Summary of Lin, Wei and Ying, Biometrics 2002

We summarize from Lin, Wei and Ying (*Biometrics* 2002). For i = 1, ..., K, and $k = 1, ..., n_i$, let y_{ik} be the response of the *i*th subject on the *k*th occasion, and let \mathbf{x}_{ik} be the corresponding $(p+1) \times 1$ vector of covariates (the dimension is (p+1) because of the intercept). We assume the marginal mean of the response, $E(y_{ik})$, depends on the covariate vector \mathbf{x}_{ik} through a known link function, $g(\cdot)$; specifically

$$g(\mu_{ik}) = \eta_{ik} = \mathbf{x}'_{ik}\boldsymbol{\beta},$$

where β is a $(p+1) \times 1$ vector of unknown regression parameters. It follows that

$$\mu_{ik} = g^{-1}(\eta_{ik}) = g^{-1}(\mathbf{x}'_{ik}\boldsymbol{\beta}).$$

We further assume

$$Var(y_{ik}) = \phi V(\mu_{ik}),$$

where ϕ is a scale parameter, and $V(\cdot)$ is a known variance function.

To assess the functional form of a continuous covariate in a marginal model fit via generalized estimating equations:

1. For each subject, *i*, construct the $n_i \times 1$ vector of raw residuals

$$\mathbf{e}_i = (e_{i1}, \dots, e_{in_i})' = (y_{i1} - \hat{\mu}_{i1}, \dots, y_{in_i} - \hat{\mu}_{in_i})'.$$

For continuous covariate j, define

$$W_j(x) = \frac{1}{\sqrt{K}} \sum_{i=1}^K \sum_{k=1}^{n_i} I(x_{ikj} \le x) e_{ik},$$

where $I(\cdot)$ is an indicator function, and x_{ikj} is the *j*th component of \mathbf{x}_{ik} .

2. Lin, Wei and Ying demonstrate that the null distribution of $W_j(x)$ can be approximated by

$$\widehat{W}_{j}(x) = \frac{1}{\sqrt{K}} \sum_{i=1}^{K} \left[\left\{ \sum_{k=1}^{n_{i}} I(x_{ikj} \le x) e_{ik} + \xi'(x, \hat{\boldsymbol{\beta}}) \left(\sum_{i=1}^{K} \widehat{\mathbf{D}}_{i}' \widehat{\mathbf{V}}_{i}^{-1} \widehat{\mathbf{D}}_{i} \right)^{-1} \widehat{\mathbf{D}}_{i}' \widehat{\mathbf{V}}_{i}^{-1} \mathbf{e}_{i} \right\} Z_{i} \right],$$

where

- $\xi(x, \beta) = -\sum_{i=1}^{K} \sum_{k=1}^{n_i} I(x_{ikj} \le x) \partial \mu_{ik} / \partial \beta$ and $\partial \mu_{ik} / \partial \beta$ is a $(p+1) \times 1$ vector of partial derivatives
- $\mathbf{D}_i = \partial \boldsymbol{\mu}_i / \partial \boldsymbol{\beta}$ is an $n_i \times (p+1)$ matrix of partial derivatives such that

$$\mathbf{D}_{i} = \begin{bmatrix} \frac{\partial \mu_{i1}}{\partial \beta_{0}} & \frac{\partial \mu_{i1}}{\partial \beta_{1}} & \cdots & \frac{\partial \mu_{i1}}{\partial \beta_{p}} \\ \frac{\partial \mu_{i2}}{\partial \beta_{0}} & \frac{\partial \mu_{i2}}{\partial \beta_{1}} & \cdots & \frac{\partial \mu_{i2}}{\partial \beta_{p}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \mu_{in_{i}}}{\partial \beta_{0}} & \frac{\partial \mu_{in_{i}}}{\partial \beta_{1}} & \cdots & \frac{\partial \mu_{in_{i}}}{\partial \beta_{p}} \end{bmatrix}$$

• V_i is the working covariance matrix of \mathbf{y}_i and is defined as

$$V_i = \phi \mathbf{A}_i^{1/2} \mathbf{R}_i(\alpha) \mathbf{A}_i^{1/2}$$

where \mathbf{A}_i is an $n_i \times n_i$ diagonal matrix defined as $\mathbf{A}_i = \text{diag}\{V(\mu_{ik})\}$ and $\mathbf{R}_i(\boldsymbol{\alpha})$ is an $n_i \times n_i$ working correlation matrix specified by parameter vector $\boldsymbol{\alpha}$

- $Z_i, i = 1, ..., K$ are independent standard normal random deviates.
- 3. A visual assessment of the adequacy of a continuous covariate's functional form can be performed by plotting $W_j(x)$, the observed statistic, and several (100 or so) realizations of $\widehat{W}_j(x)$ on the same axes (see the *Biometrics* manuscript for examples).
- 4. A formal test of the null hypothesis that the covariate's functional form is correct can be performed by a Kolmogorov-type supremum test. Specifically, let s_j be the observed value of $S_j = \sup_x |W_j(x)|$. Then the p-value $\operatorname{Prob}(S_j \ge s_j) \doteq \operatorname{Prob}(\hat{S}_j \ge s_j)$ where $\hat{S}_j = \sup_x |\hat{W}_j(x)|$. $\operatorname{Prob}(\hat{S}_j \ge s_j)$ is estimated by generating realizations of $\hat{W}_j(\cdot)$ (say 1000 or more).

To assess the link function, replace x_{ikj} with the linear predictor η_{ik} .

Consider an example of clustered binary data with canonical link assuming a variance structure based on the binomial family and an exchangeable working correlation matrix. We want to use this approach to assess the functional form of covariate j in the model.

- 1. $g(\cdot)$ is the logit function so that $\mu_{ik} = g^{-1}(\eta_{ik}) = g^{-1}(\mathbf{x}'_{ik}\boldsymbol{\beta}) = \exp\{\mathbf{x}'_{ik}\boldsymbol{\beta}\}/(1+\exp\{\mathbf{x}'_{ik}\boldsymbol{\beta}\})$. $\hat{\mu}_{ik}$ is obtained by substituting $\hat{\boldsymbol{\beta}}$ for $\boldsymbol{\beta}$ in this expression.
- 2. $\partial \mu_{ik} / \partial \beta = (\partial \mu_{ik} / \partial \beta_0, \partial \mu_{ik} / \partial \beta_1, \dots, \partial \mu_{ik} / \partial \beta_p)'$. Since

$$\mu_{ik} = \frac{\exp\{\mathbf{x}'_{ik}\boldsymbol{\beta}\}}{1 + \exp\{\mathbf{x}'_{ik}\boldsymbol{\beta}\}}$$

then

$$\partial \mu_{ik} / \partial \beta_j = \frac{x_{ikj}(\exp\{\mathbf{x}'_{ik}\boldsymbol{\beta}\})}{(1 + \exp\{\mathbf{x}'_{ik}\boldsymbol{\beta}\})^2}$$

This is just straightforward differentiation using the quotient rule. Then

$$\partial \mu_{ik} / \partial \boldsymbol{\beta} = (\partial \mu_{ik} / \partial \beta_0, \partial \mu_{ik} / \partial \beta_1, \dots, \partial \mu_{ik} / \partial \beta_p)' = \begin{bmatrix} \frac{1(\exp\{\mathbf{x}'_{ik} \boldsymbol{\beta}\})}{(1 + \exp\{\mathbf{x}'_{ik} \boldsymbol{\beta}\})^2} \\ \frac{x_{ik1}(\exp\{\mathbf{x}'_{ik} \boldsymbol{\beta}\})}{(1 + \exp\{\mathbf{x}'_{ik} \boldsymbol{\beta}\})^2} \\ \vdots \\ \frac{x_{ikp}(\exp\{\mathbf{x}'_{ik} \boldsymbol{\beta}\})}{(1 + \exp\{\mathbf{x}'_{ik} \boldsymbol{\beta}\})^2} \end{bmatrix}$$

Let $\xi(x, \beta) = \sum_{i=1}^{K} \xi_i(x, \beta)$ where

$$\xi_i(x,\boldsymbol{\beta}) = -\left[I(x_{i1j} \le x)\frac{\partial\mu_{i1}}{\partial\boldsymbol{\beta}} + I(x_{i2j} \le x)\frac{\partial\mu_{i2}}{\partial\boldsymbol{\beta}} + \dots + I(x_{in_ij} \le x)\frac{\partial\mu_{in_i}}{\partial\boldsymbol{\beta}}\right]$$

- 3. \mathbf{D}_i is an $n_i \times (p+1)$ matrix with row 1 given by $\partial \mu_{i1} / \partial \boldsymbol{\beta}$, row 2 given by $\partial \mu_{i2} / \partial \boldsymbol{\beta}$, ..., and row n_i given by $\partial \mu_{in_i} / \partial \boldsymbol{\beta}$.
- 4. To construct \mathbf{V}_i , note that for the binomial family with exchangeable working correlation matrix,
 - $\phi = 1$
 - $V(\mu_{ik}) = \mu_{ik}(1 \mu_{ik})$
 - $R_i(\alpha)$ is an $n_i \times n_i$ matrix with 1 along the diagonal and ρ at every off-diagonal entry.