \mathbf{x}_{p}, are orthonormal if they are orthogonal and $\left\|\mathbf{x}_{i}\right\|=1$ for all i. That is to say,

$$
\mathbf{x}_{i}^{\prime} \mathbf{x}_{j}= \begin{cases}0 & \text { if } i \neq j \\ 1 & \text { if } i=j\end{cases}
$$

Linear dependence

- Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{p}$ be a collection of vectors of equal dimension. We say $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{p}$ are linearly dependent if there exist constants $c_{1}, c_{2}, \ldots, c_{p}$ not all zero such that

$$
c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\ldots+c_{p} \mathbf{x}_{p}=\mathbf{0}
$$

Linear dependence means at least one vector in the set can be written as a linear combination of the other vectors.

- Vectors of the same dimension that are not linearly dependent are said to be linearly independent.

Row rank and column rank

- The row rank of a matrix is the maximum number of linearly independent rows.
- The column rank of a matrix is the maximum number of linearly independent columns.
- E.g. Find the row and column rank of

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & 2 & 4 \\
3 & 0 & 6 \\
5 & 3 & 13
\end{array}\right]
$$

Rank (cont.)

- row rank = column rank
- If the rank of $m \times n$ matrix \mathbf{A} is $\min (m, n)$, then \mathbf{A} is said to be of full rank. Otherwise, \mathbf{A} is said to be rank deficient.

Linear regression example - dummy variables

```
data one;
    input y group;
    datalines;
    0.62 2
-0.55 2
-0.50 1
    0.41 1
-0.55 3
    0.067 1
    1.27 3
-0.11 1
-0.33 2
-0.54 3
;
run;
```

```
data two;
```

data two;
set one;
set one;
if group = 1 then x1 = 1; else x1 = 0;
if group = 1 then x1 = 1; else x1 = 0;
if group = 2 then x2 = 1; else x2 = 0;
if group = 2 then x2 = 1; else x2 = 0;
if group = 3 then x3 = 1; else x3 = 0;
if group = 3 then x3 = 1; else x3 = 0;
run;
run;
proc reg data = two;
proc reg data = two;
model y = x1 x2 x3;
model y = x1 x2 x3;
run;

```
run;
```


Linear reg example - dummy variables (cont.)

Output

NOTE: Model is not full rank. Least-squares solutions for the parameters are not unique. Some statistics will be misleading. A reported DF of 0 or B means that the estimate is biased.
NOTE: The following parameters have been set to 0, since the variables are a linear combination of other variables as shown.

$$
\text { x3 }=\text { Intercept - x1 - x2 }
$$

Matrix trace

- Let \mathbf{A} be a square $n \times n$ matrix. The trace of \mathbf{A} is given by

$$
\operatorname{tr}(\mathbf{A})=\sum_{i=1}^{n} a_{i i} .
$$

- Trace is the sum of the diagonal elements of \mathbf{A}
- Properties
- $\operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A})$
- $\operatorname{tr}(\mathbf{A B})=\operatorname{tr}\left(\mathbf{B}^{\prime} \mathbf{A}^{\prime}\right)$
$\Rightarrow \operatorname{tr}(\mathbf{A B})=\operatorname{tr}\left(\mathbf{A}^{\prime} \mathbf{B}^{\prime}\right)$

Orthogonal matrices

- An $n \times n$ matrix \mathbf{A} is orthogonal if its columns, considered as vectors, form an orthonormal set.
- A is an orthogonal matrix if $\mathbf{A}^{\prime} \mathbf{A}=\mathbf{I}$.
- From the previous result, we conclude that for orthogonal matrix $\mathbf{A}, \mathbf{A}^{-1}=$ \qquad

Eigenvalues and eigenvectors

- Let \mathbf{A} be an $n \times n$ matrix. A scalar λ is said to be an eigenvalue of \mathbf{A} if there exists $\mathbf{x} \neq 0$ such that $\mathbf{A x}=\lambda \mathbf{x}$. The vector x is said to be an eigenvector of λ.
- Show that $\mathbf{x}=\left[\begin{array}{ll}2 & 1\end{array}\right]^{\prime}$ is an eigenvector for $\mathbf{A}=\left[\begin{array}{rr}4 & -2 \\ 1 & 1\end{array}\right]$, and find the corresponding eigenvalue.

Characteristic equation

1. Recall from Slide $21, \mathbf{A}^{-1}=\frac{1}{|\mathbf{A}|} \operatorname{adj} \mathbf{A}$. It follows that $\underline{\mathbf{A} \text { is singular if }|\mathbf{A}|=0 .}$
2. Further, it can be shown that for any square matrix \mathbf{A}, the solution x to the matrix equation $\mathrm{Ax}=\mathbf{0}$ is non-zero only if A is singular.

- We can rewrite $\mathbf{A x}=\lambda \mathbf{x}$ as $\mathbf{A x}-\lambda \mathbf{x}=\mathbf{0}$ or equivalently

$$
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=\mathbf{0}
$$

From 1 and 2 above, we know that a non-zero solution exists only if

$$
|\mathbf{A}-\lambda \mathbf{I}|=0
$$

- $|\mathbf{A}-\lambda \mathbf{I}|=0$ is called the characteristic equation and is used to find the eigenvalues of a square matrix.

Finding eigenvalues and eigenvectors
Find the eigenvalues and corresponding eigenvectors for
$\mathbf{A}=\left[\begin{array}{rr}3 & 2 \\ 3 & -2\end{array}\right]$.

Quadratic forms

- Let \mathbf{x} be an n-dimensional vector and let \mathbf{A} be a symmetric $n \times n$ matrix. The scalar

$$
\mathbf{x}^{\prime} \mathbf{A x}
$$

is called a quadratic form.

- E.g. Find the matrix associated with the quadratic form $3 x_{1}^{2}-5 x_{1} x_{2}+x_{2}^{2}$ where $\mathbf{x}=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{\prime}$.

Positive definite matrices

A real symmetric matrix A is said to be
i. Positive definite if $\mathrm{x}^{\prime} \mathbf{A x}>0$ for all nonzero x
ii. Negative definite if $\mathrm{x}^{\prime} \mathbf{A x}<0$ for all nonzero x
iii. Positive semi-definite if $\mathrm{x}^{\prime} \mathrm{Ax} \geq 0$ for all nonzero x
iv. Negative semi-definite if $\mathrm{x}^{\prime} \mathbf{A x} \leq 0$ for all nonzero x

