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Introduction

Survival analysis is a general term to describe techniques for analyzing

data in which the outcome of interest is the time from a defined

beginning point until the occurrence of a specified event.
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Examples

• In a cancer treatment trial, the outcome of interest is the survival

time of patients from the start of treatment until death.

• In a study of married couples, the outcome of interest is the time

from the wedding until the birth of the first child.

• In a study of the carcinogenicity of a chemical, rats are exposed to

the chemical and the outcome of interest is the time until a tumor

develops.
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Censoring

Survival time data are subject to censoring. Censoring occurs when the

event of interest is not observed for some of the subjects in the study.

Censoring occurs if

• the subject has not yet had the event when the study is

terminated.

• the subject is lost to follow-up or withdrawn from the study.

• the subject dies from causes not relevant to the study.

In general, we assume that censoring is non-informative. That is to

say, censoring should not convey information about the patient’s

outcome (event versus non-event).
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Survival data

ID Entry End Time (mos) Event

1 01/01/90 03/01/91 14 Death

2 02/01/90 02/01/91 12 Lost to FU

3 06/01/90 12/31/91 19 Study ended

4 09/01/90 04/01/91 7 Death
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Survival data depiction
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Data issues

• Distribution of survival times tends to be positively skewed

– Some observations have much longer survival times than others

– Non-normal distribution

• Censoring

– Survival times only partially observed

– Comparison of mean survival time between groups not

appropriate
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Terminology and notation

• T is the time to the specified event, also commonly referred to as

failure time. T is a random variable and its observed value for a

given subject is denoted as t.

• The survival function, S(t), expresses the probability of surviving

at least t time units. For example, a “five year survival rate” in

cancer is simply the probability of surviving at least five years. The

definition of the survival function is

S(t) = Prob(T > t).
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Properties of S(t) = Prob(T > t)

• Non-increasing function of t

• S(0) = 1. In words, at the beginning of observation, no subject

has had the event of interest.

• S(∞) = 0. In words, if subjects were observed forever, everyone

would eventually experience the event.
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Estimation of S(t)

The most common estimator of the survival function is the

Kaplan-Meier estimator, also known as the Product-limit estimator. It

is a non-parametric estimator of survival, which means that it requires

no distributional assumptions about the survival times.

We first introduce the following useful terminology and notation.
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Kaplan-Meier estimator of S(t)

• Let k index the ordered (from smallest to largest) event times in

the data. The event (failure) times are represented as tk.

• The risk set at event time tk refers to the collection of subjects at

risk of failure just before time tk.

• nk is the size of the risk set associated with event time tk.

• dk is the number of events at event time tk.

Then the Kaplan-Meier estimator of S(t) is

ŜKM (t) =
∏

{k:tk≤t}

(
1 −

dk

nk

)
.
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KM estimation - example

Consider the following ordered event times for seven subjects. The

variable CENSOR is equal to 1 if an event is observed and 0 if the

event time is censored.

ID 1 2 3 4 5 6 7

t 3 5 7 8 10 11 13

CENSOR 1 1 1 0 1 0 0

There are four event times (k = 4) summarized below.

k tk nk dk

1 t1 = 3 7 1

2 t2 = 5 6 1

3 t3 = 7 5 1

4 t4 = 10 3 1
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KM estimation - example (cont.)

ŜKM (t) =
∏

{k:tk≤t}

(
1 −

dk

nk

)
,

Time, t {k : tk ≤ t} ŜKM (t)

[0, 3) none 1

[3, 5) k = 1
(
1 − 1

7

)
= 6/7

.
= 0.86

[5, 7) k = 1, 2
(
1 − 1

7

) (
1 − 1

6

)
= 5/7

.
= 0.71

[7, 10) k = 1, 2, 3
(
1 − 1

7

) (
1 − 1

6

) (
1 − 1

5

)
= 4/7

.
= 0.57

[10, 13) k = 1, 2, 3, 4
(
1 − 1

7

) (
1 − 1

6

) (
1 − 1

5

) (
1 − 1

3

)
= 8/21
.
= 0.38
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KM estimation in SAS

data one;

input t cind;

cards;

3 1

5 1

7 1

8 0

10 1

11 0

13 0

;

run;

proc lifetest data = one method=km;

time t*cind(0);

run;
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KM estimation in SAS (cont.)

Product-Limit Survival Estimates

Survival

Standard Number Number

t Survival Failure Error Failed Left

0.0000 1.0000 0 0 0 7

3.0000 0.8571 0.1429 0.1323 1 6

5.0000 0.7143 0.2857 0.1707 2 5

7.0000 0.5714 0.4286 0.1870 3 4

8.0000* . . . 3 3

10.0000 0.3810 0.6190 0.1993 4 2

11.0000* . . . 4 1

13.0000* . . . 4 0

NOTE: The marked survival times are censored observations.
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Graphing survivor function in SAS

ods html;

ods graphics on;

proc lifetest data = one method=km;

time t*cind(0);

survival plots = (survival);

run;

ods graphics off;

ods html close;
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Graphing survivor function in SAS (cont.)

Note that ŜKM (t) changes at an event time and remains constant

between event times.
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HIV example

A large HMO wishes to evaluate the survival time of its HIV+

members using a follow-up study. Subjects were enrolled in the study

from January 1, 1989 to December 31, 1991. The study ended on

December 31, 1995. After a confirmed HIV diagnosis, members were

followed until death due to aids or AIDS-related complications, until

the end of the study, or until the subject was lost to follow-up. The

primary outcome of interest is survival time after a confirmed diagnosis

of HIV. 100 subjects were enrolled into the study.
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HIV example (cont.)

The data consist of the following variables:

ID Subject ID

TIME Survival time (months)

AGE Age (years) of subject at time of enrollment

DRUG Use of prior injecting drug use (1 = Yes, 0 = No)

CENSOR Censoring indicator (1 = Death observed, 0 = censored)
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HIV example in SAS

ods rtf file=‘I:\Survival\hivsurv.rtf’;

ods graphics on;

proc lifetest data = one;

time time*censor(0);

survival plots=(survival);

run;

ods graphics off;

ods rtf close;

(Segue to .rtf output)
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SEs of survival estimates

The most common estimator of the SE of KM estimated survival times

is the Greenwood estimator. It has the following form:

ŜE(Ŝ(t)) = Ŝ(t)

√√√√ ∑
{k:tk≤t}

dk

nk(nk − dk)
.

The 95% CIs for the estimated survival times based on this formula is

Ŝ(t) ± 1.96 · ŜE(Ŝ(t)).

One drawback to using this method of CI construction is that it can

lead to lower limits that are less than 0 or upper limits greater than 1.

When this occurs, the CI is truncated at the boundary.
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SEs and CIs in SAS

The Greenwood estimated standard errors of the KM survival times

are produced by default when you run PROC LIFETEST. See the .rtf

output file. Since the standard linear-type 95% CI for S(t) (shown on

Slide 20) can lead to upper/lower endpoints that are impossible, a

number of transformations of the survival function have been proposed

so that the resulting interval is contained between 0 and 1, the most

common of which is the log-log transformation.

The 95% CI for S(t) based on the log-log transformation is[
Ŝ(t)

]exp(1.96τ̂(t))

≤ S(t) ≤
[
Ŝ(t)

]exp(−1.96τ̂(t))

where

τ̂2(t) =
ŜE

2
(Ŝ(t))[

Ŝ(t) log(Ŝ(t))
]2

is the estimated variance of log(− log(Ŝ(t))).
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SEs and CIs in SAS (cont.)

The following code produces a graph of the survival function and the

corresponding log-log 95% CIs (the default), as well as an output data

set containing the endpoints of the intervals.

ods html;

ods graphics on;

proc lifetest data = one;

time time*censor(0);

survival out = survcis plots=(survival, cl);

run;

ods graphics off;

ods html close;



Biometry 755 - Survival analysis introduction 23

SEs and CIs in SAS (cont.)
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SEs and CIs in SAS (cont.)

proc print data = survcis;

run;

Obs time _CENSOR_ SURVIVAL CONFTYPE SDF_LCL SDF_UCL

1 0 . 1.00000 1.00000 1.00000

2 1 0 0.85000 LOGLOG 0.76359 0.90672

3 1 1 0.85000 . .

4 1 1 0.85000 . .

5 2 0 0.79880 LOGLOG 0.70566 0.86523

6 2 1 0.79880 . .

7 2 1 0.79880 . .

8 2 1 0.79880 . .

9 2 1 0.79880 . .

10 2 1 0.79880 . .

11 3 0 0.68937 LOGLOG 0.58622 0.77176
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Reported percentiles

In addition to the KM estimated survival times and their SEs, SAS

also reports estimates of the most common percentiles of the survival

times, namely the 25th, 50th (median) and 75th percentiles. For the

HIV data, we have the following output.

Quartile Estimates

Point 95% Confidence Interval

Percent Estimate [Lower Upper)

75 15.0000 10.0000 34.0000

50 7.0000 5.0000 9.0000

25 3.0000 2.0000 4.0000

Mean Standard Error

14.5912 1.9598

NOTE: The mean survival time and its standard error were

underestimated because the largest observation was censored

and the estimation was restricted to the largest event time.
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Interpreting percentiles

You need to be a little careful interpreting percentiles of the survival

times. For example, let t25 be the 25th percentile of the survival times.

This means that 25% of the observed survival times are equal to or

smaller than t25. In other words, 25% of the population has failed by

time t25. This means that 75% of the population survived beyond t25.

In general, if tp is the pth percentile of the survival times, then

S(tp) = Prob(T > tp) = 1 − (p/100).

Compare the reported percentiles with the KM estimate of survival.



Biometry 755 - Survival analysis introduction 27

Quartile Estimates

Point 95% Confidence Interval

Percent Estimate [Lower Upper)

75 15.0000 10.0000 34.0000

50 7.0000 5.0000 9.0000

25 3.0000 2.0000 4.0000
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Comparing survival functions

Suppose we want to compare survival experience between subjects

with and without a history of injecting drug use. This is accomplished

easily in PROC LIFETEST using the STRATA statement.

ods html;

ods graphics on;

proc lifetest data = one;

time time*censor(0);

strata drug;

survival plots=(survival);

run;

ods html close;

ods graphics off;
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Comparing survival functions (cont.)
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The Log-Rank test

Are the observed differences in survival significant? One way to answer

this question is using the Log-Rank test.

Let S1(t) be the survival function for Group 1.

Let S2(t) be the survival function for Group 2.

The log-rank test tests the following null versus alternative hypothesis:

H0 : S1(t) = S2(t) for all t

HA : S1(t) �= S2(t) for at least one t
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The Log-Rank test (cont.)

The idea behind the log-rank test is to construct a 2 × 2 contingency

table of group membership versus survival for each event time, t. The

data from the sequence of tables are accumulated using the

Mantel-Haenszel test statistic.
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The Log-Rank test (cont.)

Let tj , j = 1, . . . , J , be the ordered failure times in the pooled sample.

(Here, the total number of observed failure times is J .) At each time

tj construct the following table:

Group

Status Group 1 Group 2

Failed at tj d1j d2j Dj

Survive past tj s1j s2j Sj

n1j n2j Nj
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The Log-Rank test (cont.)

• The observed number of failures in Group 1 is Oj = d1j .

• The expected number of failures in Group 1 (under the null

hypothesis) is Ej = n1jDj/Nj .

• The variance, vj , of d1j is (n1jn2jDjSj)/(N2
j (Nj − 1).

Then the log-rank test is

Q =

[∑J

j=1(Oj − Ej)
]2

∑J

j=1 vj

.

Under the null hypothesis, Q ∼ χ2
1. (Note: The degrees of freedom of

the test are “number of groups - 1”.)
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The Log-Rank test in SAS

When you use the STRATA statement in PROC LIFETEST (see Slide

28), the log-rank test is performed on the groups identified by the

variable in the STRATA statement.

Test of Equality over Strata

Pr >

Test Chi-Square DF Chi-Square

Log-Rank 11.8556 1 0.0006

Wilcoxon 10.9104 1 0.0010

-2Log(LR) 20.9264 1 <.0001
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Conclusions

The log-rank test is highly significant (p = 0.0006). Therefore, we

reject the null hypothesis and conclude that the distributions of

survival times for HIV+ patients with and without a history of

injecting drug use are significantly different.
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Some words of caution

The log-rank test is the most powerful test for the specific alternative

HA : S1(t) = [S2(t)]
c, c �= 1.

It is not very powerful for other alternatives for which S1(t) is different

from S2(t). This means that failing to detect a significant difference

between the survival functions for two groups can be attributed to any

of the following:

1. H0 is true

2. Lack of power because of inadequate sample size

3. Lack of power due to departure from the assumption of the

alternative for which the log-rank test is most powerful.
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Checking for proportional hazards

S1(t) = [S2(t)]
c, c �= 1 is known as the proportional hazards

assumption (more on this later). To assess the validity of this

assumption, we use the following fact.

log S1(t) = c log S2(t)

⇐⇒ − log S1(t) = c(− log S2(t))

⇐⇒ log(− log S1(t)) = log c + log(− log S2(t))
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Checking for proportional hazards (cont.)

So, if we plot log [− log[S1(t)]] on the same graph with

log [− log[S2(t)]] we should see two curves that are separated by a

constant distance, log c. We construct this plot directly in SAS.

ods html;

ods graphics on;

proc lifetest data = one;

time time*censor(0);

strata drug;

survival plots=(survival, lls);

run;

ods html close;

ods graphics off;
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Checking for proportional hazards (cont.)
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If proportional hazards function not met

If the assumption of proportional hazards is not met, there are

alternative tests that weight the contributions to the numerator and

denominator of Q. We include the references for completeness.

1. Gehan E.A. A generalized Wilcoxon test for comparing arbitrarily

signly censored samples. Biometrika, 52, 203-223, 1965.

2. Tarone R.E. and Ware J. On distribution free tests for equality of

survival distributions. Biometrika, 64, 156-160, 1977.

3. Prentice R.L. Linear rank tests with right-censored data.

Biometrika, 65, 167-179, 1978.
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Testing more than two groups

The log-rank test can be generalized to testing equality of the survivor

functions for more than two groups, where the alternative hypothesis is

that at least two of the survival functions are different. The form of

the test statistic is similar, and its distribution under the null

hypothesis of equality of the survivor functions is chi-square with d

degrees of freedom, where d = number of groups - 1.
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Testing more than two groups (cont.)

Consider the HIV data, and suppose we are interested in testing the

hypothesis

H0 : S1(t) = S2(t) = S3(t) = S4(t)

HA : At least two of the survivor functions are different

where

• Group 1 = AGE < 35 with no history of IDU

• Group 2 = AGE < 35 with history of IDU

• Group 3 = AGE ≥ 35 with no history of IDU

• Group 4 = AGE ≥ 35 with history of IDU
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Testing more than two groups in SAS

ods html;

ods graphics on;

proc lifetest data = one notable;

time time*censor(0);

strata age(35) drug;

survival plots=(survival, lls);

run;

ods html close;

ods graphics off;
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Testing more than two groups in SAS (cont.)
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Testing more than two groups in SAS (cont.)
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Testing more than two groups in SAS (cont.)

Stratum drug age Total Failed Censored Percent

Censored

1 IDU history <35 21 17 4 19.05

2 No IDU history <35 25 20 5 20.00

3 IDU history >=35 28 21 7 25.00

4 No IDU history >=35 26 22 4 15.38

-----------------------------------------------------------------

Total 100 80 20 20.00

Test of Equality over Strata

Pr >

Test Chi-Square DF Chi-Square

Log-Rank 20.2473 3 0.0002

Wilcoxon 19.9514 3 0.0002

-2Log(LR) 33.2148 3 <.0001


