
Modeling Zero-In�ated Data

Brian Neelon

Department of Public Health Sciences,

Medical University of South Carolina

July 8, 2015

1 / 53



Common Count Distributions

Poisson Distribution:

Pr(Y = y) =
µye−µ

y !
, µ > 0; y = 0, 1, . . .

E(Y ) = V(Y ) = µ

=⇒ equidispersion
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Common Count Distributions
Negative Binomial:

Pr(Y = y) =
Γ(y + r)

Γ(r)y !

(
µ

µ + r

)y (
r

µ + r

)r

r , µ > 0; y = 0, 1, 2, . . .

E(Y ) = µ

V(Y ) = µ(1 + µ/r)

= µ(1 + αµ), where α = 1/r

α = measure of overdispersion

α > 0⇒ V(Y ) > E(Y )

HW: Show that as α→ 0, NB
dist

=⇒ Poisson

Generalized Poisson distribution1 allows for both over- and
underdispersion

1Consul and Jain, 1973 3 / 53



Illustrative Example: Annual ER Visits
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Poisson Fit
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Poisson Fit with µ = 0.75
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Negative Binomial Fit
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Zero In�ation

Zero in�ation: When data contain more zeros than expected
under a standard count model, the data are said to be zero
in�ated relative to the count distribution

Zero de�ation: Fewer than expected zeros

In such cases, two-part mixtures models are often needed to
assure adequate �t

These include:

1) Hurdle models: model zeros and nonzeros separately

2) Zero-in�ated models: divide zeros into two types and
model �extra� zeros separately
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Hurdle Model

The hurdle model2 is a two-part mixture distribution consisting
of a point mass at zero followed by a zero-truncated count
distribution for the positive observations:

Pr(Y = 0) = 1− π, 0 ≤ π ≤ 1

Pr(Y = y |Y > 0) =
πp(y ;θ)

1− p (0;θ)
, y = 1, 2, . . . ,

where

π = Pr(Y > 0) is the probability of a nonzero response

p (y ;θ) is a count distribution with parameter vector θ

p (0;θ) is the count distribution evaluated at 0

2Cragg, 1971; Mullahy, 1986
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Hurdle Model
The hurdle model can be written more compactly as

Y ∼ (1− π)I(y=0) + π
p(y ;θ)

1− p(0;θ)
I(y>0),

where I(·) is the indicator function.

What happens when π = 0? all zeros

When π = 1? truncated count distribution

When π = 1− p(0;θ)? ordinary count distribution

π > 1− p(0,θ)⇒ zero in�ation

π < 1− p(0;θ)⇒ zero de�ation
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Poisson Hurdle Model

Pr(Y = 0) = 1− π, 0 ≤ π ≤ 1

Pr(Y = y |Y > 0) = π
µye−µ

y !(1− e−µ)
, µ > 0; y = 1, 2, . . .

E(Y ) =
πµ

1− e−µ

HW: Derive V(Y ).

Interpreting µ:

• Not as straightforward as for ordinary Poisson

• For �xed π, as µ increases, E(Y ) increases
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Negative Binomial Hurdle Model

Pr(Y = 0) = 1− π, 0 ≤ π ≤ 1

Pr(Y = y |Y > 0) =
π

1−
(

r
µ+r

)r

Γ(y + r)

Γ(r)y !

(
µ

µ + r

)y (
r

µ + r

)r

E(Y ) =
πµ

1−
(

r
µ+r

)r
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Zero-In�ated Models

Zero-in�ated models3 partition the zeros into two types

Structural zeros: Zeros that arise due to some �structural�
reason that prevents a positive count (ineligibility, not at
risk, etc.)

Chance zeros: Zeros that occur �by chance� among those

at risk � i.e., who don't have a structural zero

3Lambert, 1992
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Example: Dental Caries
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Zero-In�ated Model

The zero-in�ated model is a mixture of a point mass at zero and
an untruncated count distribution.

For example, the zero-in�ated Poisson (ZIP) model is:

Pr(Y = 0) = (1− φ) + φe−µ, 0 ≤ φ ≤ 1

Pr(Y = y) = φ
µye−µ

y !
, µ > 0; y = 1, 2, . . . ; or, alternatively,

Y ∼ (1− φ)I(Z=0) + φPoi(y ;µ)I(Z=1),

where:

φ = �At-risk� probability (not same as π in hurdle model!)

Z = Latent (unobserved) �at-risk� indicator

µ = Mean count among at-risk population

ZINB formed by choosing NB rather than Poisson
22 / 53



Comments

When φ = 1 the model reduces to the ordinary Poisson

Otherwise, the zeros are in�ated relative to the Poisson

For ZI model, E(Y ) = φµ

HW1: Find V(Y ) and show that V(Y ) > E(Y ) when φ < 1

• Hence zero-in�ated models are overdispersed

HW2: Show that Pr(Y > 0) = π = φ[1− p(0;θ)]

• Hence ZI model can be written as a type of hurdle model in
which only zero in�ation and overdispersion are premitted
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Testing for Zero In�ation

If no covariates, can use boundary-adjusted LR test4 for ZI
vs ordinary count distribtuion

For regression models, can use Vuong's test5

However, recent controversy over appropriateness of
Vuong's test for comparing ZI vs ordinary count models6

• Ordinary model is limiting distribution � not strictly nested
nor non-nested

Vuong's test okay for hurdle models vs. ordinary count, but
requires two-stage approach7

Alternatively, use AIC as less formal comparison measure
4Cherno�, 1954
5Vuong, 1989
6Wilson, 2015
7Winkelmann, 2008
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Deciding Between ZI and Hurdle Models

Suppose there's evidence of zero-in�ation

How do we choose b/w hurdle and ZI models?

1) Subject matter considerations:

• ZI model: Zeros composed of two types � zeros among
those not at risk, and zeros among those at risk who, by
chance, have a zero count

• Model Pr(Z = 1) and ordinary count given Z = 1

• Hurdle Model: only one type of zero

• Model Pr(Y > 0) and truncated count given Y > 0
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Deciding Between ZI and Hurdle Models (Cont'd)

2) Model �t considerations:

• Use model selection criteria or Vuong's test to choose b/w
hurdle and ZI model

• Sometimes, all you care about is an appropriate model for
Y that accounts for zero-in�ation

• Target of inference is marginal mean E(Y ), not
E(Y |Y > 0) or E(Y |Z > 0)

• Can use previous formulas for E(Y ) to predict mean
response
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Regression Models for Zero-In�ated Data

Suppose we have a simple random sample (SRS) of size n from
a zero-in�ated population

Poisson Hurdle Regression Model:

Yi ∼ (1− πi)I(yi=0) + πi
µyi
i e
−µi

yi !(1− e−µi )
I(yi>0)

logit(πi) = logit [Pr(Yi > 0)] = x
′
iβ1

ln(µi) = x
′
iβ2, i = 1, . . . , n,

where x i is a vector of covariates (can vary across components)

β1 = Log-odds of observing a positive response

β2 = Harder to interpret directly

β2 > 0 ⇒ positive association b/w x and counts among

those with positive response

Similar set-up for NB hurdle model

Don't need to assume same x 's in both parts
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Example: ER Visits

Recall, we had 1000 patients and we wish to model the number
of ER visits

Suppose we want to model Y as a function of insurance status
(non-private vs. private)

Propose a Poisson hurdle model:

Yi ∼ (1− πi)I(yi=0) + πi
µyi
i e
−µi

yi !(1− e−µi )
I(yi>0)

logit(πi) = β10 + β11xi

ln(µi) = β20 + β21xi , i = 1, . . . , 1000,

where xi = 1 if non-private insurance and 0 if private
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R Code for Poisson Hurdle Model

Can �t in R using pscl package:

library(pscl) # To �t hurdle and ZI regression

pois�t<−glm(y ∼ x , family=poisson(link="log"))

hurd�t<−hurdle(y ∼ x , dist = "poisson", link="logit")

Maximum likelihood estimates obtained via Fisher scoring
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Model Comparison

Vuong's test:

vuong(pois�t,hurd�t) # Vuong's test from pscl

p-value< 0.0001 in favor of hurdle model

AIC:

library(bbmle) # For AIC table

AICtab(pois�t,hurd�t)

AIC Di�erence: 541 in favor of hurdle

Rule of thumb: AIC di�erence of 10 or more strongly favors
model with lower AIC8

8Burnham and Anderson, 2004
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Parameter Estimates

Table 1: Poisson hurdle parameter estimates and SEs

Component Parameter Estimate SE p-val

Binary β10 -1.11 0.12 < 0.0001
β11 1.41 0.14 < 0.0001

Count β20 0.73 0.08 < 0.0001
β21 0.24 0.09 0.007

Interpretations of β11 and β21?

β11: log-odds of a positive count (some ER use) for non-private
vs. private

β21: Not so easy. Given at least one visit, non-private patients
tend to have more visits
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Predictions

Suppose we want to predict the mean number of visits for
subjects with and without private insurance:

E(Yi) = πi
µi

1− exp(−µi)

=
exp(x ′iβ1)

1 + exp(x ′iβ1)
× exp(x ′iβ2)

1− exp[− exp(x ′iβ2)]

Use predict statement in R:

yhat<−predict(hurd�t,type="response")

For patient with private insurance, Ê(Yi) = 0.59

For patient with non-private insurance, Ê(Yi) = 1.64

Risk ratio: 1.64/0.59 = 2.78 times more visits on average

SEs and 95% CIs obtained via delta method or bootstrap
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Example 2: ZINB Model for Dental Caries

In example 2, we had 800 dental caries patients. Suppose we
want to assess e�cacy of new �ouride treatment (x)

ZINB Model:

Yi ∼ (1− φi)I(Zi=0) + φiNB(yi ;µi , α)I(Zi=1)

logit(φi) = logit [Pr(Zi = 1)] = β10 + β11xi

ln(µi) = β20 + β21xi , i = 1, . . . , 800.

Interpretations of β11 and β21?

β1 = log-odds of being �at risk� for caries

β2 = log incidence ratio (IDR) for at-risk group

Speci�cally, exp(β21) = multiplicative increase in E(Y ) for
at-risk patients given treatment vs those without treatment
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R Code for ZINB Model

ML estimation proceeds via Newton Raphson or EM algorithm
by treating latent at-risk indicator, Z , as a type of missing data

library(pscl)

NB�t<−glm.nb(y ∼ x) # not part of pscl

ZINB�t<−zeroin�(y ∼ x , dist = "negbin", EM = TRUE)

Note: pscl parameterizes in terms of 1− φ = Pr(Zi = 0)
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Model Comparison

Vuong's test widely used but some recent controversy9

Let's use AIC instead:

AICtab(nb�t,ZINB�t)

AIC Di�erence: 10.5 in favor of ZINB

ZI models often require large sample sizes to distinguish models

9Wilson, 2015
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Model Estimates

Table 2: ZINB parameter estimates and SEs.

Component Parameter Estimate SE p-value

Binary β10 -0.66 0.30 0.03

β11 -1.39 0.33 < 0.0001
Count β20 0.35 0.21 0.10

β21 -0.46 0.31 0.14

log(θ) = log(1/α) 0.67 0.74 0.37

Interpretations of β11 and β21?

β11: log-odds of being �at risk� for trt group

exp(−1.39) = 0.25 times lower odds of being at risk

β21: log IDR for at-risk group

At-risk patients with treatment have exp(−.46) = 0.63 time
fewer caries on average (p = 0.14)

p-value for log(θ) doesn't seem to have much use
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Predictions

Marginal predictions often more meaningful:

E(Yi) = φiµi

=
exp(x ′iβ1)

1 + exp(x ′iβ1)
× exp(x ′iβ2)

yhat<−predict(ZINB�t,type="response")

For treatment patient, Ê(Yi) = 0.10

For control patient, Ê(Yi) = 0.48

A nearly �ve-fold reduction in incidence of caries.
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Current Work

• Marginalized ZIP and ZINB: Parameterizes E(Y ) as a
function of covariates so that β's have more intuitive
interpretation (Long et al., 2014; Preisser et al., 2015)

• Longitudinal models: Min and Agresti (2005)

• Semicontinuous models: two-part mixtures of mass at zero
and continuous distribution for positive values (e.g.,
medical costs)

• Marginalized semicontinuous model: Smith (2014, 2015)

• Bayesian and spatial approaches: Neelon et al. (2010,
2011, 2015)

• Many other directions � hypothesis testing, etc.
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