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Overview

• In the previous lecture, we discussed the baseline-category
logit model for multivariable regression modeling of a
multinomial response variable Y with J categories.

• Recall that this model estimates a complete set of p
parameters (intercept and slopes) for each of J − 1
baseline-referenced logits.

• When the response variable is ordinal, we can use this
structure to our advantage to develop more parsimonious
and powerful models.
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Ordinal variables

• Ordinal outcomes are common in medical research
• Likert scale (‘Strongly disagree’, ‘Disagree’, ‘Neither agree

nor disagree’, ‘Agree’, ‘Strongly agree’)
• Disease severity (‘Normal’, ‘Mild’, ‘Moderate’, ‘Severe’)

• It is often possible to consider an ordinal variable to be a
discretized version of a continuous latent variable.

• In this context, the ordinal variable is a discrete version of
an unmeasured (and unobserved) continuous variable.
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Ordinal variables (cont.)
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Cumulative logits
• A natural approach for regression modeling with an ordinal

response variable is to construct logit models for
dichotomized versions of Y while moving in sequence ‘up’
the ordinal scale.

• Such logits are called cumulative logits and are
constructed from cumulative probabilities

P(Y ≤ j |x) = π1(x) + . . . + πj(x), j = 1, . . . , J

• The cumulative logits are defined as

logit[P(Y ≤ j |x)] = log
P(Y ≤ j |x)
P(Y > j |x)

= log
P(Y ≤ j |x)

1 − P(Y ≤ j |x)
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Cumulative logits (cont.)

In contrast to the baseline-category logits, each cumulative logit
uses all response categories.

L1 = logit[P(Y ≤ 1|x)] = log
π1(x)

π2(x) + π3(x) . . . + πJ(x)

L2 = logit[P(Y ≤ 2|x)] = log
π1(x) + π2(x)

π3(x) + . . .+ πJ−1(x) + πJ(x)
...

...

LJ−1 = logit[P(Y ≤ J − 1|x)] = log
π1(x) + π2(x) + . . .+ πJ−1(x)

πJ(x)
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The Proportional Odds Model
• Modeling a single cumulative logit as a function of

covariates is equivalent to logistic regression where
categories 1, . . . , j and j + 1, . . . , J form the outcomes of
success and failure, respectively.

• The proportional odds model simultaneously uses all J − 1
cumulative logits in a single model, and is given by

logit[P(Y ≤ j |x)] = αj + β′x, j = 1, . . . , J − 1

• The natural ordering of the cumulative probabilities results
in model constraints:

P(Y ≤ 1|x) ≤ . . . ≤ P(Y ≤ J − 1|x)
logit[P(Y ≤ 1|x)] ≤ . . . ≤ logit[P(Y ≤ J − 1|x)]

α1 + β′x ≤ . . . ≤ αJ−1 + β′x

• We therefore constrain the {αj} so that α1 ≤ . . . ≤ αJ−1.
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The Proportional Odds Model (cont.)
• Additionally, the proportional odds model assumes the

same effects β across all cumulative logits.
• The common β and the ordering constraint on the

intercepts are important differences between the
proportional odds model and the baseline-category logit
model.

• Cumulative probabilities are constructed using the inverse
logit function

P(Y ≤ j |x) =
exp{αj + β′x}

1 + exp{αj + β′x}
, j = 1, . . . , J − 1

• Individual category probabilities are constructed by taking
differences of cumulative probabilities

P(Y = 1|x) = P(Y ≤ 1|x)
P(Y = j |x) = P(Y ≤ j |x)− P(Y ≤ j − 1|x), j = 2, . . . , J − 1
P(Y = J|x) = 1 − P(Y ≤ J − 1|x)
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Four-category proportional odds model
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Observations

• The proportional odds assumption implies parallel linear
predictors for the J − 1 cumulative logits (parallelism is not
a property of baseline-category logits).

• Changing the sign of β results in a reverse ordering of the
response categories.

• This means that the model ‘preserves’ the ordinal scale of
Y , and is therefore an attractive model for regression
models of ordinal response variables.
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Parameter interpretation
Consider a single continuous predictor x . The difference in
cumulative logits for an increment Δ of x is given by

logit([P(Y ≤ j |x = x0 +Δ)])− logit([P(Y ≤ j |x = x0)]) =

(αj + β(x0 +Δ))− (αj + βx0) = Δβ

• eΔβ is a cumulative odds ratio
• The cumulative odds ratio does not depend on j , and is

therefore the same across all J − 1 cumulative logits.
• This means that no matter how you dichotomize Y , the

effect of x on the odds that Y ≤ j is constant.
• This property of a common effect for all cumulative
probabilities is referred to as proportional odds.
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Parameter interpretation (cont.)
• Since cumulative odds ratios in proportional odds models

are the same for all categories, subsequent inference
focuses on the direction of response rather than on specific
response categories.

• Suppose eΔβ = 2 for Δ = 1.
• This cumulative odds ratio is interpreted as a two-fold

increase in the odds of a response as small or smaller for a
1-unit increase in x .

• Alternatively, since 1/eΔβ = 0.5, we could also conclude
that there is a 50% reduction in the odds of a higher
response for a 1-unit increase in x .

• Suppose eΔβ = 0.6 for Δ = 1.
• There is a 40% reduction in the odds of a response as

small or smaller for a 1-unit increase in x .
• Alternatively, since 1/eΔβ .

= 1.67, we could also conclude
that there is a 67% increase in the odds of a higher
response for a 1-unit increase in x .
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