Summary of inference tests in MLR

H_0, E	I_A	F test and distribution under the null	t test	SAS PROC REG
OVE	RALL TEST			
Н ₀ : Н _А :	$\beta_1 = \dots = \beta_k = 0$ At least one of $\beta_1, \dots, \beta_k \neq 0$			Standard output in the ANOVA table.
	OR	$F = \frac{\text{MSR(full)}}{\text{MSE(full)}} \sim F_{\text{k, n-k-1}}$	none	
H_0 :	$Y = \beta_0 + \varepsilon$ is the better model	one-sided upper tail test		
H _A :	$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + \varepsilon$ is the better model			
PAR	FIAL F TEST (Example demonstr	rating a test of the contribution of $X_{1.}$)		
	$\beta_{l} = 0 \text{ (All other } \beta s \neq 0)$ $\beta_{l} \neq 0 \text{ (All other } \beta s \neq 0)$			1. <i>F</i> test provided using test statement.
	OR	$F = \frac{(\text{SSR(full)} - \text{SSR(reduced)})/1}{\text{MSE(full)}}$	$t = \frac{\hat{\beta}_1}{SE(\hat{\beta}_1)} \sim t_{\text{n-k-1}}$	
H_0 :	$Y = \beta_0 + \beta_2 X_2 + \ldots + \beta_k X_k + \varepsilon$	$F \sim F_{1, n-k-1}$		2. <i>t</i> test is standard output.
I _A :	is the better model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + + \beta_k X_k$ is the better model	one sided upper tail test $+ \varepsilon$	Two-sided test	_

$\overline{H_0, H_A}$	F test and distribution	t test	SAS PROC REG
	under the null		

MULTIPLE PARTIAL F TEST

(*Example demonstrating a test of the contribution of* X_1 *and* X_2 . *Here the number of variables being tested is 2.*)

H ₀ : H _A :	$\beta_1 = \beta_2 = 0$ (All other $\beta_s \neq 0$) At least one of β_1 , $\beta_2 \neq 0$ (All other $\beta_s \neq 0$)		1. F test provided using test statement.
	OR	$F = \frac{\frac{\text{SSR(full)-SSR(reduced)}}{(\# \text{ vars tested})}}{\text{MSE(full)}} \text{ none}$	
H_0 :	$Y = \beta_0 + \beta_3 X_3 + \dots + \beta_k X_k + \varepsilon$ is the better model	$F \sim F_{\text{\# vars tested, n-k-1}}$ one sided upper tail test	

*H*_A: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 \dots + \beta_k X_k + \varepsilon$ is the better model