MEASURING THE ASSOCIATION BETWEEN TWO INDEPENDENT RANDOM VARIABLES

Variable 1	Variable 2	Commonly reported association summary statistic	Name of test	Null and alternative hypotheses	Assumptions (or "when to use")
Continuous	Continuous	Pearson correlation coefficient (and possibly the corresponding CI)		$\begin{aligned} & \mathrm{H}_{0}: \rho=0 \\ & \mathrm{H}_{\mathrm{A}}: \rho \neq 0 \end{aligned}$	Both variables are normally distributed (actually, the variables have a joint bivariate normal distribution)
		Spearman correlation coefficient (and possibly the corresponding CI)		$\begin{aligned} & \mathrm{H}_{0}: \rho_{\mathrm{s}}=0 \\ & \mathrm{H}_{\mathrm{A}}: \rho_{\mathrm{s}} \neq 0 \end{aligned}$	No distributional assumptions - use if at least one variable is non-normal
Continuous	Categorical - 2 levels	Mean and SD of continuous variable at each level of categorical variable	t-test	$\begin{aligned} & \mathrm{H}_{0}: \mu_{1}=\mu_{2} \\ & \mathrm{H}_{\mathrm{A}}: \mu_{1} \neq \mu_{2} \end{aligned}$	Continuous variable is normally distributed
		Median and IQR (or possibly Range) of continuous variable at each level of categorical variable	Wilcoxon rank-sum test (equivalent to MannWhitney U test)	$\begin{aligned} & \mathrm{H}_{0}: \text { location }_{1}=\text { location }_{2} \\ & \mathrm{H}_{\mathrm{A}}: \text { location }_{1} \neq \text { location }_{2} \end{aligned}$	No distributional assumptions - use if continuous variable is not normally distributed
Continuous	Categorical - K levels ($\mathrm{K} \geq 3$), nominal or ordinal	Mean and SD of continuous variable at each level of categorical variable	$\begin{gathered} \text { 1-Way } \\ \text { ANOVA } \end{gathered}$	$\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{\mathrm{K}}$ H_{A} : at least one mean differs from the others	Continuous variable is normally distributed
		Median and IQR (or possibly Range) of continuous variable at each level of categorical variable	KruskalWallis test	H_{0} : location $_{1}=$ location $_{2}$ $=\ldots$ location $_{\mathrm{K}}$ H_{A} : at least one location differs from the others	No distributional assumptions - use if continuous variable is not normally distributed

Categorical	Categorical	Frequencies and percents of one variable across levels of second variable	$\chi^{2}-$ test	H_{0} : Variable 1 and Variable 2 are independent H_{A} : Variable 1 and Variable 2 are not independent (i.e. are associated with one another)	The expected cell counts (frequencies) must be at least 5
		Frequencies and percents of one variable across levels of second variable	Fisher's exact test	H_{0} : Variable 1 and Variable 2 are independent H_{A} : Variable 1 and Variable 2 are not independent (i.e. are associated with one another)	Use when any expected cell count is less than 5
Categorical - 2 level	Categorical - K levels ($K \geq 3$), ordinal	Frequencies and percents of K-level variable across each level of the dichotomous variable	CochranArmitage trend test	H_{0} : Variable 1 and Variable 2 are independent H_{A} : There is a linear trend in the probabilities $\pi_{1 \mid 1}$, $\pi_{2 \mid 1}, \ldots, \pi_{\mathrm{K} \mid 1}$ (and also, by symmetry, in $\pi_{1 \mid 2}, \pi_{2 \mid 2}, \ldots$, $\pi_{\mathrm{K} 12}$)	Use to test for linear trend

MEASURING THE ASSOCIATION BETWEEN PAIRED ENDPOINTS

Variable	Commonly reported association summary statistic	Name of test	Null and alternative hypotheses	$\begin{aligned} & \text { Assumptions (or } \\ & \text { "when to use") } \end{aligned}$
Continuous	Average and standard deviation of differences	Paired t-test	$\begin{aligned} & \mathrm{H}_{0}: \mu_{d}=0 \\ & \mathrm{H}_{\mathrm{A}}: \mu_{d} \neq 0 \\ & \hline \end{aligned}$	Continuous variable is normally distributed
Continuous	Median and IQR (or possibly range) of differences	Wilcoxon signed-rank test	$\begin{aligned} & \mathrm{H}_{0}: \text { location }_{d}=0 \\ & \mathrm{H}_{\mathrm{A}}: \text { location }_{d} \neq 0 \end{aligned}$	No distributional assumptions - use if continuous variable is not normally distributed
Categorical - 2 level	Frequency and percent that changed (depending on context, may want to report separately for select category pairings the frequency and percent that changed)	McNemar's test	$\begin{aligned} & \mathrm{H}_{0}: \pi_{\text {condition } 1}=\pi_{\text {condition } 2} \\ & \mathrm{H}_{\mathrm{A}}: \pi_{\text {condition } 1} \neq \pi_{\text {condition } 2} \end{aligned}$	See course text, Chapter 18
Categorical - K levels (K ≥ 3), nominal or ordinal	Frequency and percent that changed (depending on context, may want to report separately for select category pairings the frequency and percent that changed)	Stuart-Maxwell test	$\begin{aligned} \mathrm{H}_{0}: \pi(i)_{\text {condition } 1} & =\pi(i)_{\text {condition } 2} \\ \mathrm{H}_{\mathrm{A}}: \pi(i)_{\text {condition } 1} & \neq \pi(i)_{\text {condition } 2}\end{aligned}$ where $\pi(i)$ is the probability of category $i, i=1, \ldots \mathrm{~K}$.	See course text, Chapter 18

