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The multiple linear regression model

Multiple linear regression is a statistical method that allows us
to find the best fitting linear relationship (response surface)
between a single dependent variable, Y , and a collection of
independent variables X1, X2, . . . , Xk. We assume that the
following model expresses the true relationship between Y
and the set of independent variables:

Y = β0 + β1X1 + β2X2 + . . . + βkXk + ε

where ε is a random error term that accounts for the random
deviations of data points from the response surface.

Multiple linear regression – p. 2/40



Multiple linear regression assumptions

Linearity The mean value of Y is a linear function of
X1, X2, . . . , Xk. That is to say, the true statistical model is

E[Y |X1, X2, . . . , Xk] = β0 + β1X1 + β2X2 + . . . + βkXk.

NOTE: The linearity assumption does not preclude the
presence of higher order terms in the model. For example,
both Y = β0 + β1X1 + β2X

2
1 + ε and

Y = β0 + β1X1 + β2X2 + β3X1X2 + ε satisfy the assumption of
linearity, even though each contains second order terms (X2

1

and X1X2, respectively).

Linearity means linear in the regression coefficients. Here is
an example of non-linear model.

Y =
eβ0+β1X1

1 + eβ0+β1X1

.
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Multiple linear regression assumptions (cont.)

Independence The Y values must be independent, i.e.
form a random sample.

Homoscedasticity The variance of Y is the same for any
combination of values of X1, X2, . . . , Xk. In symbols, we
write

V ar(Y |X1, X2, . . . , Xk) = σ2.

Normality Given any fixed combination of X1, X2, . . . , Xk,

Y ∼ Normal(β0 + β1X1 + β2X2 + . . . + βkXk, σ
2),

or equivalently ε ∼ Normal(0, σ2).
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Determining the optimal surface

The “best” surface is that which minimizes the sum of the
squared residuals. It can be shown that the β̂s that result
from this method have minimal variance and are unbiased.

X1

X2

Y

Observed data
Fitted response
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Summarizing multiple regression results

We represent the fitted model as

Ŷ = β̂0 + β̂1X1 + . . . + β̂kXk.

The formulas for the fitted regression coefficients are matrix
equations and require knowledge of matrix algebra (not a
prerequisite for this course). Instead, we’ll rely on the
computer to provide fitted values.
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The ANOVA table for multiple linear regression

Source df SS MS F

Model k SSR = SSY - SSE MSR = SSR
k

MSR
MSE

Error n − k − 1 SSE MSE = SSE
n−k−1

Total n − 1 SSY

where k is the number of independent variables in the model.
Note that this general ANOVA table is consistent with the
ANOVA table presented for SLR.
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The ANOVA table for MLR (cont.)

The interpretation of the components in the ANOVA table are
the same as for SLR.

• SSY is the total variability in Y

• SSR is the variation in Y attributable to its linear
association with X1, . . . , Xk

• SSE is the amount of variation in Y left unexplained by
the model

R2 = SSR/SSY, but unlike in SLR, R2 does not equal the
square of the sample correlation coefficient. However, it does
measure the proportion of total variation explained by the
model and varies between 0 and 1.
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SENIC example: MLR analyses

R2 values for simple and multiple linear regressions of risk of
nosocomial infection on selected variables.

Model R2

LOS

CULT

BEDS

LOS, CULT

LOS, BEDS

CULT, BEDS

LOS, CULT, BEDS
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R2 and adjusted R2

For nested models, R2 can never decrease. This is because
SSE monotonically decreases and SSY is fixed, so the
quantity

R2 =
SSR
SSY

=
SSY − SSE

SSY
= 1 −

SSE
SSY

can only increase. It is therefore possible to artificially inflate
the value of R2 simply by including additional variables in the
multiple regression.

An alternative measure of fit is the adjusted R2.
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R2 and adjusted R2 (cont.)

Adjusted R2 is defined as

R2
a = 1 −

(
SSE
n−p

)
(

SSY
n−1

) = 1 −

(
n − 1

n − p

)
SSE
SSY

.

This index divides each of the sums of squares by its
associated degrees of freedom. In so doing, R2

a can actually
decrease when a covariate is added to the model, because
any decrease in SSE may be more than offset by the loss of a
degree of freedom in the denominator n − p.

(Note: p is the number of parameters in the MLR and is
always equal to k + 1. Therefore, n − p = n − k − 1, which is
what is reported as the df associated with SSE in Slide 7.)
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SENIC example: MLR analyses (cont.)

R2 and adjusted R2 values for simple and multiple linear
regressions of risk of nosocomial infection on selected
variables.

Model R2 Adjusted R2

LOS

CULT

BEDS

LOS, CULT

LOS, BEDS

CULT, BEDS

LOS, CULT, BEDS
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Inference in multiple linear regression

1. Overall test of significance of the regression.

2. Test of significance for addition of a single variable.

3. Test of significance for addition of a group of variables.
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Overall test

Given the linear model with k independent variables

Y = β0 + β1X1 + . . . + βkXk + ε,

does the regression of Y on X1, . . . , Xk explain a significant
proportion of the variability in Y ? Formally, we state

• H0: The regression on X1, . . . , Xk does not explain a
significant proportion of the variability in Y .
HA: The regression on X1, . . . , Xk does explain a
significant proportion of the variability in Y .

OR

• H0 : β1 = . . . = βk = 0
HA: At least one of β1, . . . , βk is different from zero.
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Overall test (cont.)

Test statistic F = MSR
MSE ∼ Fk,n−k−1 under H0.

p-value p-value = Prob
(
F > MSR

MSE

)
where F ∼ Fk,n−k−1.

Conclusion If we reject H0, we conclude that at least one of
the independent variables significantly explains the
variation in Y . If we fail to reject H0, we conclude that
there is insufficient evidence to conclude that any of the
independent variables significantly explains the variation
in Y .

Multiple linear regression – p. 15/40

Overall test in SAS

Consider a multiple linear regression of risk of nosocomial
infection on length of stay, routine culturing ratio, and number
of beds.

proc reg data = one;

model infrisk = los cult beds;

run;

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 95.36610 31.78870 32.68 <.0001

Error 109 106.01372 0.97260

Corrected Total 112 201.37982

Multiple linear regression – p. 16/40



Overall test in SAS (cont.)

The value of the test statistic for the overall F test is
31.78870/0.97260 = 32.68 which has an F distribution with 3
numerator degrees of freedom and 109 denominator degrees
of freedom under H0. The p-value is less than 0.0001. We
conclude at α = 0.05 that at least one of LOS, CULT and
BEDS significantly explains the variation in INFRISK.
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The significance of a single covariate

When the overall F test is rejected in multiple linear
regression, additional tests called partial F tests are
performed to investigate the importance of each of the
independent variables while controlling or adjusting for the
effects of the other independent variables. If there are k
independent variables, then there are k partial F tests.
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Partial sum of squares

A first approach at assessing the significance of each
independent variable is to consider the partial sum of squares
for each variable. Recall that the total variability in Y (SSY) is
partitioned into two mutually exclusive components:

1. Variability explained by the linear regression model of Y
on X1, . . . , Xk (SSR)

2. Unexplained variability (SSE).

For a model containing k covariates (independent variables),
the partial sum of squares for a specific variable measures
the increase in the regression sum of squares by adding that
variable to a model already containing the other k − 1
covariates.
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Partial sum of squares example

For example, suppose we fit a model with three independent
variables, X1, X2, X3. Then

• SSR(X1|X2, X3) measures the increase in SSR by adding
X1 to a model already containing X2 and X3.

• SSR(X2|X1, X3) measures the increase in SSR by adding
X2 to a model already containing X1 and X3.

• SSR(X3|X1, X2) measures the increase in SSR by adding
X3 to a model already containing X1 and X2.
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Partial sum of squares in SAS

Consider the regression of INFRISK on LOS and CULT, and
the regression of INFRISK on LOS, CULT and BEDS.

TWO VARIABLE MODEL

Sum of

Source DF Squares

proc reg data = one;

Model 2 90.70199 model infrisk = los cult;

Error 110 110.67784 run;

Corrected Total 112 201.37982

/*******************************************************************/

THREE VARIABLE MODEL

Sum of

Source DF Squares

proc reg data = one;

Model 3 95.36610 model infrisk =

Error 109 106.01372 los cult beds;

Corrected Total 112 201.37982 run;
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Partial sum of squares in SAS (cont.)

• SSR(LOS,CULT) = 90.70199

• SSR(LOS,CULT,BEDS) = 95.36610

• Therefore, SSR(BEDS|LOS,CULT) =
SSR(LOS,CULT,BEDS) - SSR(LOS,CULT) = 4.66411

Interpretation: The variable BEDS adds an additional 4.66411
to the sum square regression obtained from a model already
containing LOS and CULT.

Question: Is that a meaningful (significant) addition?
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Formalizing the partial F test

Although the partial sum of squares helps us quantify the
effect of an individual variable on explaining the total
variability in the response, we still need a formal hypothesis
test to assess the significance of a variable’s impact. To
achieve this, we use a partial F test.
There are several ways to express the null and alternative
hypotheses for partial F tests. Consider the model

Y = β0 + β1X1 + . . . + βkXk + ε.

Suppose we want to test the hypothesis that a particular
independent variable, Xi, explains a significant amount of the
variability in Y , given that all the other variables are in the
model. Then each of the following sets of null and alternative
hypotheses are equivalent.
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H0 and HA for the partial F test

1. H0 : βi = 0 (all other βjs �= 0)
HA : βi �= 0 (all other βjs �= 0)
where βi is the true slope associated with Xi.

or equivalently

2. H0 : Y = β0+β1X1+. . .+βi−1Xi−1+βi+1Xi+1+. . .+βkXk+ε
is the better model.
HA : Y =
β0 +β1X1 + . . .+βi−1Xi−1 +βiXi +βi+1Xi+1 + . . .+βkXk +ε
is the better model.

Multiple linear regression – p. 24/40



H0 and HA for the partial F test (cont.)

The model specified in the null hypothesis is called the
reduced model. The model specified in the alternative
hypothesis is called the full model.

The partial F test on Xi can be thought of as a test
comparing two models: the full model (which includes Xi and
all other independent variables), and the reduced model
(which includes all independent variables except Xi).

Multiple linear regression – p. 25/40

Constructing the partial F test

The comparison of a full and reduced model forms the basis
for the construction of the partial F test. The test statistic and
its null distribution are

F =
SSR(Xi|X1, . . . , Xi−1, Xi+1, . . . , Xk)/1

MSE(full)

=
(SSR(full) - SSR(reduced))/1

MSE(full)
∼ F1,n−k−1

where MSE(full) = SSE(full)/(n − k − 1).
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Constructing the partial F test (cont.)

The numerator of the test statistic has 1 degree of freedom
since the full and reduced models differ by a single variable.
The denominator degrees of freedom is n minus the total
number of parameters (intercept and slope parameters, i.e.
β0 and all the βs) estimated in the full model. The ratio
provides a measure of whether the additional sum of squares
explained by adding Xi are important or large in comparison
to the unexplained variation, and is therefore a measure of
the additional usefulness of the full model over the reduced
model.
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Conducting partial F tests in SAS

Fortunately, you can conduct partial F tests directly in SAS.
The code below shows the statements in PROC REG needed
to conduct a partial F test on the variable BEDS.

proc reg data = one;

model infrisk = los cult beds;

F_Beds: test beds = 0;

run;

Test F_Beds Results for Dependent Variable INFRISK

Mean

Source DF Square F Value Pr > F

Numerator 1 4.66412 4.80 0.0307

Denominator 109 0.97260

Compare with the partial sum of squares for BEDS shown on
Slide 22.
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Coincidence?

Partial F test for BEDS

Test F_Beds Results for Dependent Variable INFRISK

Mean

Source DF Square F Value Pr > F

Numerator 1 4.66412 4.80 0.0307

Denominator 109 0.97260

t test for BEDS

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

BEDS 1 0.00116 0.00052963 2.19 0.0307

Multiple linear regression – p. 29/40

The t test alternative to the partial F test

Previously, we stated that

F1,ν,1−α = t2ν,1−α/2 = t2ν,α/2.

Since the numerator degrees of freedom for the partial F test
is 1, then this principle holds, and there is a t test equivalent
to the partial F test. More specifically, the one-sided partial F
test is equivalent to a two-sided t test.
While the partial F test reflects the spirit of the full/reduced
model null and alternative hypotheses (Slide 24, H0 and HA

(2)), the t test reflects the spirit of assessing the significance
of the appropriate β coefficient (Slide 24, H0 and HA (1)).
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The t test

Null and alternative
H0 : βi = 0 (all other βs �= 0)
HA : βi �= 0 (all other βs �= 0)

Test statistic t = β̂i

SE(β̂i)
∼ tn−k−1 under H0.

p-value p-value = Prob
(
|t| > β̂i

SE(β̂i)

)
, where t ∼ tn−k−1.
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The t tests in SAS

The t-tests for the βs are standard output for any multiple
linear regression in SAS. No special options need to be
specified. Since the t-test is equivalent to the partial F -test,
this is the preferred way to conduct any partial F -test

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 0.97491 0.48575 2.01 0.0472

LOS 1 0.22784 0.05598 4.07 <.0001

CULT 1 0.05630 0.00963 5.84 <.0001

BEDS 1 0.00116 0.00052963 2.19 0.0307
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Interpreting the t tests

If all tests are conducted at the 0.05 level of significance, then

• LOS contributes significantly to a model already
containing CULT and BEDS.

• CULT contributes significantly to a model already
containing LOS and BEDS.

• BEDS contributes significantly to a model already
containing LOS and CULT.
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Multiple partial F tests

It is sometimes of interest to test for the importance of groups
of independent variables. In such situations, a multiple partial
F test is performed. For example, in a multiple linear
regression containing X1, X2, X3, X4, we might want to test
whether the pair of independent variables {X2, X3}
contributes significantly to a model already containing X1 and
X4.
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H0 and HA for a multiple partial F test

To test for the significance of the collection of g independent
variables,

1. H0 : β∗

1 = . . . = β∗

g = 0 (all other βs �= 0)

HA : At least one of β∗

1 , . . . , β
∗

g �= 0 (all other βs �= 0)

or equivalently

2. H0 : Y = β0 + β1X1 + . . . + βkXk + ε is the better model.
HA : Y = β0 + β1X1 + . . . + βkXk + β∗

1X
∗

1 + . . . + β∗

gX
∗

g + ε

is the better model.
The model specified in the null hypothesis is called the
reduced model. The model specified in the alternative
hypothesis is called the full model.
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Formalizing the multiple partial F test

The form of the multiple partial F test is simply a
generalization of the partial F test presented on Slide 26. The
test statistic and its distribution under H0 are

Test statistic

F =
SSR(X∗

1 , . . . , X
∗

g |X1, . . . , Xk)/g

MSE(full)

=
(SSR(full) − SSR(reduced))/g

MSE(full)
∼ Fg,n−(# parameters in full model).

p-value p-value = Prob
(

F >
SSR(full)−SSR(reduced)/g

MSE(full)

)

where F ∼ Fg,n−(# parameters in full model).
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Formalizing the multiple partial F test (cont.)

Conclusion If we fail to reject H0, then there is insufficient
evidence that the collection of variables being tested
contributes significantly to the model already containing
the other variables. If we do reject H0, then at least one of
the independent variables in the collection being tested
contributes significantly to a model already containing the
other variables.
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SENIC example: Multiple partial F test

Suppose we want to test the significance of the contribution of
BEDS and NURSE to a model already containing LOS and
CULT.

proc reg data = one;

model infrisk = los cult beds nurse;

F_beds_nurse: test beds, nurse = 0;

run;

Test F_beds_nurse Results for Dependent Variable INFRISK

Mean

Source DF Square F Value Pr > F

Numerator 2 3.68062 3.85 0.0243

Denominator 108 0.95664
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SENIC example: Multiple partial F test (cont.)

Where did the numerator and denominator for the test
statistics come from?

TWO VARIABLE MODEL

Sum of

Source DF Squares

proc reg data = one;

Model 2 90.70199 model infrisk = los cult;

Error 110 110.67784 run;

Corrected Total 112 201.37982

/*******************************************************************/

FOUR VARIABLE MODEL

Sum of

Source DF Squares

proc reg data = one;

Model 4 98.06324 model infrisk = los cult

Error 108 103.31659 beds nurse;

Corrected Total 112 201.37982 run;
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Multiple partial F test conclusion

Since the p-value for the multiple partial F test is significant,
we conclude that at least one of BEDS and NURSE
contributes significantly to a model already containing LOS
and CULT.
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