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Multivariable logistic regression

So far our study of logistic regression has been restricted to
models containing a single covariate. We want to extend
these methods to allow for multiple regressors.
Suppose we have a collection of k independent variables
X1, . . . , Xk and binary outcome variable Y . The multiple
logistic regression model is

ln

[
Prob(Y = 1|X1, . . . , Xk)

1 − Prob(Y = 1|X1, . . . , Xk)

]
= β0 + β1X1 + . . . + βkXk.
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IMPACT study example

We will model the log odds of remaining drug free for 12
months as a linear function of age (AGE), the number of prior
drug treatments (NDRUGTX), IV drug use history (IVHX),
treatment arm (TREAT), and treatment site (SITE).

proc logistic data = one descending;
class ivhx (param = ref ref = ‘Never’);
model dfree = age ndrugtx ivhx treat site;

run;
quit;
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Logistic output - model fit

Model Fit Statistics

Intercept

Intercept and

Criterion Only Covariates

AIC 655.729 634.262

SC 660.083 664.743

-2 Log L 653.729 620.262

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 33.4668 6 <.0001

Score 31.6135 6 <.0001

Wald 29.7216 6 <.0001
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Logistic output - covariate assessment

Type 3 Analysis of Effects

Wald

Effect DF Chi-Square Pr > ChiSq

age 1 9.2074 0.0024

ndrugtx 1 5.9312 0.0149

ivhx 2 11.1363 0.0038

treat 1 5.2475 0.0220

site 1 0.3266 0.5677

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -2.3726 0.5526 18.4307 <.0001

age 1 0.0522 0.0172 9.2074 0.0024

ndrugtx 1 -0.0624 0.0256 5.9312 0.0149

ivhx Previous 1 -0.6350 0.2857 4.9402 0.0262

ivhx Recent 1 -0.7860 0.2471 10.1210 0.0015

treat 1 0.4553 0.1988 5.2475 0.0220

site 1 0.1231 0.2155 0.3266 0.5677
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Covariate assessment (cont.)

Just as in multiple linear regression, we must take care in
interpretation of significant covariate effects for multiple
logistic regression. For example, the covariate NDRUGTX is
significant (p = 0.0149) so we conclude that the number of
previous drug treatments contributes significantly to a model
already containing AGE, IVHX, TREAT and SITE. We could
also say that the number of previous drug treatments
significantly explains the observed variability in the log odds
of remaining drug free for 12 months, after adjusting for the
effects of AGE, IVHX, TREAT and SITE.
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The fitted model

The fitted model is

ln

[
Prob(DFREE = 1)

1 − Prob(DFREE = 1)

]
= −2.37 + 0.052 × AGE

−0.062 × NDRUGTX − 0.64 × IVHX
−0.79 × IVHX2 + 0.46 × TREAT
+0.12 × SITE

Note that the conditional notation is suppressed for
convenience, but is understood to be present.
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ORs

Suppose we want to use the fitted model to compute the odds
ratio for remaining drug free for 12 months for: 40 year-olds,
with no previous drug treatments, recent drug use history,
randomized to the short treatment arm, and at site A, relative
to 30 year-olds with all the same covariate values.
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ORs (cont.)

For the 40-year olds, we have

ln(odds DFREE = 1) = −2.37 + 0.052 × 40 − 0.062 × 0

−0.64 × 0 − 0.79 × 1 + 0.46 × 0 + 0.12 ×

= −1.08

For the 30-year olds, we have

ln(odds DFREE = 1) = −2.37 + 0.052 × 30 − 0.062 × 0

−0.64 × 0 − 0.79 × 1 + 0.46 × 0 + 0.12 ×

= −1.60
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ORs (cont.)

Therefore,

ln(odds ratio DFREE = 1) = −1.08 −− 1.60

= 0.52

so that

odds ratio DFREE = 1 = e0.52 = 1.68
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ORs (cont.)

Now suppose we want to use the fitted model to compute the
odds ratio for remaining drug free for 12 months for: 40
year-olds, with no previous drug treatments, recent drug use
history, randomized to the long treatment arm, and at site B,
relative to 30 year-olds with all the same covariate values.
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ORs (cont.)

For the 40-year olds, we have

ln(odds DFREE = 1) = −2.37 + 0.052 × 40 − 0.062 × 0

−0.64 × 0 − 0.79 × 1 + 0.46 × 1 + 0.12 ×

= −0.5

For the 30-year olds, we have

ln(odds DFREE = 1) = −2.37 + 0.052 × 30 − 0.062 × 0

−0.64 × 0 − 0.79 × 1 + 0.46 × 1 + 0.12 ×

= −1.02
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ORs (cont.)

Therefore,

ln(odds ratio DFREE = 1) = −0.5 −− 1.02

= 0.52

so that

odds ratio DFREE = 1 = e0.52 = 1.68
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Hmmmmmmm...

Why did the ORs come out the same even though the
covariate values were different?
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General rule for ORs

The following general rules apply to multiple logistic
regression models.

• For a continuous covariate X, e∆X·β is the OR of Y = 1
for subjects with a difference of ∆X in their covariate
values, where all other covariate values are the same.

• For a categorical covariate, Z, with p levels, and p − 1
corresponding indicators X1, X2, . . . , Xp−1,
eβj (j = 1, . . . , p − 1) is the OR of Y = 1 for the group
represented by indicator Xj relative to the reference
group, where all other covariate values are the same.
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Default ORs in SAS

By default, SAS will produce all the ORs and corresponding
95% CIs for categorical covariates comparing all levels to the
reference category, and for all continuous covariates with a
one-unit change in the covariate. If you want an OR and 95%
CI for a change in a continuous covariate other than a unit
increase, you need to use the UNITS statement in PROC
LOGISTIC.

See if you can interpret these ORs correctly.

Point 95% Wald

Effect Estimate Confidence Limits

age 1.054 1.019 1.090

ndrugtx 0.940 0.894 0.988

ivhx Previous vs Never 0.530 0.303 0.928

ivhx Recent vs Never 0.456 0.281 0.740

treat 1.577 1.068 2.328

site 1.131 0.741 1.725
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Interpreting ORs

AGE

NDRUGTX

IVHX: PREVIOUS VS NEVER

IVHX: RECENT VS NEVER

TREAT

SITE
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Estimating probabilities

What is the probability that a 30 year-old with 5 prior drug
treatments, a history of recent IV drug use, who is
randomized to the long treatment arm at site A remains drug
free for 12 months?

Recall that

π̂ =
eX

′
ˆβ

1 + eX′
ˆβ

.
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Interaction in logistic regression

You can fit a model with interaction just as you did in multiple
linear regression. In the current example, it would be
worthwhile to investigate potential interaction between the
variable TREAT and all other covariates since our primary
objective is to understand the relationship between the
probability of remaining drug free and the treatment arm
(short or long). Failure to account for any significant
interaction would result in interpretations that don’t accurately
depict that relationship.

For example, consider the model with an interaction between
AGE and TREAT.
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IMPACT example with interaction

proc logistic data = one descending;

class ivhx (param = ref ref = ‘Never’);

model dfree = age ndrugtx ivhx treat site age*treat;

run;

Odds Ratio Estimates

Point 95% Wald

Effect Estimate Confidence Limits

ndrugtx 0.938 0.892 0.987

ivhx Previous vs Never 0.526 0.300 0.923

ivhx Recent vs Never 0.457 0.281 0.742

site 1.110 0.727 1.696
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ORs in the presence of interaction

What happened to the ORs for AGE and TREAT in the default
output? Since the model included an interaction term
between AGE and TREAT, it is NOT appropriate to report a
single adjusted OR and CI for each covariate. An interaction
term means that the effect of treatment arm on the log odds
of remaining drug free depends on the subject’s age, and vice
versa.
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SAS output with interaction

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -1.4339 0.8103 3.1310 0.0768

age 1 0.0239 0.0250 0.9133 0.3392

ndrugtx 1 -0.0639 0.0257 6.1763 0.0129

ivhx Previous 1 -0.6424 0.2868 5.0176 0.0251

ivhx Recent 1 -0.7837 0.2473 10.0420 0.0015

treat 1 -1.1775 1.0600 1.2340 0.2666

site 1 0.1044 0.2162 0.2331 0.6292

age*treat 1 0.0500 0.0320 2.4448 0.1179
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Calculating ORs in the presence of interaction

Suppose I want to estimate an OR and 95% CI for the odds of
remaining drug free for 12 months comparing those in the
long arm to those in the short arm for 40 year-old subjects,
assuming other covariates are the same. Keeping in mind
that TREAT = 1 for the long arm and TREAT = 0 for the short
arm, we have
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ORs in the presence of interaction (cont.)

ln

[
odds (DFREE = 1|TREAT = 1, AGE = 40)

odds (DFREE = 1|TREAT = 0, AGE = 40)

]
=
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Getting SAS to construct it for you ...

proc logistic data = one descending;

class ivhx (param = ref ref = ‘Never’);

model dfree = age ndrugtx ivhx treat site age*treat;

contrast ‘40: long vs. short arm’

treat 1 age*treat 40/estimate = exp;

run;

Contrast Test Results

Contrast DF Wald Chi-Square Pr > ChiSq

40: long vs. short arm 1 7.0293 0.0080

Contrast Rows Estimation and Testing Results

Standard

Contrast Type Row Estimate Error

40: long vs. short arm EXP 1 2.2786 0.7078

Alpha Confidence Limits

0.05 1.2395 4.1887
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Confounding

We assess confounding in multiple logistic regression in a
manner similar to that used in multiple linear regression.
From an analytic viewpoint, if the inclusion of a secondary
covariate (Z) in the model meaningfully changes the
parameter estimate for the exposure covariate (X), then Z is
said to confound the relationship between the outcome Y and
the exposure X. In practical terms, adjusting for Z

meaningfully changes the relationship between Y and X.
(NOTE: Remember that you should always assess interaction
before confounding.)
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Confounding (cont.)

Let’s assess whether race confounds the relationship
between treatment arm of the trial and the log odds of
remaining drug free for 12 months. We begin by assessing
whether there is significant interaction between RACE and
TREAT.

proc logistic data = one descending;

class ivhx (param = ref ref = ‘Never’);

model dfree = age ndrugtx ivhx treat site race race*treat;

run;

quit;
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Confounding (cont.)

Type 3 Analysis of Effects
Wald

Effect DF Chi-Square Pr > ChiSq
age 1 8.2955 0.0040
ndrugtx 1 5.4938 0.0191
ivhx 2 9.5195 0.0086
treat 1 5.9676 0.0146
site 1 0.5440 0.4608
race 1 2.2265 0.1357
treat*race 1 1.1631 0.2808

The interaction effect of TREAT and RACE is not significant
so we move on to assessing the presence of confounding.
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Confounding (cont.)

*MODEL WITHOUT RACE PRESENT;
proc logistic data = one descending;

class ivhx (param = ref ref = ‘Never’);
model dfree = age ndrugtx ivhx treat site;

run;
quit;

*MODEL WITH RACE PRESENT;
proc logistic data = one descending;

class ivhx (param = ref ref = ‘Never’);
model dfree = age ndrugtx ivhx treat site race

run;
quit;
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Confounding (cont.)

We look at the variable TREAT to determine if there is a
meaningful change in the estimated parameter comparing the
fitted models with and without RACE.
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Confounding (cont.)

Output for analysis without RACE.

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -2.3726 0.5526 18.4307 <.0001

age 1 0.0522 0.0172 9.2074 0.0024

ndrugtx 1 -0.0624 0.0256 5.9312 0.0149

ivhx Previous 1 -0.6350 0.2857 4.9402 0.0262

ivhx Recent 1 -0.7860 0.2471 10.1210 0.0015

treat 1 0.4553 0.1988 5.2475 0.0220

site 1 0.1231 0.2155 0.3266 0.5677
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Confounding (cont.)

Output for analysis with RACE.

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -2.4054 0.5548 18.7975 <.0001

age 1 0.0504 0.0173 8.4550 0.0036

ndrugtx 1 -0.0615 0.0256 5.7559 0.0164

ivhx Previous 1 -0.6033 0.2872 4.4118 0.0357

ivhx Recent 1 -0.7327 0.2523 8.4328 0.0037

treat 1 0.4425 0.1993 4.9302 0.0264

site 1 0.1486 0.2172 0.4681 0.4939

race 1 0.2261 0.2233 1.0251 0.3113
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Confounding (cont.)

There is not a meaningful change in the parameter estimate
for TREAT comparing the models with and without RACE.
Therefore race does not confound the effect of treatment arm
on the log odds of remaining drug free for 12 months, while
controlling for the effects of the other covariates.
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