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1 Introduction

The four- and five-parameter logistic models are examples of nonlinear dose-response

curves commonly used for calibration and dose-estimation in multiplex immunoassays

(e.g. Bio-Rad’s Bioplex c© system). Let y be the response (e.g. flourescence) at dose x.

Then the form of the five-parameter logistic (5PL) model is

y = f(x, β) = d +
a − d(

1 +
(

x
c

)b
)g , (1)

where β = (a, b, c, d, g)′. The four-parameter logistic model (4PL) is equivalent to the

5PL with g = 1.

The dose-response curve is fit based on replicates of known standards. In my expe-

rience, the number of replicates is typically two and the number of standards is eight to

ten. The standard concentrations are typically manufacturer-recommended serial dilu-

tions of the analyte of interest. Figure 1 shows the fitted standard curve based on two

replicates for each of eight standard concentrations of IL7. The shape of the curve is

sigmoidal when the response is graphed as a function of log-dose. The standard curve

is used to estimate analyte concentrations for unknowns (e.g. patient urine or serum

samples) based on the flourescent signal from the unknown. The procedure to estimate

concentration from flourescence amounts to extending a horizontal line from the observed

flourescence and dropping a vertical line at the point of intersection with the standard

curve.

For immunoassays, the dose-response curve is monotonically increasing. Interpreta-

tions of the 4- and 5PL model parameters are described in Table 1. See Gottschalk and

Dunn1 for additional details.
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Figure 1: Five-parameter logistic dose-response curves and corresponding precision pro-

files for two different 96-well plates measuring IL7 .

2



2 The general dose-response model

The general dose-response model is

yij = f(xi, β) + σg(µi, θ)εij . (2)

For our purposes, we assume

• yij is the jth replicate response at the ith dose, j = 1, . . . , mi and i = 1, . . . , N

where mi is the number of replicates for the ith dose and N is the number of doses.

• xi is the ith dose

• β = (a, b, c, d, g)′

• f(xi, β) = µi and is the mean response at dose xi. Here f(xi, β) is the function

described in Equation 1.

• σ is a an unknown constant

• θ is a vector of parameters for the variance function described by g

• g(µi, θ) is a variance function that depends on both the mean response at dose i

and parameter vector θ

• ε ∼ Normal(0, 1)

Model 2 accommodates non-constant variance with

Var(yij) = σ2g(µi, θ)2. (3)

As noted by Gottschalk and Dunn1, the variance at the high-response end of the curve is

often three- to four-times larger than at the low end, due to: 1) signal detectors producing

noise with a standard deviation proportional to the magnitude of the response; and 2) the

kinetics associated with antibody binding are non-linear. For immunoassays, the ‘power
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of the mean’ variance structure has been shown useful for 4- and 5PL dose-response

models1, 2, and is modeled as

g(µi, θ) = µθ
i . (4)

Here, θ is constrained to be positive.

3 Fitting the standard curve

Typically, the standard curve is fit to ‘background corrected’ response measures. This

is achieved by measuring (usually from replicate samples) the flourescent signal from

matrix-only samples (i.e. analyte concentration equals 0), and subtracting the average of

these readings from all response measures. The standard curve is fit to the background-

corrected data using the method of generalized least squares with variance function

estimation described in detail by Carroll and Ruppert3, Davidian and Haaland4, and

O’Connell, Belanger and Haaland2. Generalized least squares refers to standard weighted

least squares with estimated (rather than known) weights. Here, appropriate weights are

given by

wi = 1/g2(µi, θ) (5)

= 1/µ2θ
i .

For completeness, we describe model fitting for the general model with mean function

given by Equation 1 and variance function given by Equation 4.

1. Davidian and Haaland4 suggest β̂
(0)

be obtained by minimizing
∑N

i=1

∑mi

j=1(yij −

µi)
2. Note β̂

(0)
is the least-squares estimate of β. Alternatively, good starting

values may already be available for β from the fit obtained from the commercial

software. In practice, I have found generating β̂
(0)

from least-squares estimation to

be problematic for 5PL. An ad hoc approach I’ve successfully employed uses the

approach outlined below:
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(a) a0 = max(response)×1.01

(b) d0 = min(response)×0.99

(c) g0 = 1

(d) Let ỹ = a−d
y−d

− 1. Then from Equation 1, log ỹ = b log x − b log c. Let α̂0 and

α̂1 be the fitted intercept and slope from the simple linear regression of log ỹ

on log x. Then b0 = α̂1 and c0 = e−α̂0/b0 .

2. Obtain θ̂(0) as the slope parameter from a linear regression of log si on log ȳi, where

si is the estimated standard deviation of the responses at dose i and ȳi is the average

response at dose i. This is based on the fact that log{Var(yij)}
1/2 = log σ+θ log µi.

3. Obtain σ̂2(0) = e2α0 where γ0 is the estimated intercept from the linear regression

in Step 2.

4. Let k = 1.

5. Obtain β̂
(k)

by minimizing
∑N

i=1

∑mi

j=1 ŵ
(k−1)
i (yij−µi)

2, where ŵ
(k−1)
i = 1/g2(µ̂

(k−1)
i , θ̂(k−1)).

6. From β̂
(k)

, construct estimates of r
(k)
ij = yij − µ̂

(k)
i .

7. Obtain θ̂(k) by minimizing

N∑

i=1

mi∑

j=1

{
r
(k)
ij

ˆ̇g(k)

g(µ̂
(k)
i , θ)

}2

,

where

ˆ̇g(k) = exp

{
θ

n

N∑

i=1

mi log µ̂
(k)
i

}
.

8. Obtain

σ̂2(k) =
1

n − p

N∑

i=1

mi∑

j=1

(r
(k)
ij )2

g2(µ̂
(k)
i , θ̂(k))

,

where p is the number of parameters in the mean model (p = 4 or 5 for 4- and 5PL,

respectively).
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Iterate steps 5 through 8 to convergence. Call the estimates β̂
GLS

, θ̂GLS and σ̂2
GLS

. The

variance-covariance matrix of β̂
GLS

is

ΣGLS = σ2(X′G−1X)−1 (6)

where X is an n× p matrix (n =
∑

i mi) such that the mi rows corresponding to the ith

dose contain the row vector

(
∂

∂β1
f(xi, β), . . . ,

∂

∂βp
f(xi, β)

)′

,

and G is an n×n diagonal matrix with the diagonal elements of the mi rows corresponding

to the ith dose equal to g2(µi, θ). Equation 6 is estimate by replacing σ2 with σ̂2
GLS

,

evaluating X at β̂
GLS

, and evaluating G at β̂
GLS

and θ̂GLS.

For the 5PL model, the partial derivatives defining X are as follows:

• ∂f(xi, β)/∂a =
(
1 + (xi

c
)b

)−g

• ∂f(xi, β)/∂b = (a − d)(−g)
(
1 + (xi

c
)b

)−g−1 (
xi

c

)b
ln

(
xi

c

)

• ∂f(xi, β)/∂c = (a − d)(−g)
(
1 + (xi

c
)b

)−g−1
(

−bxb
i

cb+1

)

• ∂f(xi, β)/∂d = 1 −
(
1 + (xi

c
)b

)−g

• ∂f(xi, β)/∂g = −(a − d)
(
1 + (xi

c
)b

)−g
ln

(
1 + (xi

c
)b

)

4 Constructing the precision profile

Background-corrected flourescence readings from subject samples are converted to con-

centration estimates based on the inverse of Equation 1,

x = f−1(y) = c

[(
a − d

y − d

)1/g

− 1

]1/b

. (7)

Specifically, the estimated concentration for the ith subject’s jth response is x̂ij =

f−1(yij, β̂). If concentration estimates are based on the backfit of the average of replicate
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flourescence readings (which is typically the case for commercially available software),

then a subject-level concentration estimate is x̂i = f−1(ȳi, β̂), where ȳi =
∑ni

j=1 yij and

ni is the number of replicates for the ith subject. Table 4 shows a sample list of (fic-

titious) concentrations from a multiplex immunoassay. There are three types of ‘data’:

the values that look ‘real’ (IDs 2, 3 and 4), the ‘OOR <’ values (IDs 1, 6 and 7), and the

starred values (ID 5). ‘OOR’ stands for out of range and indicates flourescence readings

smaller than the lower asymptote. Flourescence readings exceeding the upper asymptote

are denoted as ‘OOR >’ in the output. In our experience, the majority of out-of-range

values occur at lower concentrations. We therefore restrict our discussion to this case,

although our results generalize to the analysis of values exceeding the upper asymptote as

well. Since it is impossible to obtain a concentration estimate for these response values,

the software simply flags them accordingly. The starred values indicate observations that

extrapolate beyond the standard range, a practice that is ill-advised.

Correct analysis of subject concentration measures requires determinination of mini-

mum and maximum acceptable concentrations (MinAC and MaxAC, respectively). These

thresholds represent concentrations such that values less than (greater than) MinAC

(MaxAC) are considered too variable to be reported reliably. Minimum and maximum

acceptable concentrations are typically defined as those values for which the coefficient

of variation (CV) of the estimated concentration equals a pre-specified cutoff. Figure

1 shows the precision profiles associated with the fitted 5-PL dose-response models for

IL7 for two different 96-well plates. The precision profile is a plot of the percent CV in

estimated concentration versus concentration, and is typically ‘U-shaped’ for sigmoidal

dose-response models. The shape reflects the fact that small changes in flourescent sig-

nals in the flat regions of the curve result in highly variable predicted concentrations,

while responses in the linear range of the curve predict concentrations with considerably

less variability. Traditional thresholds for MinAC and MaxAC are 10% CV (limit of

quantitation) and 30% CV (limit of detection) (include references here from the interna-
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Table 1: Description of parameters for 4- and 5PL dose-response models.

Parameter 4PL 5PL

a Asymptote at high dose Asymptote at high dose

d Asymptote at low dose Asymptote at low dose

b Slope parameter 1: Controls rate of approach to a asymptote

2: bg controls rate of approach to d asymptote

c ED50 Jointly with b and g estimates EDν ,

where EDν = c((100/ν)1/g − 1)1/b

g 1: Controls asymmetry

2: bg controls rate of approach to d asymptote

Table 2: Sample multiplex concentration estimates.

Sample Concentration (pg/ml)

1 OOR <

2 2.65

3 4.6

4 1.09

5 *0.70

6 OOR <

7 OOR <
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tional standards literature). However, it has been our observation that thresholding the

data at 30% CV or lower can result in little data available for analysis. Gottschalk and

Dunn5 use a 50% CV threshold in their examples, but make no formal recommendation

for establishing MinAC and MaxAC.

Construction of the precision profile requires estimation of Var(x̂). Specifically

Var(x̂)
.
=

(
∂f−1

∂y

)2

Var(y) +

(
∂f−1

∂β

)′

Var(β̂)

(
∂f−1

∂β

)
, (8)

where

• Var(y) is given by Equation 3.

• Var(β̂) is given by Equation 6.

• ∂f−1

∂y
= c

b

[(
a−d
y−d

)1/g

− 1

] 1

b
−1

× 1
g

(
a−d
y−d

) 1

g
−1

× d−a
(y−d)2

• ∂f−1

∂β
=

(
∂f−1

∂a
, ∂f−1

∂b
, ∂f−1

∂c
, ∂f−1

∂d
, ∂f−1

∂g

)′

with

. ∂f−1

∂a
= c

b

[(
a−d
y−d

)1/g

− 1

] 1

b
−1

× 1
g

(
a−d
y−d

) 1

g
−1

×
(

1
y−d

)

. ∂f−1

∂b
= −c

[(
a−d
y−d

)1/g

− 1

] 1

b

× log

[(
a−d
y−d

) 1

g

− 1

]
× b−2

. ∂f−1

∂c
=

[(
a−d
y−d

)1/g

− 1

] 1

b

. ∂f−1

∂d
= c

b

[(
a−d
y−d

)1/g

− 1

] 1

b
−1

× 1
g

(
a−d
y−d

) 1

g
−1

× a−y
(y−d)2

. ∂f−1

∂g
= c

b

[(
a−d
y−d

)1/g

− 1

] 1

b
−1

×

[
−

(
a−d
y−d

) 1

g

]
× log

(
a−d
y−d

)
× g−2.

Estimation of Equation 8 is achieved by substituting σ̂2g2(x, θ̂) for Var(y) and evaluating

Equation 8 for a grid of x̂ and y values covering the domain of the standards. The

estimated percent coefficient of variation is

√
V̂ar(x̂)/x̂×100 and is plotted against x̂ for

the entire domain of standard concentrations as the precision profile. Precision profiles

for two different standard curves are shown in Figure 1. A threshold of 50% CV is drawn

indicating MinAC and MaxAC values.
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5 Simulation study

The purpose of the current study is to investigate operating characteristics of various

choices of MinAC and MaxAC with the goal of establishing guidelines for investigators

implementing this technology. We conducted the following simulation study.

1. Assume the uncorrected dose-response model is

zij = f(xi, β) + k + σg(µi, θ)εij , (9)

where zij is the uncorrected fluorescence measure corresponding to the jth replicate

of the ith concentration. Here, k is the background parameter reflecting a vertical

shift in fluorescence readings based on blanks. Fix (β, k, σ, θ)′ = (a, b, c, d, g, k, σ, θ).

These are treated as the true dose-response parameters. In (9), f(xi, β) = µi is

given by Equation 1, and g(µi, θ) = µθ
i and is given by Equation 4.

2. Fix nine standards - eight with known concentrations and one blank (i.e. 0 con-

centration). Call these standards s0, s1, . . . , s8, with s0 indicating the blank.

3. Generate two blank fluorescent readings based on the following assumed model:

z0j = k + σεij,

where j = 1, 2. Compute the average of these readings, z̄0 = (z01 + z02)/2. This

average is our estimate of k; that is to say, k̂ = z̄0.

4. For each of the standards s1, . . . , s8, use Equation 9 with the true parameter values

to obtain duplicate uncorrected flourescent readings, resulting in the sixteen data

pairs

((s1, z11), (s1, z12), (s2, z21), (s2, z22), . . . , (s8, z81), (s8, z82)) .

5. Use the background estimate obtained from Step 3 to ‘correct’ the fluorescent read-

ings obtained in Step 4. Specifically, let yij = zij− k̂. The corrected readings, {yij},

will be used to fit the standard curve and to conduct inference.
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6. Using the data pairs from Step 5, fit the 5PL standard curve given by Equation 2

using the methods described in Section 3. Generate the estimated dose-response

parameters (β̂, σ̂, θ̂)′ = (â, b̂, ĉ, d̂, ĝ, σ̂, θ̂).

7. Construct the precision profile for the standard curve constructed in Step 6 using

methods described in Section 4. Identify MinAC and MaxAC corresponding to 10,

20, 30, 40, and 50% CV. Use Equation 1 to find corresponding values of MinAFl and

MaxAFl (AFL = acceptable fluorescence). That is to say, MinAFl = f(MinAC, β̂)

and MaxAFl = f(MaxAC, β̂).

8. Let ci be the true concentration for the ith subject (i = 1, . . . , n) where the ci arise

from the model

log(ci) = κ + αgi + νi,

so that

ci = exp{κ + αgi + νi}.

Here, κ is the overall mean, gi is a group indicator for the ith subject, α is the

group-effect, and νi ∼ Normal(0, σ2
ν). If α = 0, the marker is not differentially

expressed between the two groups. Generate n ci values.

9. Use Equation 9 with the true parameter values to obtained duplicate uncorrected

subject fluorescent readings for each true concentration. The resulting pairs are

((c1, z11), (c1, z12), . . . , (cn, zn1), (cn, zn2)) ,

where n is the number of subjects.

10. From the {zij} obtained in Step 9, construct corrected subject fluorescent readings

{yij}, where yij = zij − k̂.

11. Using the corrected duplicate subject fluorescent readings, construct a censoring

indicator τij such that τij = 1 if yij > MinAFl and τij = 0 if yij ≤ MinAFl, where

i = 1, . . . , n and j = 1, 2.
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12. Using Equation 7 and β̂ obtained in Step 6, generate observed duplicate concen-

trations, xij , as follows:

xij =





f−1(yij, β̂) if τij = 1

MinAC if τij = 0

The observed data for analysis is represented by the following ordered pairs:

((x11, τ11), (x12, τ12), . . . , (xn1, τn1), (xn2, τn2)) .

13. Using the observed data from Step 12, we assume

log(xij) = η + γgi + ζi + δij

where

• η is the overall mean

• γ is the group effect

• gi is a group indicator

• ζi is a subject-specific random effect such that ζi ∼ Normal(0, σ2
ζ )

• δij ∼ Normal(0, σ2
δ )

• ζi and δij are independent

Then the likelihood is given by

L(Ψ|X) =
n∏

i=1

[∫ ∞

−∞

{
2∏

j=1

h(log(xij)|ζi)
τij H(log(xij)|ζi)

1−τij r(ζi)

}
dζi

]
,(10)

where

• Ψ =
(
η, γ, σ2

ζ , σ
2
δ

)′

• X = (x11, x12, . . . , xn1, xn2)
′

• h(log(xij)|ζi) is a normal probability density function (conditional on the ran-

dom effect) with mean η + γgi + ζi and variance σ2
δ
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• H(log(xij)|ζi) is the normal cumulative density function (conditional on the

random effect) corresponding to h(log(xij)|ζi)

• r(ζ) is the distribution of the random effect and is a normal probability density

function with mean 0 and variance σ2
ζ

The MLE of Equation 10 is used to conduct group-level inference.

14. Repeating Steps 4 through 13 for the same values of (a, b, c, d, g, k, σ, θ)′ (the true

standard curve parameters) and the same values of (κ, α, σ2
ν)

′ (the true subject log

concentration parameters) is equivalent to a complete analysis of a single plate. If

multiple plates are used in an experiment, then Step 13 should be conducted from

the aggregation of subject data from multiple plates.
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