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What is ‘multivariate’ data?

Data in which each sampling unit contributes more than one
outcome.

Sampling unit Multivariate outcome
Person Duplicate serum concentration measures

of a panel of cytokines (e.g. IL6, TNFα, etc.
Chick embryo heart Number of cells in the superior and inferior

atrioventricular cushions measured in six
serial confocal planes

Elementary school Third grade students’ test scores
Twin pair Age of death of each member
Cancer patient Tumor response measured at 3 weeks,

2 months and 6 months post treatment
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Multivariate data properties

What property/ies of multivariate data make commonly used
statistical approaches inappropriate or impractical?
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Goals of multivariate data analysis

1.

2.

3.

4.

5.
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Random vectors

Because each ‘subject’ contributes multiple outcome
measures to the analysis, it is convenient to organize subject
i’s ni outcomes as a column vector.

Yi =

⎡
⎢⎢⎢⎢⎣

Yi1

Yi2

...
Yi,ni

⎤
⎥⎥⎥⎥⎦

• Yi’s dimension is
• Yi is a random variable as are its individual elements
• The typeset depiction of a random vector uses bold face -

Yi rather than Yi

• The handwritten depiction of a random vector is .
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Random vectors (cont.)

Representing vectors as columns can take up a lot of space.
To get around this, we often use the transpose operator to
depict vectors. Therefore, we might write

Yi = (Yi1, Yi2, . . . , Yi,ni
)′

where ′ means transpose. Notice this representation states
that Yi is the transpose of a 1× ni row vector, which makes it
an ni × 1 column vector. Vectors are, by default, column
vectors unless otherwise stated.
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Matrix algebra - basic terminology

A rectangular array of real numbers arranged in m rows and n

columns is called an m× n matrix.

A =

⎡
⎢⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
... . . . ...

am1 am2 . . . amn

⎤
⎥⎥⎥⎥⎦ .

We write A = {aij} to represent the matrix A whose ijth
element is aij.
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Matrix operations

• Addition: A +B = {aij + bij} for m× n matrices A and B

• Matrices A and B are conformal for addition (or
subtraction) if the row dimensions of A and B are equal,
and the column dimensions of A and B are equal.

• Matrix addition is commutative.

• Matrix addition is associative.
• Scalar multiplication: cA = {caij}

Multivariate Data and Matrix Algebra Review – p. 8/39



Matrix multiplication

• Matrix multiplication: For m× n matrix A and n× p

matrix B, the matrix product AB is the m× p matrix C

where

cij =
n∑

k=1

aikbkj.

• Matrices A and B are conformal for the product AB if the
column dimension of A equals the row dimension of B.

Let A =

[
2 −3 0

1 4 2

]
and B =

⎡
⎢⎣ 3 4

−2 0

1 2

⎤
⎥⎦. Find AB.
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Matrix multiplication (cont.)

• AB is the pre-multiplication of B by A or equivalently, the
post-multiplication of A by B.

• Matrix multiplication does not necessarily commute.
That is, .

• e.g. Let A =

[
1 0

0 2

]
and let B =

[
0 1

1 0

]
. Then

AB = and BA =

• Matrix multiplication is associative.

• Matrix multiplication distributes over addition.
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Matrix transpose

• The transpose of an m× n matrix A, denoted A′, is the
n×m matrix whose ijth element is the jith element of A.

• More succinctly, let C = A′. Then cij = aji.

•

[
2 −3 0

1 4 2

]′
=

• (A′)′ = A

• (A + B)′ = A′ + B′

• (AB)′ = B′A′
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Types of matrices

• Square matrices have the same number of rows and
columns. The row (or column) dimension is called the
order of the matrix.

• Note that the matrix product AA is defined only if A is
square.

• If A2 = AA = A then A is said to be idempotent.
• A is a symmetric matrix if A′ = A.
• A square matrix A is diagonal if aij = 0 for all i �= j, that is
to say, if all off-diagonal elements are zero.

• The order n identity matrix, In, is a diagonal matrix with
diagonal elements equal to 1.
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Triangular matrices

• Square matrix A is upper-triangular if aij = 0 for i > j.
• Square matrix A is lower-triangular if aij = 0 for i < j.⎡

⎢⎢⎢⎢⎣
a11 a12 . . . a1n

a21 a22 . . . a2n

...
... . . . ...

an1 an2 . . . ann

⎤
⎥⎥⎥⎥⎦

• aij i = j

• aij i < j

• aij i > j
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Matrix inverse definition

• An n× n matrix A is said to be nonsingular or invertible if
there exists n× n matrix B such that

AB = BA = I.

B is called the multiplicative inverse of A. We write
B = A−1.

• A square matrix with no multiplicative inverse is said to be
singular.
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Matrix inverse - example

Demonstrate that A =

⎡
⎢⎣ 1 0 1

3 3 4

2 2 3

⎤
⎥⎦ is the inverse of

B =

⎡
⎢⎣ 1 2 −3

−1 1 −1

0 −2 3

⎤
⎥⎦.
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Matrix determinant

• The determinant of the square n× n matrix A is a scalar
given by

|A| =

{
a11 if n = 1∑n

j=1
a1jA1j if n > 1

• A1j is called the cofactor of a1j, and is defined as

A1j = |A1j|(−1)1+j

where A1j is the (n− 1)× (n− 1) matrix obtained by
deleting the first row and jth column of A.
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Determinant of a 2× 2 matrix

Find |A| where A =

[
a11 a12

a21 a22

]
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Determinant of a 3× 3 matrix

Find |A| where A =

⎡
⎢⎣ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎥⎦
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Cofactor - general definition

• In general, Aij = |Aij|(−1)i+j is the cofactor of aij.

• For A =

⎡
⎢⎣ 1 2 1

2 5 3

2 3 2

⎤
⎥⎦, find A21, the cofactor of a21.

• It can be shown that

ai1Aj1 + ai2Aj2 + . . . + ainAjn =

{
|A| if i = j

0 if i �= j
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Matrix adjoint

• Let A be an n× n matrix. We define a new matrix called
the adjoint of A by

adj A =

⎡
⎢⎢⎢⎢⎣

A11 A21 . . . An1

A12 A22 . . . An2

...
... . . . ...

A1n A2n . . . Ann

⎤
⎥⎥⎥⎥⎦

• In words, the adjoint of A is formed by replacing each
term by its cofactor, and then transposing the resulting
matrix.
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Matrix inverse revisited

A (adj A) =

⎡
⎢⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
... . . . ...

an1 an2 . . . ann

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

A11 A21 . . . An1

A12 A22 . . . An2

...
... . . . ...

A1n A2n . . . Ann

⎤
⎥⎥⎥⎥⎦ =

Result: A−1 =
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Finding matrix inverse

Use the result on the previous slide to find the inverse of

A =

⎡
⎢⎣ 1 0 1

3 3 4

2 2 3

⎤
⎥⎦.
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Vectors

• A column vector is an m× 1 matrix.
• A row vector is a 1× n matrix.
• By default, vectors are assumed to be column vectors
unless indicated otherwise.

• The number of vector elements is called its dimension.
• Inner product: The inner product or dot product of two

m-dimensional vectors x and y is defined as

x′y = [x1 x2 . . . xm]

⎡
⎢⎢⎢⎢⎣

y1

y2

...
ym

⎤
⎥⎥⎥⎥⎦ =

m∑
i=1

xiyi

• For scalar c, cx = [cx1 cx2 . . . cxm]′
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Linear regression example

Let Yi be the response for the ith subject with k covariates
xi1, xi2, . . . , xik. Recall that for multiple linear regression, we
assume

Yi = β0 + β1xi1 + β2xi2 + . . . + βkxik + εi.

The right hand side of this expression can be written as the
inner product of two vectors, as follows:
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Vector norm

Let x′ = [x1 x2 . . . xm].
• The norm (or length or magnitude) of x is given by:

• z is the vector x normalized to unit length if

z =
x

||x||
.

To see that z has unit length, note that:
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Angle between two vectors

Let x and y be two m-dimensional vectors. The angle θ

between the two vectors is defined such that

cos(θ) =
x′y

||x||||y||
.

Proof for 2-dimensional case:
(Use fact that cos(θ1 − θ2) = cos(θ1)cos(θ2) + sin(θ1)sin(θ2)).

If x ⊥ y then
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Orthogonal and orthonormal vectors

• The collection of equally-dimensioned vectors, x1, x2, . . . ,
xp, are orthogonal if x′ixj = 0 whenever i �= j.

• The collection of equally-dimensioned vectors, x1, x2, . . . ,
xp, are orthonormal if they are orthogonal and ||xi|| = 1
for all i. That is to say,

x′ixj =

{
0 if i �= j

1 if i = j
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Linear dependence

• Let x1, x2, . . . , xp be a collection of vectors of equal
dimension. We say x1, x2, . . ., xp are linearly dependent if
there exist constants c1, c2, . . ., cp not all zero such that

c1x1 + c2x2 + . . . + cpxp = 0.

Linear dependence means at least one vector in the set
can be written as a linear combination of the other
vectors.

• Vectors of the same dimension that are not linearly
dependent are said to be linearly independent.

Multivariate Data and Matrix Algebra Review – p. 28/39



Row rank and column rank

• The row rank of a matrix is the maximum number of
linearly independent rows.

• The column rank of a matrix is the maximum number of
linearly independent columns.

• E.g. Find the row and column rank of

A =

⎡
⎢⎣ 1 2 4

3 0 6

5 3 13

⎤
⎥⎦
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Rank (cont.)

• row rank = column rank
• If the rank ofm×n matrix A is min(m,n), then A is said to
be of full rank. Otherwise, A is said to be rank deficient.
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Linear regression example - dummy variables

data one; data two;

input y group; set one;

datalines; if group = 1 then x1 = 1; else x1 = 0;

0.62 2 if group = 2 then x2 = 1; else x2 = 0;

-0.55 2 if group = 3 then x3 = 1; else x3 = 0;

-0.50 1 run;

0.41 1

-0.55 3 proc reg data = two;

0.067 1 model y = x1 x2 x3;

1.27 3 run;

-0.11 1

-0.33 2

-0.54 3

;

run;
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Linear reg example - dummy variables (cont.)

Output

NOTE: Model is not full rank. Least-squares
solutions for the parameters are not
unique. Some statistics will be misleading.
A reported DF of 0 or B means that the
estimate is biased.

NOTE: The following parameters have been set
to 0, since the variables are a linear
combination of other variables as shown.

x3 = Intercept - x1 - x2
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Matrix trace

• Let A be a square n×n matrix. The trace of A is given by

tr(A) =
n∑

i=1

aii.

• Trace is the sum of the diagonal elements of A
• Properties

◦ tr(AB) = tr(BA)

◦ tr(AB) = tr(B′A′)

⇒ tr(AB) = tr(A′B′)
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Orthogonal matrices

• An n× n matrix A is orthogonal if its columns, considered
as vectors, form an orthonormal set.

• A is an orthogonal matrix if A′A = I.
• From the previous result, we conclude that for orthogonal
matrix A, A−1 =
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Eigenvalues and eigenvectors

• Let A be an n× n matrix. A scalar λ is said to be an
eigenvalue of A if there exists x �= 0 such that Ax = λx.
The vector x is said to be an eigenvector of λ.

• Show that x = [2 1]′ is an eigenvector for A =

[
4 −2

1 1

]
,

and find the corresponding eigenvalue.
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Characteristic equation

1. Recall from Slide 21, A−1 = 1

|A|
adjA. It follows that

A is singular if |A| = 0.

2. Further, it can be shown that for any square matrix A, the
solution x to the matrix equation Ax = 0 is non-zero only
if A is singular.

• We can rewrite Ax = λx as Ax− λx = 0 or equivalently

(A− λI)x = 0.

From 1 and 2 above, we know that a non-zero solution
exists only if

|A− λI| = 0.

• |A− λI| = 0 is called the characteristic equation and is
used to find the eigenvalues of a square matrix.
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Finding eigenvalues and eigenvectors

Find the eigenvalues and corresponding eigenvectors for

A =

[
3 2

3 −2

]
.
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Quadratic forms

• Let x be an n-dimensional vector and let A be a
symmetric n× n matrix. The scalar

x′Ax

is called a quadratic form.
• E.g. Find the matrix associated with the quadratic form

3x2
1 − 5x1x2 + x2

2 where x = [x1 x2]
′
.
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Positive definite matrices

A real symmetric matrix A is said to be
i. Positive definite if x′Ax > 0 for all nonzero x

ii. Negative definite if x′Ax < 0 for all nonzero x

iii. Positive semi-definite if x′Ax ≥ 0 for all nonzero x

iv. Negative semi-definite if x′Ax ≤ 0 for all nonzero x
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