Biometry 726
Fall 2010
Homework 2
Due Tuesday 5th October 2010

1. 3.11
2. 4.3
3. 4.4
4. We showed in class that for $\mathbf{X}_{p} \sim \mathrm{~N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, \mathbf{A} a $q \times p$ matrix of constants, and \mathbf{b} a $q \times 1$ vector of constants,

$$
\mathbf{Y}=\mathbf{A} \mathbf{x}+\mathbf{b} \sim \mathrm{N}_{q}\left(\mathbf{A} \boldsymbol{\mu}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}\right) .
$$

Use this result directly to show that if $\mathbf{X}=\left(\begin{array}{lll}X_{1} & X_{2} & X_{3}\end{array}\right)^{\prime}$ has density $\mathrm{N}_{3}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where $\boldsymbol{\mu}=\left(\begin{array}{lll}\mu_{1} & \mu_{2} & \mu_{3}\end{array}\right)^{\prime}$ and

$$
\boldsymbol{\Sigma}=\left(\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{array}\right)
$$

then $\mathbf{X}_{1}=\left(\begin{array}{ll}X_{1} & X_{2}\end{array}\right)^{\prime} \sim \mathrm{N}_{2}\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right)$ where $\boldsymbol{\mu}_{1}=\left(\begin{array}{ll}\mu_{1} & \mu_{2}\end{array}\right)^{\prime}$ and

$$
\boldsymbol{\Sigma}_{1}=\left(\begin{array}{ll}
\sigma_{11} & \sigma_{12} \\
\sigma_{21} & \sigma_{22}
\end{array}\right) .
$$

Hint: Consider the general proof provided on Page 158, and choose an appropriate matrix \mathbf{A} and vector \mathbf{b} to apply the above theorem.
5. Let $\mathbf{X}=\left(\begin{array}{lll}X_{1} & X_{2} & X_{3}\end{array}\right)^{\prime} \sim N_{3}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where $\boldsymbol{\mu}=\mathbf{0}$ and

$$
\boldsymbol{\Sigma}=\left(\begin{array}{lll}
4 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 3
\end{array}\right)
$$

Find the covariance of Z_{1} and Z_{2} where

$$
\begin{aligned}
& Z_{1}=X_{1}-X_{2}+2 X_{3}-6 \text { and } \\
& Z_{2}=2 X_{2}+4
\end{aligned}
$$

6. The moment generating function, $m_{\mathbf{X}}(\mathbf{t})$, of a 3×1 random vector $\mathbf{X}=\left(\begin{array}{lll}X_{1} & X_{2} & X_{3}\end{array}\right)^{\prime}$ is given by

$$
m_{\mathbf{X}}(\mathbf{t})=\exp \left\{t_{1}-t_{2}+2 t_{3}+t_{1}^{2}+\frac{1}{2} t_{2}^{2}+2 t_{3}^{2}-\frac{1}{2} t_{1} t_{2}-t_{1} t_{3}\right\} .
$$

Find a constant k such that $\operatorname{Prob}\left[2 X_{1}-3 X_{2}+X_{3}>k\right]=0.95$.
7. Let $\mathbf{Y}_{p} \sim \mathrm{~N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
(a) Use the theorem shown in Question 4 (above) to show that

$$
\mathbf{Z}=\boldsymbol{\Sigma}^{-1 / 2}(\mathbf{Y}-\boldsymbol{\mu}) \sim \mathrm{N}_{p}(\mathbf{0}, \mathbf{I})
$$

where $\boldsymbol{\Sigma}^{-1 / 2}$ is obtained using the spectral decomposition, and \mathbf{I} is the p-dimensional identity matrix.
(b) What is the marginal distribution of Z_{i}, the i th component of \mathbf{Z} ? Justify your answer.
(c) Write a function in R called my.rmvnorm that returns n random draws from a multivariate normal distribution using a spectral decomposition approach, and based on the relationship between the components of \mathbf{Z} and the distribution of \mathbf{Y}. Specifically, a call to your function should look like
my.rmvnorm(n,mu,sigma).

You may not use the existing R function, rmvnorm, to draw your sample.
(d) Demonstrate your sampler works by drawing a sample of 10,000 observations from a 3-dimensional multivariate normal distribution with mean and variance-covariance as described in 5, and calculating the proportion of observations for which

$$
(\mathbf{Y}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{Y}-\boldsymbol{\mu})
$$

is less than or equal to $\chi_{3}^{2}(0.1)$ and $\chi_{3}^{2}(0.05)$.

