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Outline

Adapted primarily from The Statistical Evaluation of
Medical Tests for Classification and Prediction (2003). MS
Pepe, Oxford University Press, NY.
Prediction and classification tests
Assessing performance of a binary test
Assessing performance of a continuous test
Discussion of AJE article
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Prediction and classification

Diagnosis: disease versus non-disease
Screening: for early diagnosis
Prognosis: predicting outcome
Treatment selection: predict treatment response
Tests can be based on

clinical signs or symptoms
laboratory tests
imaging technology
genomic/proteomic/metabolomic signature
antibody arrays
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Measuring classifier performance of a binary test

Definitions

Binary Test: Y = 1 (positive) 0 (negative)
Disease: D = 1 (present) 0 (absent)

Classification of test results by disease status

D = 0 D = 1
Y = 0 True negative False negative
Y = 1 False positive True positive

Classification probabilities

True positive fraction = TPF = P[Y = 1|D = 1] = Sensitivity
False positive fraction = FPF = P[Y = 1|D = 0] = 1 - Specificity
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Measuring classifier performance of a continuous test

Assume larger values of Y ⇒ D = 1
Thresholding positivity rule - “Y ≥ c”
TPF(c) = P[Y ≥ c|D = 1] = Sensitivity(c)
FPF(c) = P[Y ≥ c|D = 0] = 1 - Specificity(c)
Receiver Operating Characteristic (ROC) Curve

ROC definition

ROC(c) = {(FPF(c),TPF(c)), c ∈ R}
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Historical context

“ROC analysis is part of a field called ‘Signal Detection Theory’
developed during World War II for the analysis of radar images.
Radar operators had to decide whether a blip on the screen rep-
resented an enemy target, a friendly ship, or just noise. Signal
detection theory measures the ability of radar receiver operators
to make these important distinctions. Their ability to do so was
called the Receiver Operating Characteristics. It was not until
the 1970s that signal detection theory was recognized as use-
ful for interpreting medical test results.” (Practical Graph Mining
with R, p.391. CRC Press, 2014)
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Simple logistic regression example
π = P[D = 1]
logit(π) = β0 + β1Y , Y continuous
π = 1

1+e−(β0+β1Y ) (inverse logit)
Large π ⇒ D = 1 so we can use π instead of Y for
classification

Subject D π̂

1 1 0.95
2 1 0.95
3 0 0.72
4 1 0.72
5 1 0.72
6 0 0.24
7 1 0.12
8 0 0.08
9 0 0.08

10 0 0.04
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c = 1.0 (or any c larger than 0.95)

Subject D π̂ π̂ ≥ 1.0?
1 1 0.95 No
2 1 0.95 No
3 0 0.72 No
4 1 0.72 No
5 1 0.72 No
6 0 0.24 No
7 1 0.12 No
8 0 0.08 No
9 0 0.08 No

10 0 0.04 No

TPF(1.0) = P[π̂ ≥ 1.0|D = 1] = 0/5 = 0.0
FPF(1.0) = P[π̂ ≥ 1.0|D = 0] = 0/5 = 0.0
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c = 0.95

Subject D π̂ π̂ ≥ 0.95?
1 1 0.95 Yes
2 1 0.95 Yes
3 0 0.72 No
4 1 0.72 No
5 1 0.72 No
6 0 0.24 No
7 1 0.12 No
8 0 0.08 No
9 0 0.08 No

10 0 0.04 No

TPF(0.95) = P[π̂ ≥ 0.95|D = 1] = 2/5 = 0.4
FPF(0.95) = P[π̂ ≥ 0.95|D = 0] = 0/5 = 0.0
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c = 0.72

Subject D π̂ π̂ ≥ 0.72?
1 1 0.95 Yes
2 1 0.95 Yes
3 0 0.72 Yes
4 1 0.72 Yes
5 1 0.72 Yes
6 0 0.24 No
7 1 0.12 No
8 0 0.08 No
9 0 0.08 No

10 0 0.04 No

TPF(0.72) = P[π̂ ≥ 0.72|D = 1] = 4/5 = 0.8
FPF(0.72) = P[π̂ ≥ 0.72|D = 0] = 1/5 = 0.2
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c = 0.24

Subject D π̂ π̂ ≥ 0.24?
1 1 0.95 Yes
2 1 0.95 Yes
3 0 0.72 Yes
4 1 0.72 Yes
5 1 0.72 Yes
6 0 0.24 Yes
7 1 0.12 No
8 0 0.08 No
9 0 0.08 No

10 0 0.04 No

TPF(0.24) = P[π̂ ≥ 0.24|D = 1] = 4/5 = 0.8
FPF(0.24) = P[π̂ ≥ 0.24|D = 0] = 2/5 = 0.4
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c = 0.12

Subject D π̂ π̂ ≥ 0.12?
1 1 0.95 Yes
2 1 0.95 Yes
3 0 0.72 Yes
4 1 0.72 Yes
5 1 0.72 Yes
6 0 0.24 Yes
7 1 0.12 Yes
8 0 0.08 No
9 0 0.08 No

10 0 0.04 No

TPF(0.12) = P[π̂ ≥ 0.12|D = 1] = 5/5 = 1.0
FPF(0.12) = P[π̂ ≥ 0.12|D = 0] = 2/5 = 0.4
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c = 0.08

Subject D π̂ π̂ ≥ 0.08?
1 1 0.95 Yes
2 1 0.95 Yes
3 0 0.72 Yes
4 1 0.72 Yes
5 1 0.72 Yes
6 0 0.24 Yes
7 1 0.12 Yes
8 0 0.08 Yes
9 0 0.08 Yes

10 0 0.04 No

TPF(0.08) = P[π̂ ≥ 0.08|D = 1] = 5/5 = 1.0
FPF(0.08) = P[π̂ ≥ 0.08|D = 0] = 4/5 = 0.8
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c = 0.04

Subject D π̂ π̂ ≥ 0.04?
1 1 0.95 Yes
2 1 0.95 Yes
3 0 0.72 Yes
4 1 0.72 Yes
5 1 0.72 Yes
6 0 0.24 Yes
7 1 0.12 Yes
8 0 0.08 Yes
9 0 0.08 Yes

10 0 0.04 Yes

TPF(0.04) = P[π̂ ≥ 0.04|D = 1] = 5/5 = 1.0
FPF(0.04) = P[π̂ ≥ 0.04|D = 0] = 4/5 = 1.0
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Estimated ROC curve

ROC definition

ROC(c) = {(FPF(c),TPF(c)), c ∈ R}

c FPF(c) TPF(c)
1.0 0.0 0.0
0.95 0.0 0.4
0.72 0.2 0.8
0.24 0.4 0.8
0.12 0.4 1.0
0.08 0.8 1.0
0.04 1.0 1.0
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Estimated ROC curve (cont.)
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Theoretical ROC curves
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Estimated ROC curve with reference line
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Attributes of ROC curve

Provides complete description of potential performance
Facilitates comparing and combining information across
studies of the same test
Facilitates comparing different tests on a common relevant
scale
Guides the choice of threshold in applications
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Area Under the Curve
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AUC summary

AUC =
∫ 1

0 ROC(t)dt
AUC = 0.5⇒ useless test
AUC = 1⇒ perfect test
AUC = Probability that test correctly ‘orders’ randomly
selected diseased and non-disease subjects
AUC = P[(Y |D = 1) > (Y |D = 0)] = P[YD+ > YD−]
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AUC interpretation - informal proof

TPF(c) 

Height =  
TPF(c) = P[YD+ ≥ c] 

Width =  
FPF(c-d) – FPF(c) = 

P[YD- ≥ c – d] – P[YD- ≥ c] = 
P[YD-  [c-d, c) ] 

FPF(c) FPF(c - d) 

Area of rectangle = P[YD+ ≥ c] · P[YD− ∈ [c − d , c)] by
independence of YD+ and YD−
Summation across all rectangles yields P[YD+ > YD−]
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Example using R library ROCR
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