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Odds and odds ratios

The odds of an event, A, is the ratio of the probability in favor
of event A to the probability against event A. That is,

odds A =
Prob(A)

1 − Prob(A)
=

Prob(A)

Prob(A)
.
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Odds and odds ratios (cont.)

Consider the following 2 × 2 table.
Disease
+ −

Exposure + a b a + b

− c d c + d

a + c b + d a + b + c + d

1. Odds of disease given exposed =

2. Odds of disease given unexposed =

3. Odds ratio comparing exposed to unexposed =
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Introduction to logistic regression

Logistic regression is akin to linear regression in that its goals
are quite similar: to find the best fitting, plausible model to
describe the relationship between an outcome variable and a
set of independent variables. What distinguishes the logistic
from the linear regression model is that the response variable
in logistic regression is binary or dichotomous. In linear
regression, the response variable is continuous. This feature
is reflected in both the choice of the logistic regression model
as well as the modelling assumptions, but the guiding
principles of linear regression continue to serve us in this new
paradigm.
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Motivation

• Y is a binary (0/1) response variable. Therefore, Y is a
Bernoulli random variable (in linear regression the
response was assumed to come from a Normal
distribution).

• The expected (average) value of a Bernoulli random
variable is π which is equal to the probability of success
(i.e. E(Y ) = π)

• X1, . . . , Xk are k predictor variables (covariates). They
can be any combination of continuous, ordinal or nominal
variables.
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Goal of logistic regression

Recall that in linear regression, we fit the expected (average)
response E(Y ) as a linear function of covariates. Our goal is
similar in logistic regression except that now E(Y ) = π.
Therefore, our goal is to model the probability that Y = 1
given a particular set of covariate values. For example, we
might be interested in estimating a patient’s probability of
disease given certain risk factors such as the patient’s age,
race, sex and other comorbid conditions.
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Modelling a probability

Therefore, we want to do something like this ...

Prob(Y = 1|X1, . . . , Xk) = β0 + β1X1 + . . . + βkXk.

But there is one big problem with this ...

A probability must be constrained to fall between 0 and 1, so
the left hand side of the equation (i.e.
Prob(Y = 1|X1, . . . , Xk)) can’t be any smaller than 0 or any
larger than 1. But β0 + β1X1 + . . . + βkXk has the potential to
take on any positive or negative number!

A model like this could lead to some ridiculous values for
probabilities. Clearly, this model will NOT work.
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The logit function

So what should we do? The solution to the problem is to use
a function that transforms the unit interval, [0, 1] (the space
where probabilities live), to the entire real line, (−∞,∞), (the
space where a general class of covariates live). That
transformation is the logit function. It is defined as follows.

logit[Prob(Y = 1|X1, . . . ,Xk)] = ln

[
Prob(Y = 1|X1, . . . ,Xk)

1 − Prob(Y = 1|X1, . . . ,Xk)

]

In words, the logit model expresses the (natural) log odds of
the event Y = 1 given covariate values X1, . . . , Xk.
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Graph of the logit function
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The logit function (cont.)

By taking the logit transformation of Prob(Y = 1|X), we are
able to explore the relationship between the probability of an
outcome (which must be between 0 and 1) with one or more
covariates that can take on values anywhere on the real line.
To get back to the scale of a probability, all we need to do at
the end is transform back using the inverse function. The
logistic regression model is written as

logit[Prob(Y = 1|X)] = ln

[
Prob(Y = 1|X)

1 − Prob(Y = 1|X)

]

= β0 + β1X1 + . . . + βkXk.
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Digression into some convenient notation

In manipulating the logistic model, it becomes cumbersome to
write

β0 + β1X1 + . . . + βkXk.

It is much simpler to write this as the inner product of two

vectors. Let X =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

X1

X2

...
Xk

⎞
⎟⎟⎟⎟⎟⎟⎠

and β =

⎛
⎜⎜⎜⎜⎜⎜⎝

β0

β1

β2

...
βk

⎞
⎟⎟⎟⎟⎟⎟⎠

. Let X
′ be the

transpose of X, i.e. X
′ = (1 X1 X2 . . . Xk).
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Convenient notation (cont.)

Then

X
′β = (1 X1 X2 . . . Xk) ×

⎛
⎜⎜⎜⎜⎜⎜⎝

β0

β1

β2

...
βk

⎞
⎟⎟⎟⎟⎟⎟⎠

= β0 + β1X1 + . . . + βkXk.
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What is the inverse logit function?

For simplicity, write π = Prob(Y = 1|X). If

ln

[
π

1 − π

]
= X

′β,

then π = ?.
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The IMPACT study

The IMPACT data set is a subset of data collected for the
University of Massachusetts Aids Research Unit IMPACT
Study. This was a 5-year (1989-1994) project comprising two
randomized trials of residential treatment for drug abuse. The
purpose of the study was to compare treatment programs of
different planned durations designed to reduce drug abuse
and to prevent high-risk HIV behavior. The data are described
in the handout.
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