Generalized logit models for nominal
multinomial responses

Categorical Data Analysis, Summer 2015
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Local odds ratios

Y
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e Oddsof Y =4 versus Y =2when X =1is
(m14/m14) / (m12/m14) = T14/712

e Oddsof Y =4 versus Y =2when X =3is
(73a/m3+) / (732/73+) = T34/ 732

e Local odds ratio =
(m14/m12) / (734/732) = (m14734) / (T12732)

e Interpretation: If local OR = 2, “There is a two-fold increase

in the odds of a response, Y, in class 4 versus class 2
when comparing X =1to X =3’
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Multinomial regression models for nominal response

e Let Y be a categorical response variable with J categories
(J>2)
e We desire a model for multinomial responses similar to a
logistic regression model
e Y could be the location of a colorectal tumor (proximal,
distal or rectal)
e X could be the covariate classes defined by a subject’s race
(AA or non-AA) and gender (male or female)
e Let mj(x) = P(Y = j|x) for some fixed setting of the x
explanatory variables, with > _; 7;(x) = 1
e At this fixed setting of x we treat the counts at the J
categories of Y as multinomial with probabilities

{m1(x),...,my(X)}.
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Baseline-category logits

o \We select one of the J categories of Y as the baseline (or
reference) category

e Without loss of generality, order the categories of Y so the
Jth level coincides with this baseline category

e Define the generalized logit (relative to the baseline
category) as

7j(X)
Ty(X)

e This model defines J — 1 sets of model parameters, one for
each of the J — 1 generalized logits.
e Therefore, for each logit we have

e A separate intercept («;)
A separate set of regression parameters (3;)

gj(x):|09[ ]:ozj+ﬂj’-x,j:1,...,J—1
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Multinomial likelihood
e Consider subject i’s contribution to the log-likelihood

J

Z..

Li=log | ]~}
j=1

o zj=1ifY,=jandz; =0if Y; #
e z; = (zj1,...,2Zy) is a vector of a single 1 and the rest 0
J J—1
L = > zjlogmj =} zjlog; + ziylog mi
j=1 j=1

J—1 J—1
= ZZ,']'|Og7T,'j—|— 1—22,']' log 7y

J—1
i

= ) zjlog—* + log
iy
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Multinomial likelihood (cont.)

Conclusions:

1. The multinomial distribution is a member of the multivariate
exponential dispersion family

2. The baseline-category logits are the natural parameters for
the multinomial distribution

3. The baseline-category logit functions are the canonical link
functions for the multinomial GLM
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Inverting generalized logits to obtain probabilities
Recall that for covariate pattern x, we define the generalized
logit as

7;(X)
my(X)

These can be solved for the individual 7;(x) yielding

gj(X):logl ]:aj+ﬂ;x,j:1,...,J—1.

) 70 = P =) = S S =t d
j:
1

(i) my(x) = P(Y =J|x) = 1+ 37 exp{g;(x)}
j=
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Example

Let Y be a three-level categorical variable with the third level
identified as the reference category.

o g1(X) = ag + B4x
* g2o(X) = az + B5x
e There is no g3(x) - the third level of Y is the reference

category.
exp{as + B9x}
X _= fD y/ == 1 X) =
1 (X) ( %) 1+ exp{aq + B, x} + exp{az + B5x}
/
m(x) = P(Y =2[x) = expiaz + BoX;

1+ exp{aq + B)x} + exp{az + B5x}
1

Tl = PO =30 =4 oplar + Bix) + explaz + B5x)
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Deriving probabilities

e Consider x)
(X
| ! =+
s (i) =1
e Exponentiating both sides, we get
7Tj(x) _ _ /
) exp (aj + Bjx>

which is the (local) odds for category j versus category J.
Multiplying both sides by 7,(x), we obtain

7j(x) = ma(x)exp (o + fx) (1),

Now, sum both sidesoverj =1,....J — 1

Y

J—1 J—1
Z mi(x) = my(x) Z exp <aj - B;x) (2),
j=1

j=1
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Deriving probabilities (cont.)
¢ Note that

¢ |t follows that

J—1

S mx)=1-mx) (3)

j=1

e Based on (3), we can substitute 1 — m,(x) for E}’;ﬂ 7j(X) in

(2) on Slide 9, resulting in

J—1

1 — WJ(x) — 7TJ(X) Zexp (ij + ﬁj/x> (4)

J=1
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Deriving probabilities (cont.)
e Rearranging terms in (4) on Slide 10, we have
1 = 7my(x) |1+ Z}’;ﬂ exp <aj + Bjx)}
e Solving for 7,(x), we have
1
1+ Zf;ﬂ exp (aj + Bjx)
e Recalling (1) from Slide 9

7TJ(X) =

(%) = m(x) exp (o + Ax) |
we substitute our expression for 7;(x) into (1) to obtain
exp <aj - ﬁ;x>
1+ 2}1;11 exp (aj + Bjx>
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Obtaining other odds ratios

¢ Note that the J — 1 baseline-category logits uniquely
determine all remaining logits comparing any two response
levels

e Consider the logit for category j versus j' where j # j’ and
j #

)\ o (TN o ()
log (wj/(x)) = log (WJ(X)) og (WJ(X))
= gj(x) —gy(x)

= (oy + Bx) — (o + Bjx)
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CRC tumor location example

e Y; = tumor location for ith colorectal cancer (CRC) patient
(1 = proximal, 2 = distal, 3 = rectal)

e Xj; = race for ith CRC patient (1 = AA or 0 = non-AA)

e Xo; = gender for ith CRC patient (1 = male or 0 = female)

e Using rectal tumor location as the reference category, we
fit the following generalized logits:

g1(x;)
92(X;)

= o1+ B11X1; + BroXo;
= g+ B21X1j + PBooXo;

For the jth logit (j = 1,2)
* q; is the intercept
e 31 is the effect of subject’s race
o Bj2 is the effect of subject’s gender
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CRC example: log odds

Covariate classes %ltrglal %gfg' %‘gﬁl
AA Male aq + B11+ | ao + B+ (o1 + B11 + B12)—
B12 B22 (g + P21 + B22)
Female | aq+ 811 | a2+ Bo (o1 + B11)—
(a2 + B21)
non-AA Male a1+ B | ap+ B (a1 + B12)—
(a2 + B22)
Female o1 a2 o1 —

14/17




CRC example: log odds ratios
Calculate the log odds ratio for proximal versus rectal CRC
comparing AAs to non-AAs, controlling for subject’s gender.

e log odds of proximal versus rectal CRC for AA males is
a1+ B11 + P12
e log odds of proximal versus rectal CRC for non-AA males is
a1 + P12

e log odds ratio of proximal versus rectal CRC for AA males
compared to non-AA males is

B11

e Therefore, odds ratio of proximal versus rectal CRC for AA
males compared to non-AA males is

exp{ 311}
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CRC example: log odds ratios (cont.)
Calculate the log odds ratio for proximal versus rectal CRC
comparing AAs to non-AAs, controlling for subject’s gender.

¢ |log odds of proximal versus rectal CRC for AA females is

a1 + B11
e log odds of proximal versus rectal CRC for non-AA females
is
Q1

¢ log odds ratio of proximal versus rectal CRC for AA
females compared to non-AA females is

B11

e Therefore, odds ratio of proximal versus rectal CRC for AA
females compared to non-AA females is

exp{ 511}
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CRC example: log odds ratios (cont.)

Not surprisingly, the odds ratios for proximal versus rectal
CRC comparing AAs to non-AAs was the same for males
and females

This is because there was no interaction in the model

That is to say, we assume homogeneity of the local odds
ratios

Other ORs of interest can be calculated by exponentiating
differences of appropriately selected log odds
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