Modeling Zero-Inflated Data

Brian Neelon

Department of Public Health Sciences, Medical University of South Carolina

July 8, 2015

Common Count Distributions

Poisson Distribution:

$$
\begin{gathered}
\operatorname{Pr}(Y=y)=\frac{\mu^{y} \mathrm{e}^{-\mu}}{y!}, \quad \mu>0 ; y=0,1, \ldots \\
\mathrm{E}(Y)=\mathrm{V}(Y)=\mu \\
\Longrightarrow \quad \text { equidispersion }
\end{gathered}
$$

Common Count Distributions

Negative Binomial:

$$
\begin{aligned}
\operatorname{Pr}(Y=y) & =\frac{\Gamma(y+r)}{\Gamma(r) y!}\left(\frac{\mu}{\mu+r}\right)^{y}\left(\frac{r}{\mu+r}\right)^{r} \\
& r, \mu>0 ; y=0,1,2, \ldots \\
\mathrm{E}(Y)= & \mu \\
\mathrm{V}(Y)= & \mu(1+\mu / r) \\
= & \mu(1+\alpha \mu), \text { where } \alpha=1 / r
\end{aligned}
$$

$\alpha=$ measure of overdispersion
$\alpha>0 \Rightarrow \mathrm{~V}(Y)>\mathrm{E}(Y)$
HW: Show that as $\alpha \rightarrow 0, N B \xlongequal{\text { dist }}$ Poisson
Generalized Poisson distribution ${ }^{1}$ allows for both over- and underdispersion

Illustrative Example: Annual ER Visits

Poisson Fit

Poisson Fit with $\mu=0.75$

Negative Binomial Fit

Zero Inflation

Zero inflation: When data contain more zeros than expected under a standard count model, the data are said to be zero inflated relative to the count distribution

Zero deflation: Fewer than expected zeros
In such cases, two-part mixtures models are often needed to assure adequate fit

These include:

1) Hurdle models: model zeros and nonzeros separately
2) Zero-inflated models: divide zeros into two types and model "extra" zeros separately

Hurdle Model

The hurdle model ${ }^{2}$ is a two-part mixture distribution consisting of a point mass at zero followed by a zero-truncated count distribution for the positive observations:

$$
\begin{aligned}
\operatorname{Pr}(Y=0) & =1-\pi, \quad 0 \leq \pi \leq 1 \\
\operatorname{Pr}(Y=y \mid Y>0) & =\frac{\pi p(y ; \boldsymbol{\theta})}{1-p(0 ; \boldsymbol{\theta})}, \quad y=1,2, \ldots,
\end{aligned}
$$

where
$\pi=\operatorname{Pr}(Y>0)$ is the probability of a nonzero response
$p(y ; \boldsymbol{\theta})$ is a count distribution with parameter vector $\boldsymbol{\theta}$
$p(0 ; \boldsymbol{\theta})$ is the count distribution evaluated at 0

Hurdle Model

The hurdle model can be written more compactly as

$$
\left.Y \sim(1-\pi)\right|_{(y=0)}+\pi \frac{p(y ; \boldsymbol{\theta})}{1-p(0 ; \boldsymbol{\theta})} \mathrm{I}_{(y>0)}
$$

where $I_{(\cdot)}$ is the indicator function.

Hurdle Model

The hurdle model can be written more compactly as

$$
\left.Y \sim(1-\pi)\right|_{(y=0)}+\pi \frac{p(y ; \boldsymbol{\theta})}{1-p(0 ; \boldsymbol{\theta})} \mathrm{I}_{(y>0)}
$$

where $I_{(\cdot)}$ is the indicator function.

What happens when $\pi=0$?

Hurdle Model

The hurdle model can be written more compactly as

$$
\left.Y \sim(1-\pi)\right|_{(y=0)}+\pi \frac{p(y ; \boldsymbol{\theta})}{1-p(0 ; \boldsymbol{\theta})} \mathrm{I}_{(y>0)}
$$

where $I_{(\cdot)}$ is the indicator function.

What happens when $\pi=0$? all zeros

Hurdle Model

The hurdle model can be written more compactly as

$$
\left.Y \sim(1-\pi)\right|_{(y=0)}+\pi \frac{p(y ; \boldsymbol{\theta})}{1-p(0 ; \boldsymbol{\theta})} \mathrm{I}_{(y>0)}
$$

where $I_{(\cdot)}$ is the indicator function.

What happens when $\pi=0$? all zeros
When $\pi=1$?

Hurdle Model

The hurdle model can be written more compactly as

$$
\left.Y \sim(1-\pi)\right|_{(y=0)}+\pi \frac{p(y ; \boldsymbol{\theta})}{1-p(0 ; \boldsymbol{\theta})} \mathrm{I}_{(y>0)}
$$

where $I_{(\cdot)}$ is the indicator function.

What happens when $\pi=0$? all zeros
When $\pi=1$? truncated count distribution

Hurdle Model

The hurdle model can be written more compactly as

$$
\left.Y \sim(1-\pi)\right|_{(y=0)}+\pi \frac{p(y ; \boldsymbol{\theta})}{1-p(0 ; \boldsymbol{\theta})} \mathrm{I}_{(y>0)}
$$

where $I_{(\cdot)}$ is the indicator function.

What happens when $\pi=0$? all zeros
When $\pi=1$? truncated count distribution
When $\pi=1-p(0 ; \boldsymbol{\theta})$?

Hurdle Model

The hurdle model can be written more compactly as

$$
\left.Y \sim(1-\pi)\right|_{(y=0)}+\left.\pi \frac{p(y ; \boldsymbol{\theta})}{1-p(0 ; \boldsymbol{\theta})}\right|_{(y>0)}
$$

where $I_{(\cdot)}$ is the indicator function.

What happens when $\pi=0$? all zeros
When $\pi=1$? truncated count distribution
When $\pi=1-p(0 ; \boldsymbol{\theta})$? ordinary count distribution

Hurdle Model

The hurdle model can be written more compactly as

$$
\left.Y \sim(1-\pi)\right|_{(y=0)}+\pi \frac{p(y ; \boldsymbol{\theta})}{1-p(0 ; \boldsymbol{\theta})} \mathrm{I}_{(y>0)}
$$

where $I_{(\cdot)}$ is the indicator function.

What happens when $\pi=0$? all zeros
When $\pi=1$? truncated count distribution
When $\pi=1-p(0 ; \boldsymbol{\theta})$? ordinary count distribution
$\pi>1-p(0, \boldsymbol{\theta}) \Rightarrow$ zero inflation
$\pi<1-p(0 ; \boldsymbol{\theta}) \Rightarrow$ zero deflation

Poisson Hurdle Model

$$
\begin{aligned}
\operatorname{Pr}(Y=0) & =1-\pi, \quad 0 \leq \pi \leq 1 \\
\operatorname{Pr}(Y=y \mid Y>0) & =\pi \frac{\mu^{y} \mathrm{e}^{-\mu}}{y!\left(1-\mathrm{e}^{-\mu}\right)}, \quad \mu>0 ; \quad y=1,2, \ldots \\
\mathrm{E}(Y) & =\frac{\pi \mu}{1-\mathrm{e}^{-\mu}}
\end{aligned}
$$

HW: Derive $V(Y)$.

Interpreting μ :

- Not as straightforward as for ordinary Poisson
- For fixed π, as μ increases, $\mathrm{E}(Y)$ increases

Negative Binomial Hurdle Model

$$
\begin{aligned}
\operatorname{Pr}(Y=0) & =1-\pi, \quad 0 \leq \pi \leq 1 \\
\operatorname{Pr}(Y=y \mid Y>0) & =\frac{\pi}{1-\left(\frac{r}{\mu+r}\right)^{r}} \frac{\Gamma(y+r)}{\Gamma(r) y!}\left(\frac{\mu}{\mu+r}\right)^{y}\left(\frac{r}{\mu+r}\right)^{r} \\
\mathrm{E}(Y) & =\frac{\pi \mu}{1-\left(\frac{r}{\mu+r}\right)^{r}}
\end{aligned}
$$

Zero-Inflated Models

Zero-inflated models ${ }^{3}$ partition the zeros into two types

Structural zeros: Zeros that arise due to some "structural" reason that prevents a positive count (ineligibility, not at risk, etc.)

Chance zeros: Zeros that occur "by chance" among those at risk - i.e., who don't have a structural zero

Example: Dental Caries

Zero-Inflated Model

The zero-inflated model is a mixture of a point mass at zero and an untruncated count distribution.

For example, the zero-inflated Poisson (ZIP) model is:

$$
\begin{aligned}
\operatorname{Pr}(Y=0) & =(1-\phi)+\phi \mathrm{e}^{-\mu}, \quad 0 \leq \phi \leq 1 \\
\operatorname{Pr}(Y=y) & =\phi \frac{\mu^{y} \mathrm{e}^{-\mu}}{y!}, \quad \mu>0 ; \quad y=1,2, \ldots ; \text { or, alternatively }, \\
Y & \left.\sim(1-\phi)\right|_{(z=0)}+\left.\phi \operatorname{Poi}(y ; \mu)\right|_{(z=1)}
\end{aligned}
$$

where:
$\phi=$ "At-risk" probability (not same as π in hurdle model!)
$Z=$ Latent (unobserved) "at-risk" indicator
$\mu=$ Mean count among at-risk population
ZINB formed by choosing NB rather than Poisson

Comments

When $\phi=1$ the model reduces to the ordinary Poisson

Otherwise, the zeros are inflated relative to the Poisson

For Zl model, $\mathrm{E}(Y)=\phi \mu$

HW1: Find $V(Y)$ and show that $V(Y)>\mathrm{E}(Y)$ when $\phi<1$

- Hence zero-inflated models are overdispersed

HW2: Show that $\operatorname{Pr}(Y>0)=\pi=\phi[1-p(0 ; \theta)]$

- Hence ZI model can be written as a type of hurdle model in which only zero inflation and overdispersion are premitted

Testing for Zero Inflation

If no covariates, can use boundary-adjusted LR test ${ }^{4}$ for Zl vs ordinary count distribtuion

For regression models, can use Vuong's test ${ }^{5}$
However, recent controversy over appropriateness of Vuong's test for comparing ZI vs ordinary count models ${ }^{6}$

- Ordinary model is limiting distribution - not strictly nested nor non-nested

Vuong's test okay for hurdle models vs. ordinary count, but requires two-stage approach ${ }^{7}$
Alternatively, use AIC as less formal comparison measure

[^0]
Deciding Between ZI and Hurdle Models

Suppose there's evidence of zero-inflation
How do we choose b/w hurdle and Zl models?

1) Subject matter considerations:

- ZI model: Zeros composed of two types - zeros among those not at risk, and zeros among those at risk who, by chance, have a zero count
- Model $\operatorname{Pr}(Z=1)$ and ordinary count given $Z=1$
- Hurdle Model: only one type of zero
- Model $\operatorname{Pr}(Y>0)$ and truncated count given $Y>0$

Deciding Between ZI and Hurdle Models (Cont'd)

2) Model fit considerations:

- Use model selection criteria or Vuong's test to choose b/w hurdle and ZI model
- Sometimes, all you care about is an appropriate model for Y that accounts for zero-inflation
- Target of inference is marginal mean $\mathrm{E}(Y)$, not $\mathrm{E}(Y \mid Y>0)$ or $\mathrm{E}(Y \mid Z>0)$
- Can use previous formulas for $E(Y)$ to predict mean response

Regression Models for Zero-Inflated Data

Suppose we have a simple random sample (SRS) of size n from a zero-inflated population

Poisson Hurdle Regression Model:

$$
\begin{aligned}
Y_{i} & \sim\left(1-\pi_{i}\right)_{\left(y_{i}=0\right)}+\pi_{i} \frac{\mu_{i}^{y_{i}} e^{-\mu_{i}}}{y_{i}!\left(1-\mathrm{e}^{-\mu_{i}}\right)^{\prime}\left(y_{i}>0\right)} \\
\operatorname{logit}\left(\pi_{i}\right) & =\operatorname{logit}\left[\operatorname{Pr}\left(Y_{i}>0\right)\right]=\boldsymbol{x}_{i}^{\prime} \boldsymbol{\beta}_{1} \\
\ln \left(\mu_{i}\right) & =\boldsymbol{x}_{i}^{\prime} \boldsymbol{\beta}_{2}, \quad i=1, \ldots, n,
\end{aligned}
$$

where x_{i} is a vector of covariates (can vary across components)

Regression Models for Zero-Inflated Data

Suppose we have a simple random sample (SRS) of size n from a zero-inflated population

Poisson Hurdle Regression Model:

$$
\begin{aligned}
Y_{i} & \sim\left(1-\pi_{i}\right)_{\left(y_{i}=0\right)}+\pi_{i} \frac{\mu_{i}^{y_{i}} \mathrm{e}^{-\mu_{i}}}{y_{i}!\left(1-\mathrm{e}^{-\mu_{i}}\right)^{(}{ }_{\left(y_{i}>0\right)}} \\
\operatorname{logit}\left(\pi_{i}\right) & =\operatorname{logit}\left[\operatorname{Pr}\left(Y_{i}>0\right)\right]=x_{i}^{\prime} \boldsymbol{\beta}_{1} \\
\ln \left(\mu_{i}\right) & =\boldsymbol{x}_{i}^{\prime} \boldsymbol{\beta}_{2}, \quad i=1, \ldots, n,
\end{aligned}
$$

where x_{i} is a vector of covariates (can vary across components)
$\boldsymbol{\beta}_{1}=$ Log-odds of observing a positive response
$\boldsymbol{\beta}_{\mathbf{2}}=$ Harder to interpret directly
$\boldsymbol{\beta}_{2}>0 \Rightarrow$ positive association b/w x and counts among those with positive response
Similar set-up for NB hurdle model

Example: ER Visits

Recall, we had 1000 patients and we wish to model the number of $E R$ visits

Suppose we want to model Y as a function of insurance status (non-private vs. private)

Propose a Poisson hurdle model:

$$
\begin{aligned}
Y_{i} & \sim\left(1-\pi_{i}\right)_{\left(y_{i}=0\right)}+\pi_{i} \frac{\mu_{i}^{y_{i}} \mathrm{e}^{-\mu_{i}}}{y_{i}!\left(1-\mathrm{e}^{-\mu_{i}}\right)} l_{\left(y_{i}>0\right)} \\
\operatorname{logit}\left(\pi_{i}\right) & =\beta_{10}+\beta_{11} x_{i} \\
\ln \left(\mu_{i}\right) & =\beta_{20}+\beta_{21} x_{i}, \quad i=1, \ldots, 1000,
\end{aligned}
$$

where $x_{i}=1$ if non-private insurance and 0 if private

R Code for Poisson Hurdle Model

Can fit in R using pscl package:
library(pscl) \# To fit hurdle and ZI regression poisfit<-glm($y \sim x$, family=poisson(link="log" $)$) hurdfit<-hurdle $(y \sim x$, dist $=$ "poisson", link="logit" $)$

Maximum likelihood estimates obtained via Fisher scoring

Model Comparison

Vuong's test:
vuong(poisfit,hurdfit) \# Vuong's test from pscl p-value <0.0001 in favor of hurdle model

Model Comparison

Vuong's test:
vuong(poisfit,hurdfit) \# Vuong's test from pscl
p-value <0.0001 in favor of hurdle model

AIC:
library(bbmle) \# For AIC table
AICtab(poisfit, hurdfit)
AIC Difference: 541 in favor of hurdle

Rule of thumb: AIC difference of 10 or more strongly favors model with lower AIC^{8}

Parameter Estimates

Table 1: Poisson hurdle parameter estimates and SEs

Component	Parameter	Estimate	SE	p-val
Binary	β_{10}	-1.11	0.12	<0.0001
	β_{11}	1.41	0.14	<0.0001
Count	β_{20}	0.73	0.08	<0.0001
	β_{21}	0.24	0.09	0.007

Interpretations of β_{11} and β_{21} ?

Parameter Estimates

Table 1: Poisson hurdle parameter estimates and SEs

Component	Parameter	Estimate	SE	p-val
Binary	β_{10}	-1.11	0.12	<0.0001
	β_{11}	1.41	0.14	<0.0001
Count	β_{20}	0.73	0.08	<0.0001
	β_{21}	0.24	0.09	0.007

Interpretations of β_{11} and β_{21} ?
β_{11} : log-odds of a positive count (some ER use) for non-private vs. private

Parameter Estimates

Table 1: Poisson hurdle parameter estimates and SEs

Component	Parameter	Estimate	SE	p-val
Binary	β_{10}	-1.11	0.12	<0.0001
	β_{11}	1.41	0.14	<0.0001
Count	β_{20}	0.73	0.08	<0.0001
	β_{21}	0.24	0.09	0.007

Interpretations of β_{11} and β_{21} ?
β_{11} : log-odds of a positive count (some ER use) for non-private vs. private
β_{21} : Not so easy. Given at least one visit, non-private patients tend to have more visits

Predictions

Suppose we want to predict the mean number of visits for subjects with and without private insurance:

$$
\begin{aligned}
\mathrm{E}\left(Y_{i}\right) & =\pi_{i} \frac{\mu_{i}}{1-\exp \left(-\mu_{i}\right)} \\
& =\frac{\exp \left(\boldsymbol{x}_{i}^{\prime} \boldsymbol{\beta}_{1}\right)}{1+\exp \left(\boldsymbol{x}_{i}^{\prime} \boldsymbol{\beta}_{1}\right)} \times \frac{\exp \left(\boldsymbol{x}_{i}^{\prime} \boldsymbol{\beta}_{2}\right)}{1-\exp \left[-\exp \left(x_{i}^{\prime} \boldsymbol{\beta}_{2}\right)\right]}
\end{aligned}
$$

Predictions

Suppose we want to predict the mean number of visits for subjects with and without private insurance:

$$
\begin{aligned}
\mathrm{E}\left(Y_{i}\right) & =\pi_{i} \frac{\mu_{i}}{1-\exp \left(-\mu_{i}\right)} \\
& =\frac{\exp \left(\boldsymbol{x}_{i}^{\prime} \boldsymbol{\beta}_{1}\right)}{1+\exp \left(\boldsymbol{x}_{i}^{\prime} \boldsymbol{\beta}_{1}\right)} \times \frac{\exp \left(\boldsymbol{x}_{i}^{\prime} \boldsymbol{\beta}_{2}\right)}{1-\exp \left[-\exp \left(\boldsymbol{x}_{i}^{\prime} \boldsymbol{\beta}_{2}\right)\right]}
\end{aligned}
$$

Use predict statement in R: yhat<- predict(hurdfit,type="response")

Predictions

Suppose we want to predict the mean number of visits for subjects with and without private insurance:

$$
\begin{aligned}
\mathrm{E}\left(Y_{i}\right) & =\pi_{i} \frac{\mu_{i}}{1-\exp \left(-\mu_{i}\right)} \\
& =\frac{\exp \left(\boldsymbol{x}_{i}^{\prime} \boldsymbol{\beta}_{1}\right)}{1+\exp \left(\boldsymbol{x}_{i}^{\prime} \boldsymbol{\beta}_{1}\right)} \times \frac{\exp \left(\boldsymbol{x}_{i}^{\prime} \boldsymbol{\beta}_{2}\right)}{1-\exp \left[-\exp \left(\boldsymbol{x}_{i}^{\prime} \boldsymbol{\beta}_{2}\right)\right]}
\end{aligned}
$$

Use predict statement in R: yhat<-predict(hurdfit,type="response")
For patient with private insurance, $\hat{E}\left(Y_{i}\right)=0.59$
For patient with non-private insurance, $\hat{E}\left(Y_{i}\right)=1.64$

Predictions

Suppose we want to predict the mean number of visits for subjects with and without private insurance:

$$
\begin{aligned}
\mathrm{E}\left(Y_{i}\right) & =\pi_{i} \frac{\mu_{i}}{1-\exp \left(-\mu_{i}\right)} \\
& =\frac{\exp \left(x_{i}^{\prime} \boldsymbol{\beta}_{1}\right)}{1+\exp \left(x_{i}^{\prime} \boldsymbol{\beta}_{1}\right)} \times \frac{\exp \left(x_{i}^{\prime} \boldsymbol{\beta}_{2}\right)}{1-\exp \left[-\exp \left(x_{i}^{\prime} \boldsymbol{\beta}_{2}\right)\right]}
\end{aligned}
$$

Use predict statement in R : yhat<-predict(hurdfit,type="response")
For patient with private insurance, $\hat{E}\left(Y_{i}\right)=0.59$
For patient with non-private insurance, $\hat{E}\left(Y_{i}\right)=1.64$
Risk ratio: $1.64 / 0.59=2.78$ times more visits on average SEs and 95% Cls obtained via delta method or bootstrap

Example 2: ZINB Model for Dental Caries

In example 2, we had 800 dental caries patients. Suppose we want to assess efficacy of new flouride treatment (x)

ZINB Model:

$$
\begin{aligned}
Y_{i} & \left.\sim\left(1-\phi_{i}\right)\right|_{\left(z_{i}=0\right)}+\left.\phi_{i} \operatorname{NB}\left(y_{i} ; \mu_{i}, \alpha\right)\right|_{\left(z_{i}=1\right)} \\
\operatorname{logit}\left(\phi_{i}\right) & =\operatorname{logit}\left[\operatorname{Pr}\left(Z_{i}=1\right)\right]=\beta_{10}+\beta_{11} x_{i} \\
\ln \left(\mu_{i}\right) & =\beta_{20}+\beta_{21} x_{i}, \quad i=1, \ldots, 800
\end{aligned}
$$

Interpretations of β_{11} and β_{21} ?

Example 2: ZINB Model for Dental Caries

In example 2, we had 800 dental caries patients. Suppose we want to assess efficacy of new flouride treatment (x)

ZINB Model:

$$
\begin{aligned}
Y_{i} & \left.\sim\left(1-\phi_{i}\right)\right|_{\left(z_{i}=0\right)}+\left.\phi_{i} \mathrm{NB}\left(y_{i} ; \mu_{i}, \alpha\right)\right|_{\left(z_{i}=1\right)} \\
\operatorname{logit}\left(\phi_{i}\right) & =\operatorname{logit}\left[\operatorname{Pr}\left(Z_{i}=1\right)\right]=\beta_{10}+\beta_{11} x_{i} \\
\ln \left(\mu_{i}\right) & =\beta_{20}+\beta_{21} x_{i}, \quad i=1, \ldots, 800
\end{aligned}
$$

Interpretations of β_{11} and β_{21} ?
$\boldsymbol{\beta}_{1}=$ log-odds of being "at risk" for caries

Example 2: ZINB Model for Dental Caries

In example 2, we had 800 dental caries patients. Suppose we want to assess efficacy of new flouride treatment (x)

ZINB Model:

$$
\begin{aligned}
Y_{i} & \left.\sim\left(1-\phi_{i}\right)\right|_{\left(z_{i}=0\right)}+\left.\phi_{i} \mathrm{NB}\left(y_{i} ; \mu_{i}, \alpha\right)\right|_{\left(z_{i}=1\right)} \\
\operatorname{logit}\left(\phi_{i}\right) & =\operatorname{logit}\left[\operatorname{Pr}\left(Z_{i}=1\right)\right]=\beta_{10}+\beta_{11} x_{i} \\
\ln \left(\mu_{i}\right) & =\beta_{20}+\beta_{21} x_{i}, \quad i=1, \ldots, 800 .
\end{aligned}
$$

Interpretations of β_{11} and β_{21} ?
$\boldsymbol{\beta}_{1}=$ log-odds of being "at risk" for caries
$\boldsymbol{\beta}_{2}=\log$ incidence ratio (IDR) for at-risk group
Specifically, $\exp \left(\beta_{21}\right)=$ multiplicative increase in $\mathrm{E}(Y)$ for at-risk patients given treatment vs those without treatment

R Code for ZINB Model

ML estimation proceeds via Newton Raphson or EM algorithm by treating latent at-risk indicator, Z, as a type of missing data
library (pscl)
NBfit<-glm.nb $(y \sim x)$ \# not part of pscl
ZINBfit<-zeroinfl $(y \sim x$, dist $=$ "negbin", EM $=$ TRUE $)$

Note: pscl parameterizes in terms of $1-\phi=\operatorname{Pr}\left(Z_{i}=0\right)$

Model Comparison

Vuong's test widely used but some recent controversy ${ }^{9}$
Let's use AIC instead:
AICtab(nbfit,ZINBfit)
AIC Difference: 10.5 in favor of ZINB
Zl models often require large sample sizes to distinguish models

Model Estimates

Table 2: ZINB parameter estimates and SEs.

Component	Parameter	Estimate	SE	p-value
Binary	β_{10}	-0.66	0.30	0.03
	β_{11}	-1.39	0.33	<0.0001
Count	β_{20}	0.35	0.21	0.10
	β_{21}	-0.46	0.31	0.14
	$\log (\theta)=\log (1 / \alpha)$	0.67	0.74	0.37

Interpretations of β_{11} and β_{21} ?

Model Estimates

Table 2: ZINB parameter estimates and SEs.

Component	Parameter	Estimate	SE	p-value
Binary	β_{10}	-0.66	0.30	0.03
	β_{11}	-1.39	0.33	<0.0001
Count	β_{20}	0.35	0.21	0.10
	β_{21}	-0.46	0.31	0.14
	$\log (\theta)=\log (1 / \alpha)$	0.67	0.74	0.37

Interpretations of β_{11} and β_{21} ?
β_{11} : log-odds of being "at risk" for trt group
$\exp (-1.39)=0.25$ times lower odds of being at risk

Model Estimates

Table 2: ZINB parameter estimates and SEs.

Component	Parameter	Estimate	SE	p-value
Binary	β_{10}	-0.66	0.30	0.03
	β_{11}	-1.39	0.33	<0.0001
Count	β_{20}	0.35	0.21	0.10
	β_{21}	-0.46	0.31	0.14
	$\log (\theta)=\log (1 / \alpha)$	0.67	0.74	0.37

Interpretations of β_{11} and β_{21} ?
β_{11} : log-odds of being "at risk" for trt group
$\exp (-1.39)=0.25$ times lower odds of being at risk
$\beta_{21}: \log$ IDR for at-risk group
At-risk patients with treatment have $\exp (-.46)=0.63$ time fewer caries on average $(p=0.14)$
p -value for $\log (\theta)$ doesn't seem to have much use

Predictions

Marginal predictions often more meaningful:

$$
\begin{aligned}
\mathrm{E}\left(Y_{i}\right) & =\phi_{i} \mu_{i} \\
& =\frac{\exp \left(x_{i}^{\prime} \boldsymbol{\beta}_{1}\right)}{1+\exp \left(x_{i}^{\prime} \boldsymbol{\beta}_{1}\right)} \times \exp \left(x_{i}^{\prime} \boldsymbol{\beta}_{2}\right)
\end{aligned}
$$

Predictions

Marginal predictions often more meaningful:

$$
\begin{aligned}
\mathrm{E}\left(Y_{i}\right) & =\phi_{i} \mu_{i} \\
& =\frac{\exp \left(x_{i}^{\prime} \boldsymbol{\beta}_{1}\right)}{1+\exp \left(\boldsymbol{x}_{i}^{\prime} \boldsymbol{\beta}_{1}\right)} \times \exp \left(x_{i}^{\prime} \boldsymbol{\beta}_{2}\right)
\end{aligned}
$$

yhat<-predict(ZINBfit,type="response")

Predictions

Marginal predictions often more meaningful:

$$
\begin{aligned}
\mathrm{E}\left(Y_{i}\right) & =\phi_{i} \mu_{i} \\
& =\frac{\exp \left(x_{i}^{\prime} \boldsymbol{\beta}_{1}\right)}{1+\exp \left(\boldsymbol{x}_{i}^{\prime} \boldsymbol{\beta}_{1}\right)} \times \exp \left(\boldsymbol{x}_{i}^{\prime} \boldsymbol{\beta}_{2}\right)
\end{aligned}
$$

yhat<-predict(ZINBfit,type="response")
For treatment patient, $\hat{\mathrm{E}}\left(Y_{i}\right)=0.10$
For control patient, $\hat{E}\left(Y_{i}\right)=0.48$

Predictions

Marginal predictions often more meaningful:

$$
\begin{aligned}
\mathrm{E}\left(Y_{i}\right) & =\phi_{i} \mu_{i} \\
& =\frac{\exp \left(x_{i}^{\prime} \boldsymbol{\beta}_{1}\right)}{1+\exp \left(x_{i}^{\prime} \boldsymbol{\beta}_{1}\right)} \times \exp \left(x_{i}^{\prime} \boldsymbol{\beta}_{2}\right)
\end{aligned}
$$

yhat<-predict(ZINBfit,type="response")
For treatment patient, $\hat{E}\left(Y_{i}\right)=0.10$
For control patient, $\hat{E}\left(Y_{i}\right)=0.48$
A nearly five-fold reduction in incidence of caries.

Current Work

- Marginalized ZIP and ZINB: Parameterizes $\mathrm{E}(Y)$ as a function of covariates so that β^{\prime} s have more intuitive interpretation (Long et al., 2014; Preisser et al., 2015)
- Longitudinal models: Min and Agresti (2005)
- Semicontinuous models: two-part mixtures of mass at zero and continuous distribution for positive values (e.g., medical costs)
- Marginalized semicontinuous model: Smith $(2014,2015)$
- Bayesian and spatial approaches: Neelon et al. (2010, 2011, 2015)
- Many other directions - hypothesis testing, etc.

Helpful References

Winkelmann, R. (2008). Econometric Analysis of Count Data. Springer.

Min, Y. and Agresti, A. (2005). Random effect models for repeated measures of zero-inflated count data. Statistical Modelling.

Wilson, P. (2015). The misuse of the Vuong test for non-nested models to test for zero-inflation. Economics Letters.

Long, D. et al. (2014). A marginalized zero-inflated Poisson regression model with overall exposure effects. Statistics in Medicine.

[^0]: ${ }^{4}$ Chernoff, 1954
 ${ }^{5}$ Vuong, 1989
 ${ }^{6}$ Wilson, 2015
 ${ }^{7}$ Winkelmann, 2008

