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Local odds ratios
Y

1 2 3 4
1 π11 π12 π13 π14 π1+

X 2 π21 π22 π23 π24 π2+
3 π31 π32 π33 π34 π3+

• Odds of Y = 4 versus Y = 2 when X = 1 is
(π14/π1+) / (π12/π1+) = π14/π12

• Odds of Y = 4 versus Y = 2 when X = 3 is
(π34/π3+) / (π32/π3+) = π34/π32

• Local odds ratio =
(π14/π12) / (π34/π32) = (π14π34) / (π12π32)

• Interpretation: If local OR = 2, “There is a two-fold increase
in the odds of a response, Y , in class 4 versus class 2
when comparing X = 1 to X = 3.”
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Multinomial regression models for nominal response

• Let Y be a categorical response variable with J categories
(J > 2)

• We desire a model for multinomial responses similar to a
logistic regression model

• Y could be the location of a colorectal tumor (proximal,
distal or rectal)

• X could be the covariate classes defined by a subject’s race
(AA or non-AA) and gender (male or female)

• Let πj(x) = P(Y = j |x) for some fixed setting of the x
explanatory variables, with

∑
j πj(x) = 1

• At this fixed setting of x we treat the counts at the J
categories of Y as multinomial with probabilities
{π1(x), . . . , πJ(x)}.
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Baseline-category logits
• We select one of the J categories of Y as the baseline (or
reference) category

• Without loss of generality, order the categories of Y so the
Jth level coincides with this baseline category

• Define the generalized logit (relative to the baseline
category) as

gj(x) = log
[
πj(x)
πJ(x)

]
= αj + β′

jx, j = 1, . . . , J − 1

• This model defines J − 1 sets of model parameters, one for
each of the J − 1 generalized logits.

• Therefore, for each logit we have
• A separate intercept (αj )
• A separate set of regression parameters (βj )
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Multinomial likelihood
• Consider subject i ’s contribution to the log-likelihood

Li = log

⎛
⎝ J∏
j=1

π
zij
ij

⎞
⎠

• πij = P(Yi = j)
• zij = 1 if Yi = j and zij = 0 if Yi �= j
• zi = (zi1, . . . , ziJ) is a vector of a single 1 and the rest 0

Li =

J∑
j=1

zij logπij =
J−1∑
j=1

zij logπij + ziJ logπiJ

=

J−1∑
j=1

zij logπij +

⎛
⎝1−

J−1∑
j=1

zij

⎞
⎠ logπiJ

=

J−1∑
j=1

zij log
πij
πiJ

+ logπiJ
5 / 17

Multinomial likelihood (cont.)

Conclusions:
1. The multinomial distribution is a member of the multivariate
exponential dispersion family

2. The baseline-category logits are the natural parameters for
the multinomial distribution

3. The baseline-category logit functions are the canonical link
functions for the multinomial GLM
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Inverting generalized logits to obtain probabilities

Recall that for covariate pattern x, we define the generalized
logit as

gj(x) = log
[
πj(x)
πJ(x)

]
= αj + β′

jx, j = 1, . . . , J − 1.

These can be solved for the individual πj(x) yielding

(i) πj(x) = P(Y = j |x) =
exp{gj(x)}

1+
∑J−1
j=1 exp{gj(x)}

, j = 1, . . . , J − 1

(ii) πJ(x) = P(Y = J|x) = 1
1+

∑J−1
j=1 exp{gj(x)}
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Example
Let Y be a three-level categorical variable with the third level
identified as the reference category.

• g1(x) = α1 + β′

1x
• g2(x) = α2 + β′

2x
• There is no g3(x) - the third level of Y is the reference
category.

π1(x) = P(Y = 1|x) = exp{α1 + β′

1x}
1+ exp{α1 + β′

1x}+ exp{α2 + β′

2x}

π2(x) = P(Y = 2|x) = exp{α2 + β′

2x}
1+ exp{α1 + β′

1x}+ exp{α2 + β′

2x}

π3(x) = P(Y = 3|x) = 1
1+ exp{α1 + β′

1x}+ exp{α2 + β′

2x}
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Deriving probabilities
• Consider

log
(
πj(x)
πJ(x)

)
= αj + β′

jx

• Exponentiating both sides, we get

πj(x)
πJ(x)

= exp
(
αj + β′

jx
)

which is the (local) odds for category j versus category J.
• Multiplying both sides by πJ(x), we obtain

πj(x) = πJ(x)exp
(
αj + β′

jx
)

(1),

• Now, sum both sides over j = 1, ..., J − 1,
J−1∑
j=1

πj(x) = πJ(x)
J−1∑
j=1

exp
(
αj + β′

jx
)

(2),
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Deriving probabilities (cont.)
• Note that

πJ(x) +
J−1∑
j=1

πj(x) =
J∑
j=1

πj(x) = 1

• It follows that
J−1∑
j=1

πj(x) = 1− πJ(x) (3)

• Based on (3), we can substitute 1− πJ(x) for
∑J−1
j=1 πj(x) in

(2) on Slide 9, resulting in

1− πJ(x) = πJ(x)
J−1∑
j=1

exp
(
αj + β′

jx
)

(4)
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Deriving probabilities (cont.)
• Rearranging terms in (4) on Slide 10, we have

1 = πJ(x)
[
1+

∑J−1
j=1 exp

(
αj + β′

jx
)]

• Solving for πJ(x), we have

πJ(x) =
1

1+
∑J−1
j=1 exp

(
αj + β′

jx
)

• Recalling (1) from Slide 9

πj(x) = πJ(x)exp
(
αj + β′

jx
)
,

we substitute our expression for πJ(x) into (1) to obtain

πj(x) =
exp

(
αj + β′

jx
)

1+
∑J−1
j=1 exp

(
αj + β′

jx
)
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Obtaining other odds ratios

• Note that the J − 1 baseline-category logits uniquely
determine all remaining logits comparing any two response
levels

• Consider the logit for category j versus j ′ where j �= j ′ and
j ′ �= J

log
(
πj(x)
πj ′(x)

)
= log

(
πj(x)
πJ(x)

)
− log

(
πj ′(x)
πJ(x)

)

= gj(x)− gj ′(x)
= (αj + β′

jx)− (αj ′ + β′

j ′x)
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CRC tumor location example
• Yi = tumor location for i th colorectal cancer (CRC) patient
(1 = proximal, 2 = distal, 3 = rectal)

• X1i = race for i th CRC patient (1 = AA or 0 = non-AA)
• X2i = gender for i th CRC patient (1 = male or 0 = female)
• Using rectal tumor location as the reference category, we
fit the following generalized logits:

g1(xi) = α1 + β11x1i + β12x2i
g2(xi) = α2 + β21x1i + β22x2i

For the j th logit (j = 1,2)
• αj is the intercept
• βj1 is the effect of subject’s race
• βj2 is the effect of subject’s gender
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CRC example: log odds

Covariate classes proximal
rectal

distal
rectal

proximal
distal

AA Male α1 + β11+ α2 + β21+ (α1 + β11 + β12)−
β12 β22 (α2 + β21 + β22)

Female α1 + β11 α2 + β21 (α1 + β11)−
(α2 + β21)

non-AA Male α1 + β12 α2 + β22 (α1 + β12)−
(α2 + β22)

Female α1 α2 α1 − α2
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CRC example: log odds ratios
Calculate the log odds ratio for proximal versus rectal CRC
comparing AAs to non-AAs, controlling for subject’s gender.

• log odds of proximal versus rectal CRC for AA males is

α1 + β11 + β12

• log odds of proximal versus rectal CRC for non-AA males is

α1 + β12

• log odds ratio of proximal versus rectal CRC for AA males
compared to non-AA males is

β11

• Therefore, odds ratio of proximal versus rectal CRC for AA
males compared to non-AA males is

exp{β11}
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CRC example: log odds ratios (cont.)
Calculate the log odds ratio for proximal versus rectal CRC
comparing AAs to non-AAs, controlling for subject’s gender.

• log odds of proximal versus rectal CRC for AA females is

α1 + β11

• log odds of proximal versus rectal CRC for non-AA females
is

α1

• log odds ratio of proximal versus rectal CRC for AA
females compared to non-AA females is

β11

• Therefore, odds ratio of proximal versus rectal CRC for AA
females compared to non-AA females is

exp{β11}
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CRC example: log odds ratios (cont.)

• Not surprisingly, the odds ratios for proximal versus rectal
CRC comparing AAs to non-AAs was the same for males
and females

• This is because there was no interaction in the model
• That is to say, we assume homogeneity of the local odds
ratios

• Other ORs of interest can be calculated by exponentiating
differences of appropriately selected log odds
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