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4 )

Introduction
Survival analysis is a general term to describe techniques for analyzing

data in which the outcome of interest is the time from a defined

beginning point until the occurrence of a specified event.
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Examples

e |n a cancer treatment trial, the outcome of interest is the survival
time of patients from the start of treatment until death.

e In a study of married couples, the outcome of interest is the time
from the wedding until the birth of the first child.

e |n a study of the carcinogenicity of a chemical, rats are exposed to
the chemical and the outcome of interest is the time until a tumor

develops.
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Censoring

Censoring occurs if

terminated.

-

outcome (event versus non-event).

event of interest is not observed for some of the subjects in the study.

e the subject has not yet had the event when the study is

e the subject is lost to follow-up or withdrawn from the study.
e the subject dies from causes not relevant to the study.

In general, we assume that censoring is non-informative. That is to
say, censoring should not convey information about the patient’s

~

Survival time data are subject to censoring. Censoring occurs when the
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Survival data

ID Entry End Time (mos) Event

1 01/01/90 03/01/91 14 Death

2 02/01/90 02/01/91 12 Lost to FU
3 06/01/90 12/31/91 19 Study ended
4 09/01/90 04/01/91 7 Death
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Survival data depiction
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Data issues

e Distribution of survival times tends to be positively skewed
— Some observations have much longer survival times than others

— Non-normal distribution

e Censoring
— Survival times only partially observed

— Comparison of mean survival time between groups not
appropriate
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Terminology and notation

e T is the time to the specified event, also commonly referred to as
failure time. T is a random variable and its observed value for a
given subject is denoted as .

e The survival function, S(t), expresses the probability of surviving
at least ¢ time units. For example, a “five year survival rate” in
cancer is simply the probability of surviving at least five years. The
definition of the survival function is

S(t) = Prob(T > t).
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Properties of S(t) = Prob(7T > t)

e Non-increasing function of ¢

e S(0) = 1. In words, at the beginning of observation, no subject
has had the event of interest.

e S(c0) = 0. In words, if subjects were observed forever, everyone
would eventually experience the event.
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Estimation of S()
The most common estimator of the survival function is the
Kaplan-Meier estimator, also known as the Product-limit estimator. It

is a non-parametric estimator of survival, which means that it requires
no distributional assumptions about the survival times.

We first introduce the following useful terminology and notation.

4 )
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Kaplan-Meier estimator of S(t)

e Let k index the ordered (from smallest to largest) event times in

the data. The event (failure) times are represented as t.

e The risk set at event time t; refers to the collection of subjects at

risk of failure just before time t;.
e 1, is the size of the risk set associated with event time ¢.
e d;. is the number of events at event time ¢;.
Then the Kaplan-Meier estimator of S(t) is

Sk =[] <1 - Z—Z) .

{k:t <t}

4 )
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KM estimation - example \
Consider the following ordered event times for seven subjects. The
variable CENSOR is equal to 1 if an event is observed and 0 if the
event time is censored.

ID 1 2 3 4 5 6 7

t 3 5 7 8 10 11 13

CENSOR 1 1 1 0 1 0 O

There are four event times (k = 4) summarized below.
kit ng dg
1 t1=3 7 1
2 to=5 6 1
3 t3=7 5 1
4 t,=10 3 1
\. J
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KM estimation - example (cont.)

= I (--4)

{k:t, <t}

Time, t  {k:ty, <t} Skt

[0, 3) none 1

3,5) k=1 (1—%)=6/7=0.86

[5,7) k=12 (1-3)(1-3%)=5/7=0.11

(7,100 k=1,23 (1-3)(1—¢)(1—%)=4/7T=057

[10,13) k=1,2,3,4 (1-3)(1-3)(1-1%)(1-3)=8/21
= (.38
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KM estimation in SAS

data one;
input t cind;
cards;

31

51

71

80

10 1

11 0

13 0

run;

proc lifetest data = one method=km;
time t*cind(0);

run;

-
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KM estimation in SAS (cont.)

Product-Limit Survival Estimates

NOTE: The marked survival times are censored observations.

-

Survival
Standard Number Number
t Survival Failure Error Failed Left

0.0000 1.0000 0 0] 0 7
3.0000 0.8571 0.1429 0.1323 1 6
5.0000 0.7143 0.2857 0.1707 2 5
7.0000 0.5714 0.4286 0.1870 3 4
8.0000%* . . . 3 3
10.0000 0.3810 0.6190 0.1993 4 2
11.0000%* 4 1
13.0000%* 4 0]

14
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Graphing survivor function in SAS

ods html;

ods graphics on;

proc lifetest data
time t*cind(0) ;
survival plots

one method=km;

(survival);

run;

ods graphics off;
ods html close;

-
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Graphing survivor function in SAS (cont.)

Product-Limit Survival Function Estimate

0.8+

0.6+

0.4+

Survival Probability

0.2+

0 25 5 75 10 12,5
t

| No. of Subjects Event Censored Median Survival (85% CL)
7 57% (4) 43% (3) 10.000 (5.000 NA )

Note that S’KM(t) changes at an event time and remains constant
Kbetween event times.

J

16
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HIV example

A large HMO wishes to evaluate the survival time of its HIV+
members using a follow-up study. Subjects were enrolled in the study
from January 1, 1989 to December 31, 1991. The study ended on
December 31, 1995. After a confirmed HIV diagnosis, members were
followed until death due to aids or AIDS-related complications, until
the end of the study, or until the subject was lost to follow-up. The

primary outcome of interest is survival time after a confirmed diagnosis
of HIV. 100 subjects were enrolled into the study.

4 )
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HIV example (cont.)
The data consist of the following variables:

ID Subject ID

TIME Survival time (months)

AGE Age (years) of subject at time of enrollment

DRUG Use of prior injecting drug use (1 = Yes, 0 = No)
CENSOR Censoring indicator (1 = Death observed, 0 = censored)

4 )
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HIV example in SAS

ods rtf file=‘I:\Survival\hivsurv.rtf’;

ods graphics on;

proc lifetest data = one;
time time*censor (0);
survival plots=(survival);

run;

ods graphics off;

ods rtf close;

(Segue to .rtf output)

- J
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SEs of survival estimates
The most common estimator of the SE of KM estimated survival times

is the Greenwood estimator. It has the following form:

SEG@0)=50) | ¥ "

{kit <t} k(e — d)

The 95% Cls for the estimated survival times based on this formula is
S(t) £ 1.96- SE(S(1)).

One drawback to using this method of Cl construction is that it can
lead to lower limits that are less than 0 or upper limits greater than 1.
When this occurs, the Cl is truncated at the boundary.

- J
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SEs and Cls in SAS )
The Greenwood estimated standard errors of the KM survival times
are produced by default when you run PROC LIFETEST. See the .rtf
output file. Since the standard linear-type 95% Cl for S(t) (shown on
Slide 20) can lead to upper/lower endpoints that are impossible, a
number of transformations of the survival function have been proposed
so that the resulting interval is contained between 0 and 1, the most
common of which is the log-log transformation.

The 95% Cl for S(t) based on the log-log transformation is
N exp(1.967(t)) . exp(—1.967(t))
5] < 8(t) < [$0)]
where 5
SE (S(t
7A_2(t) _ - ( E)) >
5(t)10g(S(1))]
is the estimated variance of log(—log(S(t))). y
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SEs and Cls in SAS (cont.)
The following code produces a graph of the survival function and the

corresponding log-log 95% Cls (the default), as well as an output data
set containing the endpoints of the intervals.

~

ods html;

ods graphics on;

proc lifetest data = one;
time time*censor(0);
survival out = survcis plots=(survival, cl);

run;

ods graphics off;

ods html close;

- J
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SEs and Cls in SAS (cont.)

95% Pointwise Confidence Limits for Survivorship

Survival Probability

23
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SEs and Clis in SAS (cont.)

proc print data = survcis;

run;

Obs time _CENSOR_ SURVIVAL  CONFTYPE SDF_LCL  SDF_UCL

.00000 1.00000 1.00000
.85000 LOGLOG 0.76359  0.90672
.85000

.85000 . .
.79880 LOGLOG 0.70566  0.86523
.79880

.79880

.79880

. 79880

.79880 . .
.68937 LOGLOG 0.58622 0.77176
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Reported percentiles

In addition to the KM estimated survival times and their SEs, SAS
also reports estimates of the most common percentiles of the survival
times, namely the 25th, 50th (median) and 75th percentiles. For the
HIV data, we have the following output.

Quartile Estimates

Point 95% Confidence Interval
Percent Estimate [Lower Upper)
75 15.0000 10.0000 34.0000
50 7.0000 5.0000 9.0000
25 3.0000 2.0000 4.0000
Mean Standard Error
14.5912 1.9598

NOTE: The mean survival time and its standard error were
underestimated because the largest observation was censored
and the estimation was restricted to the largest event time.

- J
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Interpreting percentiles

You need to be a little careful interpreting percentiles of the survival
times. For example, let to5 be the 25th percentile of the survival times.
This means that 25% of the observed survival times are equal to or
smaller than to5. In other words, 25% of the population has failed by
time t95. This means that 75% of the population survived beyond t5.
In general, if ¢, is the pth percentile of the survival times, then

S(t,) = Prob(T > t,) = 1 — (p/100).

Compare the reported percentiles with the KM estimate of survival.

26
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( Quartile Estimates
Point 95%, Confidence Interval
Percent Estimate [Lower Upper)
75 15.0000 10.0000 34.0000
50 7.0000 5.0000 9.0000
25 3.0000 2.0000 4.0000
95% Pointwise Confidence Limits for Survivorship
14
z
=
E
@
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Comparing survival functions

Suppose we want to compare survival experience between subjects
with and without a history of injecting drug use. This is accomplished
easily in PROC LIFETEST using the STRATA statement.

ods html;

ods graphics on;

proc lifetest data = one;
time timex*censor(0);
strata drug;
survival plots=(survival);

run;

ods html close;

ods graphics off;
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Comparing survival functions (cont.)
Product-Limit Survival Function Estimates
" 1DU history
- No IDU history
+
0.8+ +
L+
2
2 o6
€= el
o L +
o
2. L
2 041 ,
3 +
a
0.24 —|_|_
. | )
04 Logrank p=0.0006
T U T U U T U
0 10 20 30 40 50 60
time
No. of Subjects Event Censored Median Survival (95% CL)
IDU history 49 78% (38) 22% (11) 5.00 ( 3.00 7.00)
No IDU history 51 82% (42) 18%(9) 11.00 ( 8.00 22.00)
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The Log-Rank test

Are the observed differences in survival significant? One way to answer

this question is using the Log-Rank test.

Let S1(t) be the survival function for Group 1.
Let So(t) be the survival function for Group 2.

The log-rank test tests the following null versus alternative hypothesis:

HO . Sl(t) = Sg(t> for all ¢
Hy:S1(t) # So(t) for at least one t
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The Log-Rank test (cont.)
The idea behind the log-rank test is to construct a 2 x 2 contingency

table of group membership versus survival for each event time, £. The
data from the sequence of tables are accumulated using the
Mantel-Haenszel test statistic.

31
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The Log-Rank test (cont.)

(Here, the total number of observed failure times is J.) At each time
t; construct the following table:

Group
Status  Group 1  Group 2
Failed at t; dyj do; D;
Survive past ¢; 515 52; S;
n1; noj N;

Let ¢;, j =1,...,J, be the ordered failure times in the pooled sample.

32
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The Log-Rank test (cont.)
e The observed number of failures in Group 1 is O; = d;;.
e The expected number of failures in Group 1 (under the null
hypothesis) is Ej = nlij/Nj.
e The variance, vy, of dlj IS (nljnngij)/(sz(Nj - )
Then the log-rank test is
7 2
[Zj:l(oj - Ej)
- J
Zj:l 'Uj
Under the null hypothesis, Q ~ x3. (Note: The degrees of freedom of
the test are "number of groups - 1".)
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The Log-Rank test in SAS

When you use the STRATA statement in PROC LIFETEST (see Slide
28), the log-rank test is performed on the groups identified by the
variable in the STRATA statement.

~

Test of Equality over Strata

Pr >
Test Chi-Square DF Chi-Square
Log-Rank 11.8556 1 0.0006
Wilcoxon 10.9104 1 0.0010
-2Log(LR) 20.9264 1 <.0001

-
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Conclusions

The log-rank test is highly significant (p = 0.0006). Therefore, we
reject the null hypothesis and conclude that the distributions of
survival times for HIV+ patients with and without a history of
injecting drug use are significantly different.

35
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Some words of caution

The log-rank test is the most powerful test for the specific alternative
Hy: 51(t) = [S2(0)], ¢ # 1.

It is not very powerful for other alternatives for which Sy (%) is different
from Sy(t). This means that failing to detect a significant difference
between the survival functions for two groups can be attributed to any

of the following:
1. Hy is true
2. Lack of power because of inadequate sample size

3. Lack of power due to departure from the assumption of the
alternative for which the log-rank test is most powerful.

- J

36




Biometry 755 - Survival analysis introduction 37

Checking for proportional hazards

S1(t) = [S2(t)]¢, ¢ # 1 is known as the proportional hazards

assumption (more on this later). To assess the validity of this

assumption, we use the following fact.

log S1(t) = clogSa(t)
— —logSi(t) = c(—logSy(t))
< log(—logSi(t)) = logc+ log(—logSa(t))

Biometry 755 - Survival analysis introduction 38

Checking for proportional hazards (cont.)

So, if we plot log [—1og[S1(t)]] on the same graph with
log [— log[S2(t)]] we should see two curves that are separated by a
constant distance, logc. We construct this plot directly in SAS.

ods html;
ods graphics on;

proc lifetest data = one;
time timex*censor(0);
strata drug;
survival plots=(survival, 1lls);

run;

ods html close;

ods graphics off;

G
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Checking for proportional hazards (cont.)
Log of Negative Log of Estimated Survivor Functions
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If proportional hazards function not met
If the assumption of proportional hazards is not met, there are
alternative tests that weight the contributions to the numerator and

denominator of (). We include the references for completeness.

1. Gehan E.A. A generalized Wilcoxon test for comparing arbitrarily
signly censored samples. Biometrika, 52, 203-223, 1965.

2. Tarone R.E. and Ware J. On distribution free tests for equality of
survival distributions. Biometrika, 64, 156-160, 1977.

3. Prentice R.L. Linear rank tests with right-censored data.
Biometrika, 65, 167-179, 1978.
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Testing more than two groups
The log-rank test can be generalized to testing equality of the survivor
functions for more than two groups, where the alternative hypothesis is
that at least two of the survival functions are different. The form of
the test statistic is similar, and its distribution under the null
hypothesis of equality of the survivor functions is chi-square with d
degrees of freedom, where d = number of groups - 1.
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Testing more than two groups (cont.)

Consider the HIV data, and suppose we are interested in testing the
hypothesis

Ho: Si(t) = S2(t) = S3(t) = Sa(?)

H 4 : At least two of the survivor functions are different

where
e Group 1 = AGE < 35 with no history of IDU
e Group 2 = AGE < 35 with history of IDU
e Group 3 = AGE > 35 with no history of IDU
e Group 4 = AGE > 35 with history of IDU

4 )
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Testing more than two groups in SAS

ods html;
ods graphics on;

proc lifetest data = one notable;
time timex*censor(0);
strata age(35) drug;
survival plots=(survival, 11s);

run;

ods html close;

ods graphics off;

-
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Testing more than two groups in SAS (cont.)

Log of Negative Log of Estimated Survivor Functions
19 [—e— age<35 drug=IDU history

oo age<35 drug=No IDU history _.-a

——=¢—— age>=35 drug=IDU history -

—- & — age>=35 drug=No IDU history p
= 04 /X ¥
> / +
= X 2 .
] x* -
2 Pl o

-~ -~
o e ///:: .
2 - ”/'/-" -
'3 X - £
—= &
o ~
k-] N *
=,
‘_C;! +
_.4.
-3

-

L I T

0 1 2

Log(time)




Biometry 755 - Survival analysis introduction

-

Testing more than two groups in SAS (cont.)

Product-Limit Survival Function Estimates

age=<35 drug=IDU history

-+ age<35 drug=No IDU history
—————— age=>=35 drug=IDU history
-——-— age>=35 drug=No IDU history

Survival Probability

0.2 | |

o] [Logrank p=0.0002 i

0 10 20 30 40 50 60
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Testing more than two groups in SAS (cont.)

Stratum  drug age Total Failed Censored Percent
Censored

1 IDU history <35 21 17 4 19.05

2 No IDU history <35 25 20 5 20.00

3 IDU history >=35 28 21 7 25.00

4 No IDU history >=35 26 22 4 15.38
Total 100 80 20 20.00

Test of Equality over Strata

Pr >
Test Chi-Square DF Chi-Square
Log-Rank 20.2473 3 0.0002
Wilcoxon 19.9514 3 0.0002

-2Log (LR) 33.2148 3 <.0001




