Ordinal response regression models

Categorical Data Analysis, Summer 2015

Overview

¢ In the previous lecture, we discussed the baseline-category
logit model for multivariable regression modeling of a
multinomial response variable Y with J categories.

e Recall that this model estimates a complete set of p
parameters (intercept and slopes) for each of J — 1
baseline-referenced logits.

e When the response variable is ordinal, we can use this
structure to our advantage to develop more parsimonious
and powerful models.
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Ordinal variables

e Ordinal outcomes are common in medical research

e Likert scale (‘Strongly disagree’, ‘Disagree’, ‘Neither agree
nor disagree’, ‘Agree’, ‘Strongly agree’)
e Disease severity (‘Normal’, ‘Mild’, ‘Moderate’, ‘Severe’)

e |t is often possible to consider an ordinal variable to be a
discretized version of a continuous latent variable.

¢ In this context, the ordinal variable is a discrete version of
an unmeasured (and unobserved) continuous variable.

3/1

Ordinal variables (cont.)
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Cumulative logits

¢ A natural approach for regression modeling with an ordinal
response variable is to construct logit models for
dichotomized versions of Y while moving in sequence ‘up’
the ordinal scale.

e Such logits are called cumulative logits and are
constructed from cumulative probabilities

P(Y <jlx) =m(X)+ ... +m(x), j=1,...,J
e The cumulative logits are defined as

logit[P(Y <jx)] = log ﬁg 3:3
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Cumulative logits (cont.)

In contrast to the baseline-category logits, each cumulative logit
uses all response categories.

m1(X)
m2(X) + m3(X) ... 4+ my(X)
m1(X) + m2(X)
7T3(X) + ...+ 7TJ_1(X) + 7TJ(X)

Ly =logit[P(Y <1|x)] = log

L, =logit[P(Y < 2|x)] = log

71(%) + ma(X) + ...+ 7y 1(X)
7TJ(X)

Ly,_1=logitfP(Y <J—1]x)] = log
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The Proportional Odds Model

Modeling a single cumulative logit as a function of
covariates is equivalent to logistic regression where
categories 1,...,jandj + 1,...,J form the outcomes of
success and failure, respectively.

The proportional odds model simultaneously uses all J — 1
cumulative logits in a single model, and is given by

logitP(Y <jjX)] = aj + 8%, j=1,....d —1

The natural ordering of the cumulative probabilities results
in model constraints:

P(Y <1jx) <...< P(Y<J-1x)
logitlP(Y < 1|x)] <...< logit[P(Y < J — 1|x)]
ar+0%x <...< aj1+08%x

We therefore constrain the {o;} sothat oy < ... < ay_1.
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The Proportional Odds Model (cont.)

Additionally, the proportional odds model assumes the
same effects 3 across all cumulative logits.

The common 3 and the ordering constraint on the
intercepts are important differences between the
proportional odds model and the baseline-category logit
model.

Cumulative probabilities are constructed using the inverse
logit function

. /
oxploy £8X) i gy
1+ exp{o; + B'x}
Individual category probabilities are constructed by taking
differences of cumulative probabilities

P(Y =1x) = P(Y <1|x)
P(Y =jjx) = P(Y <jlx)=P(Y <j-1]x), j=2,...,J 1
P(Y=Jx) = 1-P(Y<J—1x)

P(Y <jx) =
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Linear predictor

Linear predictor

Four-category proportional odds model
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Observations

e The proportional odds assumption implies parallel linear
predictors for the J — 1 cumulative logits (parallelism is not
a property of baseline-category logits).

e Changing the sign of 5 results in a reverse ordering of the
response categories.

e This means that the model ‘preserves’ the ordinal scale of
Y, and is therefore an attractive model for regression
models of ordinal response variables.
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Parameter interpretation

Consider a single continuous predictor x. The difference in
cumulative logits for an increment A of x is given by

logit([P(Y <j|x = xo + A)]) — logit([P(Y <jlx = Xo)]) =
(j + B(xo + A)) — (o + Bx0) = AB

e €28 js a cumulative odds ratio

e The cumulative odds ratio does not depend on j, and is
therefore the same across all J — 1 cumulative logits.

e This means that no matter how you dichotomize Y, the
effect of x on the odds that Y < is constant.

e This property of a common effect for all cumulative
probabilities is referred to as proportional odds.
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Parameter interpretation (cont.)

e Since cumulative odds ratios in proportional odds models
are the same for all categories, subsequent inference
focuses on the direction of response rather than on specific
response categories.

e Suppose e?f =2 for A = 1.

e This cumulative odds ratio is interpreted as a two-fold
increase in the odds of a response as small or smaller for a
1-unit increase in x.

e Alternatively, since 1/e?? = 0.5, we could also conclude
that there is a 50% reduction in the odds of a higher
response for a 1-unit increase in x.

e Suppose e?? = 0.6 for A = 1.

e There is a 40% reduction in the odds of a response as
small or smaller for a 1-unit increase in x.

¢ Alternatively, since 1/eA5 = 1.67, we could also conclude
that there is a 67% increase in the odds of a higher
response for a 1-unit increase in x.

12/1




