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Assessing model fit

A good model is one that ‘fits’ the data well, in the sense that
the values predicted by the model are in close agreement
with those observed. In logistic regression, we obtain the
predicted values (event (1) or not event (0)) using the fitted
probabilities of the occurrence of an event.
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From logit to probability in SAS

In the previous lecture, we modelled the log odds of
remaining drug free as a function of AGE, NDRUGTX, IVHX,
TREAT and SITE. The fitted model is

ln

[
Prob(DFREE = 1)

1 − Prob(DFREE = 1)

]
= −2.37 + 0.052 × AGE

−0.062 × NDRUGTX − 0.64 × IVHX
−0.79 × IVHX2 + 0.46 × TREAT
+0.12 × SITE

We also saw how to estimate the probability of remaining
drug free for 12 months based on the fitted model. We can
also request that SAS construct these probabilities for each
subject in the data.
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Estimated probabilities in SAS

proc logistic data = two descending;

class ivhx (param = ref ref = ‘Never’);

model dfree = age ndrugtx ivhx treat site;

output out = fittedprobs pred = probs;

run;

quit;

id age beck ivhx ndrugtx treat site dfree probs

1 39 9.000 Recent 1 Long A Otherwise 0.32545

2 33 34.000 Previous 8 Long A Otherwise 0.20951

3 33 10.000 Recent 3 Long A Otherwise 0.23741

4 32 20.000 Recent 1 Short A Otherwise 0.17512

5 24 5.000 Never 5 Long A Remained drug free 0.27374

6 30 32.550 Recent 1 Long A Otherwise 0.23168
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The Hosmer-Lemeshow GOF test

The Hosmer and Lemeshow goodness of fit (GOF) test
measures how well the estimated model fits the observed
data based on the following steps.

1. Arrange the observed data into ten groupings based on
deciles of the estimated probabilities of an event. These
are commonly referred to as deciles of risk. For the model
shown on Slide 3, the 10th, 20th, . . ., 90th, 100th
percentiles of the estimated probabilities are: 0.13, 0.16,
0.19, 0.22, 0.24, 0.28, 0.31, 0.35, 0.40, 0.58 (I got these
percentiles from PROC UNIVARIATE).
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The Hosmer-Lemeshow GOF test (cont.)

2. Sum the probabilities in each decile. This is the expected
number of events within each decile.

3. Construct a usual ‘observed - expected’ chi-square
statistic.

The null hypothesis for the Hosmer and Lemeshow test is that
the data fit the model. Therefore you want to fail to reject the
null hypothesis. In other words, you do not want to find
evidence that the data differ significantly from the fitted model.
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The Hosmer-Lemeshow GOF test in SAS

proc logistic data = one descending;

class ivhx (param = ref ref = ‘Never’);

model dfree = age ndrugtx ivhx treat site /lackfit;

run;

quit;
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The HL GOF test in SAS (cont.)

Partition for the Hosmer and Lemeshow Test

dfree = Remained

drug free dfree = Otherwise

Group Total Observed Expected Observed Expected

1 58 6 5.73 52 52.27

2 58 8 8.59 50 49.41

3 58 8 10.18 50 47.82

4 58 14 11.94 44 46.06

5 58 8 13.26 50 44.74

6 58 24 15.16 34 42.84

7 58 13 17.03 45 40.97

8 58 22 19.18 36 38.82

9 58 20 21.74 38 36.26

10 53 24 24.19 29 28.81

Hosmer and Lemeshow Goodness-of-Fit Test

Chi-Square DF Pr > ChiSq

12.9446 8 0.1138
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Conclusion based on HL test

At α = 0.05 we fail to reject the hypothesis that the data fit the
model (p = 0.1138). Therefore we conclude that the model
provides adequate fit.
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ROC analysis

If the purpose of the logistic regression is to construct a
predictive model, then an ROC (short for Receiver Operating
Characteristics) curve is a useful graphical assessment of fit.

ods rtf file=‘E:\Logistic\ROC.rtf’;

ods graphics on;

ods select ROCCurve;

proc logistic data = one descending;

class ivhx (param = ref ref = ‘Never’);

model dfree = age ndrugtx ivhx treat site;

graphics ROC;

run;

quit;

ods graphics off;

ods rtf close;
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ROC graphic
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Assessing linearity in the logit

Recall the assumptions of logistic regression are

• Responses are observed values of independent Bernoulli
random variables (comprises two assumptions in one)

• The model is linear in the logit for the predictors

We will discuss how to assess the validity of the linearity
assumption. Such an assessment is only meaningful for
continuous covariates.
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Using LOESS to assess linearity

We will assess linearity in the logit for the covariate AGE in
the IMPACT data.

ods html;
ods graphics on;

proc loess data = one;
model dfree = age;

run;

ods graphics off;
ods html close;
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Loess plot for AGE
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Transformation for AGE?

Use fractional polynomials macro to investigate.
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Pearson residuals

We analyze residuals to identify problems with the fitted
model. The Pearson residual, rj, is defined as follows:

rj =
yj − mjπ̂j√
mjπ̂j(1 − π̂j)

• j indexes a given covariate pattern (e.g. 40 year-olds with
no prior drug treatments, recent history of injecting drug
use, randomized to long arm at site B)

• yj is the total number of positive responses for covariate
pattern j

• mj is the total number of observations with covariate
pattern j

• π̂j is the estimated probability of a positive response for
covariate pattern j
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Pearson residuals (cont.)

The summary measure based on the Pearson residuals is a
chi-square statistic,

X2 =

J∑
j=1

r2
j ∼ χ2

J−(k+1)

where J is the total number of covariate patterns and k is the
number of covariates in the model.
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Deviance residuals

Another type of residual is the deviance residual, dj. Its form
is rather complicated, but the interested student can consult
Hosmer and Lemeshow, Applied Logistic Regression, 2000,
p. 146. A summary measure based on the deviance residuals
is the deviance, and is defined as

D =
J∑

j=1

d2
j ∼ χ2

J−(k+1)

where J is the total number of covariate patterns and k is the
number of covariates in the model.
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Residual plots in SAS

SAS provides a number of default plots based on the Pearson
and deviance residuals that allow us to identify outlying
observations and covariate patterns that are poorly fit by the
model. We will focus on the following plots.

1. Pearson residuals (rj) versus case number

2. Deviance residuals (dj) versus case number

3. Change in Pearson Chi-square statistic versus case
number (based on X2 statistic shown on Slide 17)

4. Change in Deviance statistic versus case number (based
on D statistic shown on Slide 18)
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Residual plots in SAS (cont.)

ods html;

ods graphics on;

proc logistic data = two descending;

class ivhx (param = ref ref = ‘Never’);

model dfree = age ndrugtx ivhx treat site/influence

run;

ods graphics off;

ods html close;
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Pearson/deviance residual vs. case number
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∆X2

j and ∆Dj versus case number plots

1. For each covariate pattern, j, delete the observations
corresponding to that covariate pattern.

2. Calculate the Pearson (or deviance) chi-square statistics
with these observations deleted.

3. Calculate the decrease in the Pearson (or deviance)
chi-square statistic due to the deletion of these
observations. Call this quantity ∆X2

j (or ∆Dj).

4. Plot ∆X2
j (or ∆Dj) versus the index of each observation.
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∆X2

j and ∆Dj versus case number (cont.)
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What values are “too big”?

In logistic regression we have to rely primarily on visual
assessment, as the distribution of the diagnostics under the
hypothesis that the model fits is known only in certain limited
settings. In practice, an assessment of “large” is a judgement
call based on experience and the particular set of data being
analyzed.
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Investigating poorly fit observations

From the plots of the Pearson and deviance residuals, and
∆X2

j and ∆Dj versus the case index, we identify two
observations that appear to be poorly fit by the data. One has
an index close to 0 and the other has an index close to 500.
Both observations have Pearson residuals near 4, deviance
residuals greater than 2, ∆X2

j values greater than 15 and
∆Dj values greater than 6.

In addition to the plots, the ‘influence’ option prints out the
covariate values for each observation and the values of each
statistic (i.e. rj, dj, ∆X2

j , ∆Dj, etc.) to aid in their
identification from the plots.
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Investigating poorly fit observations (cont.)

Case ivhx ivhx

Number age ndrugtx Previous Recent treat site

7 39 34 0 1 1 0

471 24 20 1 0 0 1

Case Pearson Deviance Delta Delta

Number Residual Residual Deviance Chi-Square

7 4.0299 2.3863 6.2148 16.7604

471 4.2180 2.4221 6.1574 18.0818
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Investigating poorly fit observations (cont.)

Clearly observations 7 and 471 are poorly fit by the model.
We should compare the actual outcome for these
observations against what is predicted by the model.

proc logistic data = one descending;

class ivhx (param = ref ref = ‘Never’);

model dfree = age ndrugtx ivhx treat site;

output out = fittedprobs pred = probs;

run;

proc print data = fittedprobs;

where id in (7,471);

run;
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Investigating poorly fit observations (cont.)

Obs id age beck ivhx ndrugtx race treat site

7 7 39 19 Recent 34 White Long A

471 471 24 20 Previous 20 White Short B

Obs dfree probs

7 Remained drug free 0.058004

471 Remained drug free 0.053216

The covariate values for these subjects would indicate a poor
prognosis, that is, a low probability (≈ 0.05) of remaining drug
free for twelve months. However, they ‘beat the odds’ and
remained drug free.
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