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Model assumptions

1. The observed data are independent realizations of a
binary response variable Y that follows a Bernoulli
distribution.

2. The logit of Prob(Y = 1|X) is linear in X.
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IMPACT study

Investigate the relationship between a subject’s treatment
randomization arm and the subject’s ability to remain
drug-free for 12 months.

TREAT Treatment randomization assignment
(0 = Short, 1 = Long)

DFREE Remained drug free for 12 months
(0 = No, 1 = Yes)
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SAS code

proc freq data = one;
tables treat*dfree/missing;

run;

proc logistic data = one descending;
class treat (param = ref ref = ’Long’);
model dfree = treat;

run;
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Logistic output

The LOGISTIC Procedure

Model Information

Data Set WORK.ONE

Response Variable dfree Remained drug free

for 12 months

Number of Response Levels 2

Model binary logit

Optimization Technique Fisher’s scoring

Number of Observations Read 575

Number of Observations Used 575
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Logistic output (cont.)

Response Profile

Ordered Total

Value dfree Frequency

1 Remained drug free 147

2 Otherwise 428

Probability modeled is dfree=’Remained drug free’.

Class Level Information

Design

Class Value Variables

treat Long 1

Short 0
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Logistic output (cont.)

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept

Intercept and

Criterion Only Covariates

AIC 655.729 652.551

SC 660.083 661.259

-2 Log L 653.729 648.551
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Logistic output (cont.)

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 5.1782 1 0.0229

Score 5.1626 1 0.0231

Wald 5.1266 1 0.0236
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Logistic output (cont.)

Type 3 Analysis of Effects

Wald

Effect DF Chi-Square Pr > ChiSq

treat 1 5.1266 0.0236

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -1.2978 0.1433 82.0211 <.0001

treat Long 1 0.4371 0.1931 5.1266 0.0236
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Logistic output (cont.)

Odds Ratio Estimates

Point 95% Wald

Effect Estimate Confidence Limits

treat Long vs Short 1.548 1.060 2.260
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Assessing significance of covariates

For each covariate in the model, the output provides an
estimated parameter, the standard error of that estimate, a
test-statistic, and a p-value. One of the most common tests
used to assess the significance of MLEs is the Wald test. The
test associated with a single parameter is based on the
following null hypothesis:

H0 : βj = 0 (all other βs are non-zero)

HA : βj �= 0 (all other βs are non-zero)
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Assessing significance of covariates (cont.)

The Wald test is obtained by comparing the MLE of the slope
parameter, β̂j, to an estimate of its standard error. The
resulting ratio, under the hypothesis that βj = 0, follows a
standard normal distribution. That is

β̂j

ŜE(β̂j)
∼ Normal(0, 1).

Recall that the square of a Normal(0,1) random variable has a
chi-square distribution with one degree of freedom. The SAS
output (shown on Slide 9) provides the chi-square version of
the Wald test along with corresponding p-values. We
conclude that treatment arm is significantly associated with
the probability of being drug free for 12 months (p = 0.0236).
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Interpreting model parameters

Using the MLEs shown on Slide 9, the fitted model is

ln

[
P̂rob(DFREE = 1|TREAT)

1 − P̂rob(DFREE = 1|TREAT)

]
= β̂0 + β̂1 × TREAT

= −1.2978 + 0.4371 × TREAT

How do we interpret these parameter estimates?
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Interpreting model parameters (cont.)

ln

[
P̂rob(DFREE = 1|TREAT)

1 − P̂rob(DFREE = 1|TREAT)

]
= −1.2978 + 0.4371 × TREAT

• TREAT = 0 (Short arm) ⇒

ln

[
̂Prob(DFREE = 1|TREAT=0)

1−
̂Prob(DFREE = 1|TREAT=0)

]
= −1.2978.

In words, the log odds of remaining drug free for 12 months
among subjects randomized to the short arm of the trial is
-1.2978. Therefore, the odds of remaining drug free for 12
months among subjects randomized to the short arm of the
trial is e−1.2978 .

= 0.27.
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Interpreting model parameters (cont.)

ln

[
P̂rob(DFREE = 1|TREAT)

1 − P̂rob(DFREE = 1|TREAT)

]
= −1.2978 + 0.4371 × TREAT

• TREAT = 1 (Long arm) ⇒

ln

[
̂Prob(DFREE = 1|TREAT=1)

1−
̂Prob(DFREE = 1|TREAT=1)

]
= −1.2978 + 0.4371.

The log odds of remaining drug free for 12 months among
subjects randomized to the long arm of the trial is -1.2978 +
0.4371 = -0.8606. Therefore, the odds of remaining drug free
for 12 months among subjects randomized to the long arm of
the trial is e−0.8606 .

= 0.42.
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Comparing groups

Usually we wish to compare the two groups using an odds
ratio. Since we have the odds of remaining drug free for 12
months for each group, then it is a simple matter to construct
the odds ratio.

ln

[
odds (DFREE = 1|TREAT = 1)

odds (DFREE = 1|TREAT = 0)

]
=

ln(odds (DFREE = 1|TREAT = 1)−ln(odds (DFREE = 1|TREAT = 0) =

−0.8606 − (−1.2978) = 0.4372

Then e0.4372 .
= 1.55 ⇒ there is a 55% increase in the odds of

remaining drug free for 12 months for subjects in the long
versus the short arm of the trial.
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Useful laws of logarithms

To construct the odds ratio comparing subjects in the long
arm to those in the short arm, we relied upon a fundamental
property of logarithms. Namely

log
(a

b

)
= log a − log b.

This property will be essential to our ability to manipulate
estimated βs to construct meaningful odds ratios.
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Simple logistic with binary covariate

For the logistic model with binary covariate X,

ln

[
Prob(Y = 1|X)

1 − Prob(Y = 1|X)

]
= β0 + β1X

• β0 + β1 = log odds of the event when X = 1.

• β0 = log odds of the event when X = 0.

• Then the log odds ratio of the event when X = 1 relative
to X = 0 is the difference in the log odds (Slide 17).

• Since (β0 + β1) − β0 = β1, then β1 = log odds ratio of the
event when X = 1 relative to when X = 0.

• eβ1 = odds ratio of the event when X = 1 relative to when
X = 0.
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Interpreting odds ratios

Suppose an odds ratio compares group A (numerator) to
group B (denominator). Then:

• An odds ratio between 0 and 1 is interpreted as a percent
reduction in the odds of the event. For example, an odds
ratio of 0.7 is interpreted as a 30% reduction in the odds
of the event for those in group A relative to those in group
B.

• An odds ratio between 1 and 2 is interpreted as a percent
increase in the odds of the event. For example, an odds
ratio of 1.6 is interpreted as a 60% increase in the odds of
the event for those in group A relative to those in group B.
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Interpreting odds ratios (cont.)

• An odds ratio greater than 2 is interpreted as a
multiplicative increase in the odds of the event. For
example, an odds ratio of 2.1 is interpreted as follows:
“The odds of the event for subjects in group A are
approximately twice that of the subjects in group B.”
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OR confidence intervals

Recall that the general form for a 95% confidence interval is

θ̂ ± 1.96 × ŜE(θ̂).

The formula for the confidence interval of the odds ratio
follows this same structure. For the case where ÔR = eβ̂j , an
approximate 95% CI for the OR is

e{β̂j±1.96×SE(β̂j)}.

Simple logistic regression – p. 21/47

OR confidence intervals (cont.)

On Slide 9, we saw that β̂TREAT
.
= 0.4371 and

ŜE(β̂TREAT)
.
= 0.1931. Therefore, a 95% confidence interval

for the odds ratio of DFREE for subjects in the long arm
relative to those in the short arm (estimated on Slide 16), is

e{0.4371±1.96×0.1931} = (e0.058624, e0.815576)
.
= (1.06, 2.26).

Fortunately, SAS provides estimated ORs and corresponding
CIs by default for ORs of this form (i.e. those that are
equivalent to eβ̂j ). Compare our hand-calculated results with
the output presented on Slide 10.
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IMPACT example with polytomous covariate

We now wish to investigate the relationship between a
subject’s IV drug use history and the subject’s ability to
remain drug-free for 12 months.

Simple logistic regression – p. 23/47

SAS code

proc freq data = one;
tables ivhx*dfree/missing;

run;

proc logistic data = one descending;
class ivhx (param = ref ref = ’Never’);
model dfree = ivhx;

run;
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Logistic output

Class Level Information

Design
Class Value Variables

ivhx Never 0 0
Previous 1 0
Recent 0 1
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Logistic output (cont.)

Model Fit Statistics

Intercept

Intercept and

Criterion Only Covariates

AIC 655.729 646.376

SC 660.083 659.440

-2 Log L 653.729 640.376

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 13.3525 2 0.0013

Score 13.4161 2 0.0012

Wald 13.1585 2 0.0014
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Logistic output (cont.)

Type 3 Analysis of Effects

Wald

Effect DF Chi-Square Pr > ChiSq

ivhx 2 13.1585 0.0014

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -0.6797 0.1417 22.9977 <.0001

ivhx Previous 1 -0.4810 0.2657 3.2773 0.0702

ivhx Recent 1 -0.7748 0.2166 12.7997 0.0003
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Type 3 analyses

The Type 3 Analysis in the PROC LOGISTIC output (Slide
27) is akin to a multiple partial F-test from PROC REG. To
review, a Type 3 analysis assesses the significance of the
(complete) categorical (ordinal or nominal) variable, while
adjusting for the presence of all other variables in the model.
For class variables, you should always assess the overall
significance of the covariate using a Type 3 analysis. The
Wald tests presented under the heading of Analysis of
Maximum Likelihood Estimates only assess the significance
of the dummy variables constructed to fit the model.
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The fitted model

The fitted model is

ln

[
P̂rob(DFREE = 1|IVHX)

1 − P̂rob(DFREE = 1|IVHX)

]
=

−0.6797 − 0.4810 · IVHX (previous) − 0.7748 · IVHX (recent)
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Interpreting model parameters

• The log odds of remaining drug free for 12 months for
those with no history of IV drug use is -0.6797.

• The log odds of remaining drug free for 12 months for
those with a previous history of IV drug use is -0.6797 -
0.4810 = -1.1607.

• The log odds of remaining drug free for 12 months for
those with a recent history of IV drug use is -0.6797 -
0.7748 = -1.4545.
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Interpreting model parameters (cont.)

Using the property of logarithms from Slide 17, we can easily
construct odds ratios.

• The log odds ratio of remaining drug free for 12 months
for those with a previous history of IV drug use relative to
those with no history of IV drug use is (-0.6797 - 0.4810) -
(-0.6797) = -0.4810 ⇒ the odds ratio of remaining drug
free for 12 months for those with a previous history of IV
drug use relative to those with no history of IV drug is
e−0.4810 .

= 0.62.

• There is a 38% reduction in the odds of remaining drug
free for 12 months for those with a previous history of IV
drug use relative to those with no history of IV drug.
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Interpreting model parameters (cont.)

• The log odds ratio of remaining drug free for 12 months
for those with a recent history of IV drug use relative to
those with no history of IV drug use is (-0.6797 - 0.7748) -
(-0.6797) = -0.7748 ⇒ the odds ratio of remaining drug
free for 12 months for those with a recent history of IV
drug use relative to those with no history of IV drug is
e−0.7748 .

= 0.46.

• There is a 54% reduction in the odds of remaining drug
free for 12 months for those with a recent history of IV
drug use relative to those with no history of IV drug.
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Default odds ratios and CIs in SAS

The default output for SAS is to provide only those ORs and
corresponding CIs that compare the groups represented by
the dummy variables to the reference group.

Odds Ratio Estimates

Point 95% Wald

Effect Estimate Confidence Limits

ivhx Previous vs Never 0.618 0.367 1.041

ivhx Recent vs Never 0.461 0.301 0.704
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Summary of model parameters

For the logistic model

ln

[
Prob(Y = 1|X)

1 − Prob(Y = 1|X)

]
= β0 + β1X1 + β2X2

where X1 and X2 are dummy variables coded 0/1
representing groups one and two, respectively, for a
three-level categorical covariate, Z,

• β1 is the log odds ratio of the event for group 1 relative to
the reference group ⇒ eβ1 is the odds ratio of the event
for group 1 relative to the reference group.

• β2 is the log odds ratio of the event for group 2 relative to
the reference group ⇒ eβ2 is the odds ratio of the event
for group 2 relative to the reference group.
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Using a different reference group

To obtain ORs and corresponding 95% CI in SAS using a
different reference group, it is easiest to simply re-run PROC
LOGISTIC and specify a different reference group. The code
below identifies recent IV drug users as the reference group.

proc logistic data = one descending;
class ivhx (param = ref ref = ’Recent’);
model dfree = ivhx;

run;
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Logistic output

Odds Ratio Estimates

Point 95% Wald

Effect Estimate Confidence Limits

ivhx Never vs Recent 2.170 1.420 3.318

ivhx Previous vs Recent 1.342 0.778 2.314

See if you can interpret these ORs.
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IMPACT example with continuous covariate

We now wish to investigate the relationship between a
subject’s number of prior drug treatments and the subject’s
ability to remain drug-free for 12 months.

proc logistic data = one descending;
model dfree = ndrugtx;

run;
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Logistic output

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -0.7678 0.1303 34.7133 <.0001

ndrugtx 1 -0.0749 0.0247 9.2203 0.0024

Odds Ratio Estimates

Point 95% Wald

Effect Estimate Confidence Limits

ndrugtx 0.928 0.884 0.974
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Interpreting model parameters

The fitted model is

ln

[
Prob(DFREE = 1|NDRUGTX)

1 − Prob(DFREE = 1|NDRUGTX)

]
= −0.7678−0.0749·NDRUGTX.

Suppose you want to compare the odds of remaining drug
free for 12 months for those with 10 prior treatments to those
with 5 prior treatments.
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Interpreting model parameters (cont.)

• The log odds of remaining drug free for 12 months among
subjects with 10 prior drug treatments is
−0.7678 − 0.0749 · 10 = −1.5168.

• The log odds of remaining drug free for 12 months among
subjects with 5 prior drug treatments is
−0.7678 − 0.0749 · 5 = −1.1423.

• The log odds ratio of remaining drug free for 12 months
for subjects with 10 versus 5 prior drug treatments is
−1.5168 −− 1.1423 = −0.3745 ⇒ The odds of remaining
drug free for 12 months comparing those with 10 versus 5
prior drug treatments is e−0.3745 .

= 0.69. Therefore, there is
a 31% reduction in the odds of remaining drug free for 12
months comparing subjects with 10 prior drug treatments
to those with 5 prior drug treatments.
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Interpreting model parameters (cont.)

The fitted model is

ln

[
Prob(DFREE = 1|NDRUGTX)

1 − Prob(DFREE = 1|NDRUGTX)

]
= −0.7678−0.0749·NDRUGTX.

Suppose you want to compare the odds of remaining drug
free for 12 months for those with 25 prior treatments to those
with 20 prior treatments.
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Interpreting model parameters (cont.)

• The log odds of remaining drug free for 12 months among
subjects with 25 prior drug treatments is
−0.7678 − 0.0749 · 25 = −2.6403.

• The log odds of remaining drug free for 12 months among
subjects with 20 prior drug treatments is
−0.7678 − 0.0749 · 20 = −2.2658.

• The log odds ratio of remaining drug free for 12 months
for subjects with 25 versus 20 prior drug treatments is
−2.6403 −− 2.2658 = −0.3745 ⇒ The odds of remaining
drug free for 12 months comparing those with 25 versus
20 prior drug treatments is e−0.3745 .

= 0.69. Therefore,
there is a 31% reduction in the odds of remaining drug
free for 12 months comparing subjects with 25 prior drug
treatments to those with 20 prior drug treatments.
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That’s strange ...

Why did those odds ratios come out the same?
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ORs when the covariate is continuous

For the logistic model

ln

[
Prob(Y = 1|X)

1 − Prob(Y = 1|X)

]
= β0 + β1X

where X is a continuous covariate, let x1 and x2 be two
specific values of the covariate X. (For example, if the
covariate X is NDRUGTX, then x1 might be 25 and x2 might
be 20.) Then ...
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ORs when the covariate is continuous (cont.)

• β0 + β1x1 is the log odds of Y = 1 for all subjects with
covariate value x1 so that the corresponding odds are
eβ0+β1x1

• β0 + β1x2 are the log odds of Y = 1 for all subjects with
covariate value x2 so that the corresponding odds are
eβ0+β1x2 .

• (β0 + β1x2) − (β0 + β1x1) = (x2 − x1)β1 is the
log odds ratio of Y = 1 for those with covariate value x2

relative to those with covariate value x1, so that the
corresponding odds ratio is e(x2−x1)β1.
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So why were the ORs the same?

Based on the third bullet item from Slide 45, the OR depends
on the difference between the two values of the covariate, not
on their actual values. Since 10 and 5 prior drug treatments,
and 25 and 20 prior drug treatments are both 5 units apart,
the estimated OR comparing both pairs of subjects will be

e5·β̂1 = e5·−0.0749 = e−0.3745 .
= 0.69.
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ORs and CIs in SAS for continuous covariate

proc logistic data = one descending;

model dfree = ndrugtx/clodds=wald;

units ndrugtx = 5;

run;

Wald Confidence Interval for Adjusted Odds Ratios

Effect Unit Estimate 95% Confidence Limits

ndrugtx 5.0000 0.688 0.540 0.876
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