Generalized logit models for nominal multinomial responses

Categorical Data Analysis, Summer 2015

Local odds ratios
Y

		1	2	3	4	
\times	1	π_{11}	π_{12}	π_{13}	π_{14}	π_{1+}
	2	π_{21}	π_{22}	π_{23}	π_{24}	π_{2+}
	3	π_{31}	π_{32}	π_{33}	π_{34}	π_{3+}

- Odds of $Y=4$ versus $Y=2$ when $X=1$ is $\left(\pi_{14} / \pi_{1+}\right) /\left(\pi_{12} / \pi_{1+}\right)=\pi_{14} / \pi_{12}$
- Odds of $Y=4$ versus $Y=2$ when $X=3$ is $\left(\pi_{34} / \pi_{3+}\right) /\left(\pi_{32} / \pi_{3+}\right)=\pi_{34} / \pi_{32}$
- Local odds ratio =
$\left(\pi_{14} / \pi_{12}\right) /\left(\pi_{34} / \pi_{32}\right)=\left(\pi_{14} \pi_{34}\right) /\left(\pi_{12} \pi_{32}\right)$
- Interpretation: If local OR = 2, "There is a two-fold increase in the odds of a response, Y, in class 4 versus class 2 when comparing $X=1$ to $X=3$."
- Let Y be a categorical response variable with J categories $(J>2)$
- We desire a model for multinomial responses similar to a logistic regression model
- Y could be the location of a colorectal tumor (proximal, distal or rectal)
- X could be the covariate classes defined by a subject's race (AA or non-AA) and gender (male or female)
- Let $\pi_{j}(\mathbf{x})=P(Y=j \mid \mathbf{x})$ for some fixed setting of the \mathbf{x} explanatory variables, with $\sum_{j} \pi_{j}(\mathbf{x})=1$
- At this fixed setting of \mathbf{x} we treat the counts at the J categories of Y as multinomial with probabilities $\left\{\pi_{1}(\mathbf{x}), \ldots, \pi_{J}(\mathbf{x})\right\}$.

Baseline-category logits

- We select one of the J categories of Y as the baseline (or reference) category
- Without loss of generality, order the categories of Y so the Jth level coincides with this baseline category
- Define the generalized logit (relative to the baseline category) as

$$
g_{j}(\mathbf{x})=\log \left[\frac{\pi_{j}(\mathbf{x})}{\pi_{J}(\mathbf{x})}\right]=\alpha_{j}+\boldsymbol{\beta}_{j}^{\prime} \mathbf{x}, j=1, \ldots, J-1
$$

- This model defines $J-1$ sets of model parameters, one for each of the $J-1$ generalized logits.
- Therefore, for each logit we have
- A separate intercept (α_{j})
- A separate set of regression parameters $\left(\boldsymbol{\beta}_{j}\right)$

Multinomial likelihood

- Consider subject i's contribution to the log-likelihood

$$
L_{i}=\log \left(\prod_{j=1}^{J} \pi_{i j}^{z_{i j}}\right)
$$

- $\pi_{i j}=P\left(Y_{i}=j\right)$
- $z_{i j}=1$ if $Y_{i}=j$ and $z_{i j}=0$ if $Y_{i} \neq j$
- $\mathbf{z}_{i}=\left(z_{i 1}, \ldots, z_{i J}\right)$ is a vector of a single 1 and the rest 0

$$
\begin{aligned}
L_{i} & =\sum_{j=1}^{J} z_{i j} \log \pi_{i j}=\sum_{j=1}^{J-1} z_{i j} \log \pi_{i j}+z_{i J} \log \pi_{i J} \\
& =\sum_{j=1}^{J-1} z_{i j} \log \pi_{i j}+\left(1-\sum_{j=1}^{J-1} z_{i j}\right) \log \pi_{i J} \\
& =\sum_{j=1}^{J-1} z_{i j} \log \frac{\pi_{i j}}{\pi_{i J}}+\log \pi_{i J}
\end{aligned}
$$

Multinomial likelihood (cont.)

Conclusions:

1. The multinomial distribution is a member of the multivariate exponential dispersion family
2. The baseline-category logits are the natural parameters for the multinomial distribution
3. The baseline-category logit functions are the canonical link functions for the multinomial GLM

Inverting generalized logits to obtain probabilities

Recall that for covariate pattern \mathbf{x}, we define the generalized logit as

$$
g_{j}(\mathbf{x})=\log \left[\frac{\pi_{j}(\mathbf{x})}{\pi_{J}(\mathbf{x})}\right]=\alpha_{j}+\boldsymbol{\beta}_{j}^{\prime} \mathbf{x}, j=1, \ldots, J-1
$$

These can be solved for the individual $\pi_{j}(\mathbf{x})$ yielding
(i) $\pi_{j}(\mathbf{x})=P(Y=j \mid \mathbf{x})=\frac{\exp \left\{g_{j}(\mathbf{x})\right\}}{1+\sum_{j=1}^{J-1} \exp \left\{g_{j}(\mathbf{x})\right\}}, j=1, \ldots, J-1$
(ii) $\pi_{J}(\mathbf{x})=P(Y=J \mid \mathbf{x})=\frac{1}{1+\sum_{j=1}^{J-1} \exp \left\{g_{j}(\mathbf{x})\right\}}$

Example

Let Y be a three-level categorical variable with the third level identified as the reference category.

- $g_{1}(\mathbf{x})=\alpha_{1}+\boldsymbol{\beta}_{1}^{\prime} \mathbf{x}$
- $g_{2}(\mathbf{x})=\alpha_{2}+\boldsymbol{\beta}_{2}^{\prime} \mathbf{x}$
- There is no $g_{3}(\mathbf{x})$ - the third level of Y is the reference category.

$$
\begin{aligned}
& \pi_{1}(\mathbf{x})=P(Y=1 \mid \mathbf{x})=\frac{\exp \left\{\alpha_{1}+\boldsymbol{\beta}_{1}^{\prime} \mathbf{x}\right\}}{1+\exp \left\{\alpha_{1}+\boldsymbol{\beta}_{1}^{\prime} \mathbf{x}\right\}+\exp \left\{\alpha_{2}+\boldsymbol{\beta}_{2}^{\prime} \mathbf{x}\right\}} \\
& \pi_{2}(\mathbf{x})=P(Y=2 \mid \mathbf{x})=\frac{\exp \left\{\alpha_{2}+\boldsymbol{\beta}_{2}^{\prime} \mathbf{x}\right\}}{1+\exp \left\{\alpha_{1}+\boldsymbol{\beta}_{1}^{\prime} \mathbf{x}\right\}+\exp \left\{\alpha_{2}+\boldsymbol{\beta}_{2}^{\prime} \mathbf{x}\right\}} \\
& \pi_{3}(\mathbf{x})=P(Y=3 \mid \mathbf{x})=\frac{1}{1+\exp \left\{\alpha_{1}+\boldsymbol{\beta}_{1}^{\prime} \mathbf{x}\right\}+\exp \left\{\alpha_{2}+\boldsymbol{\beta}_{2}^{\prime} \mathbf{x}\right\}}
\end{aligned}
$$

Deriving probabilities

- Consider

$$
\log \left(\frac{\pi_{j}(\mathbf{x})}{\pi_{J}(\mathbf{x})}\right)=\alpha_{j}+\beta_{j}^{\prime} \mathbf{x}
$$

- Exponentiating both sides, we get

$$
\frac{\pi_{j}(\mathbf{x})}{\pi_{J}(\mathbf{x})}=\exp \left(\alpha_{j}+\beta_{j}^{\prime} \mathbf{x}\right)
$$

which is the (local) odds for category j versus category J .

- Multiplying both sides by $\pi_{J}(\mathbf{x})$, we obtain

$$
\begin{equation*}
\pi_{j}(\mathbf{x})=\pi_{J}(\mathbf{x}) \exp \left(\alpha_{j}+\beta_{j}^{\prime} \mathbf{x}\right) \tag{1}
\end{equation*}
$$

- Now, sum both sides over $j=1, \ldots, J-1$,

$$
\begin{equation*}
\sum_{j=1}^{J-1} \pi_{j}(\mathbf{x})=\pi_{J}(\mathbf{x}) \sum_{j=1}^{J-1} \exp \left(\alpha_{j}+\beta_{j}^{\prime} \mathbf{x}\right) \tag{2}
\end{equation*}
$$

Deriving probabilities (cont.)

- Note that

$$
\pi_{J}(\mathbf{x})+\sum_{j=1}^{J-1} \pi_{j}(\mathbf{x})=\sum_{j=1}^{J} \pi_{j}(\mathbf{x})=1
$$

- It follows that

$$
\begin{equation*}
\sum_{j=1}^{J-1} \pi_{j}(\mathbf{x})=1-\pi_{J}(\mathbf{x}) \tag{3}
\end{equation*}
$$

- Based on (3), we can substitute $1-\pi_{J}(\mathbf{x})$ for $\sum_{j=1}^{J-1} \pi_{j}(\mathbf{x})$ in (2) on Slide 9, resulting in

$$
\begin{equation*}
1-\pi_{J}(\mathbf{x})=\pi_{J}(\mathbf{x}) \sum_{j=1}^{J-1} \exp \left(\alpha_{j}+\beta_{j}^{\prime} \mathbf{x}\right) \tag{4}
\end{equation*}
$$

Deriving probabilities (cont.)

- Rearranging terms in (4) on Slide 10, we have

$$
1=\pi_{J}(\mathbf{x})\left[1+\sum_{j=1}^{J-1} \exp \left(\alpha_{j}+\beta_{j}^{\prime} \mathbf{x}\right)\right]
$$

- Solving for $\pi_{J}(\mathbf{x})$, we have

$$
\pi_{J}(\mathbf{x})=\frac{1}{1+\sum_{j=1}^{J-1} \exp \left(\alpha_{j}+\beta_{j}^{\prime} \mathbf{x}\right)}
$$

- Recalling (1) from Slide 9

$$
\pi_{j}(\mathbf{x})=\pi_{J}(\mathbf{x}) \exp \left(\alpha_{j}+\beta_{j}^{\prime} \mathbf{x}\right)
$$

we substitute our expression for $\pi_{J}(\mathbf{x})$ into (1) to obtain

$$
\pi_{j}(\mathbf{x})=\frac{\exp \left(\alpha_{j}+\beta_{j}^{\prime} \mathbf{x}\right)}{1+\sum_{j=1}^{J-1} \exp \left(\alpha_{j}+\beta_{j}^{\prime} \mathbf{x}\right)}
$$

Obtaining other odds ratios

- Note that the $J-1$ baseline-category logits uniquely determine all remaining logits comparing any two response levels
- Consider the logit for category j versus j^{\prime} where $j \neq j^{\prime}$ and $j^{\prime} \neq J$

$$
\begin{aligned}
\log \left(\frac{\pi_{j}(\mathbf{x})}{\pi_{j^{\prime}}(\mathbf{x})}\right) & =\log \left(\frac{\pi_{j}(\mathbf{x})}{\pi_{J}(\mathbf{x})}\right)-\log \left(\frac{\pi_{j^{\prime}}(\mathbf{x})}{\pi_{J}(\mathbf{x})}\right) \\
& =g_{j}(\mathbf{x})-g_{j^{\prime}}(\mathbf{x}) \\
& =\left(\alpha_{j}+\beta_{j}^{\prime} \mathbf{x}\right)-\left(\alpha_{j^{\prime}}+\beta_{j^{\prime}}^{\prime} \mathbf{x}\right)
\end{aligned}
$$

CRC tumor location example

- $Y_{i}=$ tumor location for i th colorectal cancer (CRC) patient (1 = proximal, 2 = distal, 3 = rectal)
- $X_{1 i}=$ race for i th CRC patient ($1=\mathrm{AA}$ or $0=$ non-AA)
- $X_{2 i}=$ gender for i th CRC patient ($1=$ male or $0=$ female $)$
- Using rectal tumor location as the reference category, we fit the following generalized logits:

$$
\begin{aligned}
& g_{1}\left(\mathbf{x}_{i}\right)=\alpha_{1}+\beta_{11} x_{1 i}+\beta_{12} x_{2 i} \\
& g_{2}\left(\mathbf{x}_{i}\right)=\alpha_{2}+\beta_{21} x_{1 i}+\beta_{22} x_{2 i}
\end{aligned}
$$

For the j th logit $(j=1,2)$

- α_{j} is the intercept
- $\beta_{j 1}$ is the effect of subject's race
- $\beta_{j 2}$ is the effect of subject's gender

CRC example: log odds

Covariate classes		$\frac{\text { proximal }}{\text { rectal }}$	$\frac{\text { distal }}{\text { rectal }}$	$\frac{\text { proximal }}{\text { distal }}$
AA	Male	$\alpha_{1}+\beta_{11}+$	$\alpha_{2}+\beta_{21}+$	$\left(\alpha_{1}+\beta_{11}+\beta_{12}\right)-$
		β_{12}	β_{22}	$\left(\alpha_{2}+\beta_{21}+\beta_{22}\right)$
	Female	$\alpha_{1}+\beta_{11}$	$\alpha_{2}+\beta_{21}$	$\left(\alpha_{1}+\beta_{11}\right)-$
			$\left(\alpha_{2}+\beta_{21}\right)$	
non-AA	Male	$\alpha_{1}+\beta_{12}$	$\alpha_{2}+\beta_{22}$	$\left(\alpha_{1}+\beta_{12}\right)-$
				$\left(\alpha_{2}+\beta_{22}\right)$
			α_{2}	$\alpha_{1}-\alpha_{2}$

CRC example: log odds ratios

Calculate the log odds ratio for proximal versus rectal CRC comparing AAs to non-AAs, controlling for subject's gender.

- log odds of proximal versus rectal CRC for AA males is

$$
\alpha_{1}+\beta_{11}+\beta_{12}
$$

- log odds of proximal versus rectal CRC for non-AA males is

$$
\alpha_{1}+\beta_{12}
$$

- log odds ratio of proximal versus rectal CRC for AA males compared to non-AA males is

$$
\beta_{11}
$$

- Therefore, odds ratio of proximal versus rectal CRC for AA males compared to non-AA males is

$$
\exp \left\{\beta_{11}\right\}
$$

CRC example: log odds ratios (cont.)

Calculate the log odds ratio for proximal versus rectal CRC comparing AAs to non-AAs, controlling for subject's gender.

- log odds of proximal versus rectal CRC for AA females is

$$
\alpha_{1}+\beta_{11}
$$

- log odds of proximal versus rectal CRC for non-AA females is

$$
\alpha_{1}
$$

- log odds ratio of proximal versus rectal CRC for AA females compared to non-AA females is

$$
\beta_{11}
$$

- Therefore, odds ratio of proximal versus rectal CRC for AA females compared to non-AA females is

$$
\exp \left\{\beta_{11}\right\}
$$

CRC example: log odds ratios (cont.)

- Not surprisingly, the odds ratios for proximal versus rectal CRC comparing AAs to non-AAs was the same for males and females
- This is because there was no interaction in the model
- That is to say, we assume homogeneity of the local odds ratios
- Other ORs of interest can be calculated by exponentiating differences of appropriately selected log odds

