Generalized logit models for nominal multinomial responses

Categorical Data Analysis, Summer 2015

Local odds ratios

		Ŷ				
		1	2	3	4	
	1	π 11	π_{12}	π_{13}	π_{14}	π_{1+}
X	2	π 21	π_{22}	π_{23}	π_{24}	π_{2+}
	3	π 31	π_{32}	π_{33}	π_{34}	π_{3+}

- Odds of Y = 4 versus Y = 2 when X = 1 is $(\pi_{14}/\pi_{1+})/(\pi_{12}/\pi_{1+}) = \pi_{14}/\pi_{12}$
- Odds of Y = 4 versus Y = 2 when X = 3 is $(\pi_{34}/\pi_{3+})/(\pi_{32}/\pi_{3+}) = \pi_{34}/\pi_{32}$
- Local odds ratio = $(\pi_{14}/\pi_{12})/(\pi_{34}/\pi_{32}) = (\pi_{14}\pi_{34})/(\pi_{12}\pi_{32})$
- Interpretation: If local OR = 2, "There is a two-fold increase in the odds of a response, Y, in class 4 versus class 2 when comparing X = 1 to X = 3."

Multinomial regression models for nominal response

- Let Y be a categorical response variable with J categories (J > 2)
- We desire a model for multinomial responses similar to a logistic regression model
 - Y could be the location of a colorectal tumor (proximal, distal or rectal)
 - X could be the covariate classes defined by a subject's race (AA or non-AA) and gender (male or female)
- Let $\pi_j(\mathbf{x}) = P(Y = j | \mathbf{x})$ for some fixed setting of the \mathbf{x} explanatory variables, with $\sum_j \pi_j(\mathbf{x}) = 1$
- At this fixed setting of **x** we treat the counts at the *J* categories of *Y* as multinomial with probabilities $\{\pi_1(\mathbf{x}), \ldots, \pi_J(\mathbf{x})\}.$

Baseline-category logits

- We select one of the *J* categories of Y as the baseline (or reference) category
- Without loss of generality, order the categories of Y so the *J*th level coincides with this baseline category
- Define the *generalized logit* (relative to the baseline category) as

$$g_j(\mathbf{x}) = \log\left[rac{\pi_j(\mathbf{x})}{\pi_J(\mathbf{x})}
ight] = lpha_j + eta_j'\mathbf{x}, \ j = 1, \dots, J-1$$

- This model defines J 1 sets of model parameters, one for each of the J – 1 generalized logits.
- Therefore, for each logit we have
 - A separate intercept (α_j)
 - A separate set of regression parameters (β_i)

Multinomial likelihood

• Consider subject *i*'s contribution to the log-likelihood

$$L_i = \log \left(\prod_{j=1}^J \pi_{ij}^{z_{ij}}\right)$$

$$L_{i} = \sum_{j=1}^{J} z_{ij} \log \pi_{ij} = \sum_{j=1}^{J-1} z_{ij} \log \pi_{ij} + z_{iJ} \log \pi_{iJ}$$
$$= \sum_{j=1}^{J-1} z_{ij} \log \pi_{ij} + \left(1 - \sum_{j=1}^{J-1} z_{ij}\right) \log \pi_{iJ}$$
$$= \sum_{j=1}^{J-1} z_{ij} \log \frac{\pi_{ij}}{\pi_{iJ}} + \log \pi_{iJ}$$

Multinomial likelihood (cont.)

Conclusions:

- 1. The multinomial distribution is a member of the multivariate exponential dispersion family
- 2. The baseline-category logits are the natural parameters for the multinomial distribution
- 3. The baseline-category logit functions are the canonical link functions for the multinomial GLM

5/17

Inverting generalized logits to obtain probabilities

Recall that for covariate pattern $\boldsymbol{x},$ we define the generalized logit as

$$g_j(\mathbf{x}) = \log\left[\frac{\pi_j(\mathbf{x})}{\pi_J(\mathbf{x})}
ight] = \alpha_j + \beta'_j \mathbf{x}, \ j = 1, \dots, J-1.$$

These can be solved for the individual $\pi_j(\mathbf{x})$ yielding

(i)
$$\pi_j(\mathbf{x}) = P(Y = j | \mathbf{x}) = \frac{\exp\{g_j(\mathbf{x})\}}{1 + \sum_{j=1}^{J-1} \exp\{g_j(\mathbf{x})\}}, j = 1, \dots, J-1$$

(ii) $\pi_J(\mathbf{x}) = P(Y = J | \mathbf{x}) = \frac{1}{1 + \sum_{j=1}^{J-1} \exp\{g_j(\mathbf{x})\}}$

7/17

Example

Let Y be a three-level categorical variable with the third level identified as the reference category.

- $g_1(\mathbf{x}) = \alpha_1 + \beta'_1 \mathbf{x}$
- $g_2(\mathbf{x}) = \alpha_2 + \beta'_2 \mathbf{x}$
- There is no g₃(x) the third level of Y is the reference category.

$$\pi_{1}(\mathbf{x}) = P(Y = 1|\mathbf{x}) = \frac{\exp\{\alpha_{1} + \beta_{1}'\mathbf{x}\}}{1 + \exp\{\alpha_{1} + \beta_{1}'\mathbf{x}\} + \exp\{\alpha_{2} + \beta_{2}'\mathbf{x}\}}$$

$$\pi_{2}(\mathbf{x}) = P(Y = 2|\mathbf{x}) = \frac{\exp\{\alpha_{2} + \beta_{2}'\mathbf{x}\}}{1 + \exp\{\alpha_{1} + \beta_{1}'\mathbf{x}\} + \exp\{\alpha_{2} + \beta_{2}'\mathbf{x}\}}$$

$$\pi_{3}(\mathbf{x}) = P(Y = 3|\mathbf{x}) = \frac{1}{1 + \exp\{\alpha_{1} + \beta_{1}'\mathbf{x}\} + \exp\{\alpha_{2} + \beta_{2}'\mathbf{x}\}}$$

Deriving probabilities

Consider

$$\log\left(\frac{\pi_j(\mathbf{x})}{\pi_J(\mathbf{x})}\right) = \alpha_j + \beta'_j \mathbf{x}$$

• Exponentiating both sides, we get

$$\frac{\pi_j(\mathbf{x})}{\pi_J(\mathbf{x})} = \exp\left(\alpha_j + \beta_j' \mathbf{x}\right)$$

which is the (local) odds for category j versus category J.

• Multiplying both sides by $\pi_J(\mathbf{x})$, we obtain

$$\pi_j(\mathbf{x}) = \pi_J(\mathbf{x}) \exp\left(\alpha_j + \beta'_j \mathbf{x}\right)$$
 (1),

• Now, sum both sides over j = 1, ..., J - 1,

$$\sum_{j=1}^{J-1} \pi_j(\mathbf{x}) = \pi_J(\mathbf{x}) \sum_{j=1}^{J-1} \exp\left(\alpha_j + \beta_j' \mathbf{x}\right) \quad (2),$$

9/17

Deriving probabilities (cont.)

Note that

$$\pi_J(\mathbf{x}) + \sum_{j=1}^{J-1} \pi_j(\mathbf{x}) = \sum_{j=1}^J \pi_j(\mathbf{x}) = 1$$

It follows that

$$\sum_{j=1}^{J-1} \pi_j(\mathbf{x}) = 1 - \pi_J(\mathbf{x}) \quad (3)$$

• Based on (3), we can substitute $1 - \pi_J(\mathbf{x})$ for $\sum_{j=1}^{J-1} \pi_j(\mathbf{x})$ in (2) on Slide 9, resulting in

$$1 - \pi_J(\mathbf{x}) = \pi_J(\mathbf{x}) \sum_{j=1}^{J-1} \exp\left(\alpha_j + \beta_j' \mathbf{x}\right) \quad (4)$$

Deriving probabilities (cont.)

• Rearranging terms in (4) on Slide 10, we have

$$1 = \pi_J(\mathbf{x}) \left[1 + \sum_{j=1}^{J-1} \exp\left(\alpha_j + \beta_j' \mathbf{x}\right) \right]$$

• Solving for $\pi_J(\mathbf{x})$, we have

$$\pi_J(\mathbf{x}) = \frac{1}{1 + \sum_{j=1}^{J-1} \exp\left(\alpha_j + \beta_j' \mathbf{x}\right)}$$

• Recalling (1) from Slide 9

$$\pi_j(\mathbf{x}) = \pi_J(\mathbf{x}) \exp\left(\alpha_j + \beta'_j \mathbf{x}\right),$$

we substitute our expression for $\pi_J(\mathbf{x})$ into (1) to obtain

$$\pi_j(\mathbf{x}) = rac{\exp\left(lpha_j + eta_j' \mathbf{x}
ight)}{1 + \sum_{j=1}^{J-1} \exp\left(lpha_j + eta_j' \mathbf{x}
ight)}$$

11/17

Obtaining other odds ratios

- Note that the J 1 baseline-category logits uniquely determine all remaining logits comparing any two response levels
- Consider the logit for category j versus j' where $j \neq j'$ and $j' \neq J$

$$\log\left(\frac{\pi_j(\mathbf{x})}{\pi_{j'}(\mathbf{x})}\right) = \log\left(\frac{\pi_j(\mathbf{x})}{\pi_J(\mathbf{x})}\right) - \log\left(\frac{\pi_{j'}(\mathbf{x})}{\pi_J(\mathbf{x})}\right)$$
$$= g_j(\mathbf{x}) - g_{j'}(\mathbf{x})$$
$$= (\alpha_j + \beta_j'\mathbf{x}) - (\alpha_{j'} + \beta_{j'}'\mathbf{x})$$

CRC tumor location example

- Y_i = tumor location for *i*th colorectal cancer (CRC) patient (1 = proximal, 2 = distal, 3 = rectal)
- X_{1i} = race for *i*th CRC patient (1 = AA or 0 = non-AA)
- X_{2i} = gender for *i*th CRC patient (1 = male or 0 = female)
- Using rectal tumor location as the reference category, we fit the following generalized logits:
 - $g_{1}(\mathbf{x}_{i}) = \alpha_{1} + \beta_{11}x_{1i} + \beta_{12}x_{2i}$ $g_{2}(\mathbf{x}_{i}) = \alpha_{2} + \beta_{21}x_{1i} + \beta_{22}x_{2i}$

For the *j*th logit (j = 1, 2)

- α_i is the intercept
- β_{j1} is the effect of subject's race
- β_{j2} is the effect of subject's gender

13/17

CRC example: log odds

Covariate classes		proximal rectal	<u>distal</u> rectal	proximal distal
AA	Male	$\alpha_1 + \beta_{11} +$	$\alpha_2 + \beta_{21} + \beta_{21}$	$(\alpha_1 + \beta_{11} + \beta_{12}) -$
		eta_{12}	eta_{22}	$(\alpha_2 + \beta_{21} + \beta_{22})$
	Female	$\alpha_1 + \beta_{11}$	$\alpha_2 + \beta_{21}$	$(\alpha_1 + \beta_{11}) -$
				$(\alpha_2 + \beta_{21})$
non-AA	Male	$\alpha_1 + \beta_{12}$	$\alpha_2 + \beta_{22}$	$(\alpha_1 + \beta_{12}) -$
				$(\alpha_2 + \beta_{22})$
	Female	α_1	$lpha_{2}$	$\alpha_1 - \alpha_2$

CRC example: log odds ratios

Calculate the log odds ratio for proximal versus rectal CRC comparing AAs to non-AAs, controlling for subject's gender.

• log odds of proximal versus rectal CRC for AA males is

$$\alpha_1 + \beta_{11} + \beta_{12}$$

• log odds of proximal versus rectal CRC for non-AA males is

 $\alpha_1 + \beta_{12}$

 log odds ratio of proximal versus rectal CRC for AA males compared to non-AA males is

 β_{11}

 Therefore, odds ratio of proximal versus rectal CRC for AA males compared to non-AA males is

 $\exp\{\beta_{11}\}$

15/17

CRC example: log odds ratios (cont.)

Calculate the log odds ratio for proximal versus rectal CRC comparing AAs to non-AAs, controlling for subject's gender.

• log odds of proximal versus rectal CRC for AA females is

 $\alpha_1 + \beta_{11}$

 log odds of proximal versus rectal CRC for non-AA females is

 α_1

 log odds ratio of proximal versus rectal CRC for AA females compared to non-AA females is

 β_{11}

• Therefore, odds ratio of proximal versus rectal CRC for AA females compared to non-AA females is

```
\exp\{\beta_{11}\}
```

CRC example: log odds ratios (cont.)

- Not surprisingly, the odds ratios for proximal versus rectal CRC comparing AAs to non-AAs was the same for males and females
- This is because there was no interaction in the model
- That is to say, we assume homogeneity of the local odds ratios
- Other ORs of interest can be calculated by exponentiating differences of appropriately selected log odds