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Overview of regression analysis

• Evaluate relationship between one or more independent
variables (X1, . . . , Xk) and a single continuous dependent
variable (Y ).

• Terminology: “Regress Y on X”

• Example Relationship between risk of nosocomial
infection (dependent variable, Y ) and routine culturing
ratio (independent variable, X)
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Goals of a regression analysis

1. Characterize direction and strength of relationship.

2. Prediction

3. Control for effects of other variables

4. Identify group of independent variables that collectively
describe the structure (explain the variability) in a random
sample of dependent measures.
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Goals of a regression analysis (cont.)

5. Describe the best mathematical model for describing
relationship between dependent and independent
variables.

6. Comparison of associations for two groups

7. Assess interactive effects of two independent variables.

8. Obtain precise estimates of regression coefficients
(especially β1)

yi = β0 + β1xi + εi
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Review of simple linear regression (SLR)

• One dependent variable, Y , and one independent
variable, X.

• Observed data consists of n pairs of observations,
(x1, y1), (x2, y2), . . . , (xn, yn)

• Assume linear function describes the relationship
between Xs and Y s.

• Linear function takes the form

yi = β0︸︷︷︸
intercept

+ β1︸︷︷︸
slope

xi

︸ ︷︷ ︸
signal

+ εi︸︷︷︸
noise
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Components of the SLR model

yi = β0 + β1xi + εi

yi Value of dependent variable for ith subject

β0 True y-intercept.

β1 True slope.

xi Value of independent variable for ith subject.

εi Random error associated with the ith subject. Assumed
to be zero, on average. Accounts for ‘spread’ of the data
points around the line.
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Estimating the components of the SLR model

The true y-intercept and the slope, β0 and β1, are unknown.

The best we can do is estimate their values, denoted by β̂0

and β̂1, respectively, using a method deemed optimal. In SLR,
the optimal technique is called the method of least-squares.
The least-squares estimates of β0 and β1 (and hence the
least-squares estimate of the line itself) are those that
minimize the sum of the squared deviations between the
observed data points and the estimated (fitted) line.

For SLR, the least-squares estimates are optimal in the
sense that β̂0 and β̂1 have minimal variance (good precision)
and are unbiased (provided the model is correct ... a very BIG
assumption!).
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Find the ‘best-fitting’ line
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Here is the ‘best-fitting’ line

0 10 20 30 40 50 60

2
3

4
5

6
7

8

Routine culturing ratio

P
ro

ba
bi

lit
y 

of
 n

os
oc

om
ia

l i
nf

ec
tio

n 
x 

10
0

Average risk = 3.2 + 0.07 x Culture ratio
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Least squares estimates of β0 and β1

It can be shown that the expressions for β̂0 and β̂1 that
minimize the sum of the squared deviations around the
regression line are:

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

and
β̂0 = ȳ − β̂1x̄.
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Least squares estimates of β0 and β1 (cont.)

Once we have β̂0 and β̂1, we can estimate the response at xi

based on the fitted regression line. We denote this estimated
response as ŷi and write

ŷi = β̂0 + β̂1xi.

Note that there is no “ε̂i” in the expression for the fitted
regression line. This is due to the fact that the error around
the line is assumed to be zero, on average, and therefore
does not contribute to the ‘signal’ or ‘structure’ in the data.
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SLR in SAS

proc reg data = one;
model infrisk = cult;

run;

Simple linear regression – p. 12/40



The regression line is the average response

For the SLR model yi = β0 + β1xi + εi, the average value of yi

given xi, and its estimate, are represented as ...

Truth Estimate

E(yi|xi) = β0 + β1xi
̂E(yi|xi) = β̂0 + β̂1xi

or
ŷi = β̂0 + β̂1xi
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The estimated average varies

In each of the following panels, a sample of sixteen data
points was selected from the same underlying linear model
with the same spread about the line, or error variance (σ2).
But each sample of points is different (referred to as sampling
variability ). Therefore the model fit to the sampled points in
each example is different, despite the fact that the same true
model generated all four different fitted models.

True average given xi Solid line E(yi|xi) = β0 + β1xi

Data generated from model Data points yi = β0 + β1xi + εi

Estimated average given xi Dotted line ŷi = β̂0 + β̂1xi
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The estimated average varies
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SLR statistical assumptions

Linearity Given any value of x, y is on average a straight-line
function of x. We write

E(y|x) = β0 + β1x

where the notation E(y|x) is interpreted in words as “the
average value of y given x”.

Independence The yis are statistically independent, i.e.
represent a random sample from the population.

Homoscedasticity The variance of y is the same, regardless
of the value of x. The variance of y is denoted in the
usual manner as σ2.

Normality For each value of x, y ∼ Normal(β0 + β1x, σ2).
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Visualizing SLR assumptions

Linearity

Straight−line model appropriate Curvilinear model appropriate
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Visualizing SLR assumptions (cont.)

Homoscedasticity

Constant ’spread’ Non−constant ’spread’
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Visualizing SLR assumptions (cont.)

Normality

Normal data Non−normal data

“That looks normal?!!?”
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Visualizing SLR assumptions (cont.)

Normality (cont.)

Age (X)

Muscle Mass (Y
)

z
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Model errors (εis) and residuals (ris)

Recall the form of the SLR model

yi = β0 + β1xi + εi.

By some simple algebra, we have

εi = yi − (β0 + β1xi)

= yi − E(yi|xi).

This gives us a simple way to estimate the errors in the
model. Namely,

ε̂i = yi − ŷi

where ŷi = β̂0 + β̂1xi. The ε̂is are called residuals. We write

ri = ε̂i.
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More comments about errors and residuals

• yi
ind∼ Normal(β0 + β1xi, σ

2) is equivalent to

εi
ind∼ Normal(0, σ2).

• Why? (Intuitive answer) Recall that E(yi|xi), the average
value of yi given xi, is β0 + β1xi. Since yi = β0 + β1xi + εi,
the average value of the errors must be zero. Otherwise
yi would, on average, be too large (average value of εi

positive) or too small (average value of εi negative).

• The residuals sum to zero.
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Residuals in SAS

proc reg data = one;
model infrisk = cult/p;

run;
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Estimating spread around the regression line

Variance is estimated in the usual manner - that is, sum the
squared differences between the observed data points and
their fitted values (based on the estimated regression
equation), and divide by an appropriate normalizing constant.

σ̂2 = s2 =

∑n
i=1(yi − ŷi)

2

n − 2

• s2 is called the mean squared error or MSE.

• Since yi − ŷi = ri (the estimated error terms),∑n
i=1(yi − ŷi)

2 is called the sum of squared errors or SSE.

• s2 = MSE = SSE
n−2
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Some comments about σ̂2 = MSE

Q Why do we square the estimated errors?

A See the last comment on slide 22.

Q Why do we divide by n − 2? Doesn’t the usual formula for
estimated variance divide by n − 1?

A We lose 2 degrees of freedom in estimating the mean
response in a SLR. The usual formula you learn in
introductory statistics reflects the loss of a single degree
of freedom in estimating the mean.

Look at SAS output for SLR to see estimated SSE,
denominator df, and MSE.
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Inference about the slope

The framework for the test of significance for the true slope is
H0 : β1 = 0 versus HA : β1 �= 0. The test statistic is

t =
β̂1 − 0

SE
(
β̂1

)

• SE
(
β̂1

)
=

√
MSE
s2
x(n−1)

is the standard error of β̂1

• s2
x =

n

i=1
(xi−x̄)2

n−1
is the sample variance of the xis

• t ∼ tn−2 under H0

• A (1 − α) × 100 % confidence interval for β1 is

β̂1 ± tn−2,1−α/2 SE
(
β̂1

)
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Inference about the slope (cont.)

P-value and decision rule: Reject the null hypothesis if the
p-value is less than α.

Conclusion: If the null is not rejected, this means that we have
not found a statistically significant linear relationship between
X and Y (at level α). Note that there may be a relationship of
some other kind (e.g. a non-linear relationship) between X

and Y , so failing to reject the null does not imply that there is
no relationship.

If the null is rejected, this means that there is a significant
linear relationship between X and Y . Note, however, that this
does not imply that the linear model is the best or most
correct way to relate Y to X. The true relationship may be
something other than linear or it may include other
components in addition to a linear component.
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Inference about the intercept

Significance tests on the intercept are rarely performed. The
reason is that it is often difficult or impossible (or simply not
relevant) to collect sample data at or around x = 0. If the
sample data does not include values near x = 0 (as is most
often the case) you cannot trust a hypothesis test that
focuses on that region. You do not have adequate data to
make good inference.
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SLR parameter estimates in SAS

proc reg data = one;
model infrisk = cult/clb;

run;
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Inference about the regression line

In Slide 15, we saw that different random samples of data
points from the same underlying model resulted in different
estimated regression lines. This implies that there is some
inherent sampling variability associated with the regression
line itself. Just as a confidence interval provides information
about the precision of point estimate, we would like a
two-dimensional equivalent to a CI that provides information
about the precision of the fitted regression line. We call such
an interval a confidence band for the regression line, and it
provides an estimate of the uncertainty associated with a
SLR.
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Inference about the regression line (cont.)

At each value of x = x0 (where x0 is the x-value associated
with an observed data point), we compute the (1− α)× 100 %
confidence interval

ŷ|x0 ± tn−2,1−α/2 SE(ŷ|x0)

• ŷ|x0 is the fitted value at x0

• SE(ŷ|x0) = s

√
1
n

+ (x0−x̄)2

(n−1)s2
x

• s = σ̂ =
√

MSE

• s2
x =

n

i=1
(xi−x̄)2

n−1
is the sample variance of the xis

At α = 0.05, we say that we are 95% confident that the true
regression line lies within the confidence band.
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Graphing the confidence band
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Graphing the confidence band - SAS code

ods html;
ods graphics on;
ods select Fit;

proc reg data = one;
model infrisk = cult/clm;

run;

ods graphics off;
ods html close;

Simple linear regression – p. 33/40

Prediction of a new value of y at x = x0

Often the goal of fitting a simple linear regression is to obtain
a model that facilitates prediction. In SENIC example, we
might be interested in predicting the probability of nosocomial
infection at a local hospital where the routine culturing ratio is
30. The obvious estimate is

̂Infrisk = 3.2 + 0.07 × 30 = 5.3.
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Prediction of a new value of y at x = x0 (cont.)

As always, we need a sense of the precision associated with
this predicted value. There are two sources of variability
associated with predicting the response:

1. The variability associated with the fitted regression line,
illustrated in Slide 32. We estimate the square root of this
variability with SE(ŷ|x0), defined on Slide 31.

2. The variability associated with data points around the true
line, illustrated in Slide 20. We estimate this variability
with σ̂2 = MSE = s2, defined on Slide 24.
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Prediction of a new value of y at x0 (cont.)

The variability associated with predicting a response, y, at
x = x0, is the sum of the variability due to fitting the
regression line and the variability of the y values at x = x0

around the true regression line. We estimate this total
variability as follows:

s2

(
1

n
+

(x0 − x̄)2

(n − 1)s2
x

)
︸ ︷︷ ︸

Var(ŷ|x0)

+ s2︸︷︷︸
σ̂2

= s2

(
1 +

1

n
+

(x0 − x̄)2

(n − 1)s2
x

)
.
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Prediction of a new value of y at x0 (cont.)

Then a (1 − α) × 100% prediction interval is constructed using
the formula

ŷ|x0 ± tn−2,1−α/2 s

√
1 +

1

n
+

(x0 − x̄)2

(n − 1)s2
x

.

We say that we are 95% confident that new responses will fall
between the upper and lower limits of the interval.
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Graphing the prediction interval
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Graphing the confidence band - SAS code

ods html;
ods graphics on;
ods select Fit;

proc reg data = one;
model infrisk = cult/cli;

run;

ods graphics off;
ods html close;
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Interpretation

Confidence interval for mean at x = x0

Prediction interval at x = x0
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