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Review and motivation

In the last lecture we learned about the survival function

S(t) = Prob(T > t)

and approximated it using the Kaplan-Meier estimate, ŜKM (t).

(Recall that T is the random variable for the failure time and t is its

observed value.) The survival function expresses the probability of

surviving (not having an event) at least until time t. Although

estimation of and inference pertaining to survival functions is a

well-established approach to the analysis of time to event data, we

want a method that allows us to model survival time (or some

transformation of survival time) as a function of covariates.

Biometry 755 - Hazard function regression 2

The hazard function

This goal is facilitated using a function called the hazard function,

h(t). The hazard function is the risk of failure at time t, given survival

up to the time just before time t. h(t) is the instantaneous failure rate

for an individual surviving to time t. It is sometimes referred to as the

intensity rate or the force of mortality. It is often interpreted as an

instantaneous risk of failure. The hazard function is used to answer

the question (for example),

“Given that an HIV+ subject has not died of AIDS or AIDS related

complications by the time they’ve reached five years post

seroconversion, what is the probability that the subject will die at five

years?”.
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The hazard function (cont.)

The definition of the hazard function and its relationship to the

survival function are as follows:

h(t) = lim
∆t→0

[
Prob(t ≤ T ≤ t + ∆t|T ≥ t)

∆t

]

=
lim∆t→0

[
Prob(t≤T≤t+∆t)

∆t

]
Prob(T ≥ t)

(P (A|B) = P (A ∩ B)/P (B))

=
−dS(t)/dt

S(T )
(def. of derivative and def. of S(t))

=
d

dt
{− lnS(t)} (d(ln u) = du/u)
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The cumulative hazard function

The cumulative hazard function, H(t), is defined as

H(t) =

∫ t

0

h(u)du

=

∫ t

0

d

du
{− lnS(u)}du

= − lnS(t) (by the fundamental theorem of Calculus)

H(t) is a measure of the “accumulated” risk of failure given survival

to time t.
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Key relationships

The most important concept to take home from all of this math is

that there is a known relationship between the survival function and

the hazard function. For the purposes of our class, we’ll let the

computer convert from one to the other (and vice versa) but it is

important to know that one is simply a function of the other.
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Key relationships (cont.)

The essential definitions and functional relationships are

1. S(t) = Prob(T > t)

2. h(t) = lim∆t→0

[
Prob(t≤T≤t+∆t|T≥t)

∆t

]
3. H(t) =

∫ t

0
h(u)du

4. H(t) = − lnS(t)

5. S(t) = exp{−
∫ t

0
h(u)du} = exp{−H(t)}
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Proportional hazards revisited

Recall in our first lecture that we said that the log-rank test (used to

test the equivalence of two survival functions) is most powerful for the

alternative

S1(t) = [S2(t)]
c, c �= 1.

We said that this assumption was called the proportional hazards

assumption. We now have the tools to demonstrate where this name

comes from.
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Proportional hazards revisited (cont.)

As a quick review, recall that two quantities are proportional if their

ratio is a constant. That is, X is proportional to Y (and vice versa) if

X/Y = c, where c is some constant.

S1(t) = [S2(t)]
c

⇐⇒ lnS1(t) = c lnS2(t)

⇐⇒ − lnS1(t) = c(− lnS2(t))

⇐⇒ H1(t) = cH2(t)

⇐⇒
H1(t)

H2(t)
= c
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Proportional hazards revisited (cont.)

Therefore, when we plot ln(− lnS1(t)) and ln(− lnS2(t)) on the same

set of axes, we are actually plotting ln(H1(t)) and ln(H2(t)). It follows

from properties of logarithms that if H1(t) and H2(t) are proportional

to one another, then their logarithms should differ by a constant.
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Regression models for survival data

We approach the problem of modelling survival time via the hazard

function. We impose a regression model-type structure on the hazard

function that is the product of two components. One factor captures

the effect of survival time on the hazard and the second expresses the

effects of covariates associated with survival, such as age, race, sex,

etc.. The form of the model is

h(t|X1, . . . , Xk) = h0(t)e
β1X1+...+βkXk .
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Regression models for survival data (cont.)

h(t|X1, . . . , Xk) = h0(t)e
β1X1+...+βkXk

• h0(t) is called the baseline hazard. It characterizes how the hazard

function changes as a function of survival time.

• eβ1X1+...+βkXk characterizes how the hazard function changes as

a function of covariates.

• h(t) is referred to as the Cox model or Cox proportional hazards

model or simply the proportional hazards model.

• h(t) is linear in the covariates on the log scale. That is,

lnh(t) = lnh0(t) + (β1X1 + . . . + βkXk)
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Demonstrating “proportional hazards”

The proportional hazards assumption implies that the ratio of the

instantaneous failure rates for two subjects is a constant. To see why

this assumption is implicit in the form of the model, consider two

subjects, A and B with covariates XA and XB, respectively. Then

• h(t|XA) = h0(t)e
X

′

Aβ

• h(t|XB) = h0(t)e
X

′

Bβ

so that

h(t|XA)

h(t|XB)
=

h0(t)e
X

′

Aβ

h0(t)e
X

′

B
β

=
eX

′

Aβ

eX
′

B
β

Since e
X

′

A
β

e
X

′

B
β

is just a constant, the hazards for the two subjects are

proportional to one another. Notice that the ratio of their hazards

does not depend on time. The proportional hazards assumption means

we assume that the ratio of the hazards is constant over time.
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HIV example

Recall the HIV data presented in the last lecture.

ID Subject ID

TIME Survival time (months)

AGE Age (years) of subject at time of enrollment

DRUG Use of prior injecting drug use (1 = Yes, 0 = No)

CENSOR Censoring indicator (1 = Death observed, 0 = censored)

An additional variable, RACE, has been added for illustrative purposes

only. It is coded 1 = African American, 2 = Other, 3 = White.
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Proportional hazards model in SAS

Using the HIV data presented in the last lecture, fit the model

h(t|DRUG) = h0(t)e
βDRUGDRUG.

proc phreg data = one;

model time*censor(0) = drug;

run;

Percent

Total Event Censored Censored

100 80 20 20.00

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.
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Proportional hazards model in SAS (cont.)

Model Fit Statistics

Without With

Criterion Covariates Covariates

-2 LOG L 598.390 588.193

AIC 598.390 590.193

SBC 598.390 592.575

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 10.1973 1 0.0014

Score 10.7432 1 0.0010

Wald 10.3451 1 0.0013

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard

Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

drug 1 0.77919 0.24226 10.3451 0.0013 2.180
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Interpretation of output

• The overall test of fit for the model is based on the following null

and alternative hypotheses

H0 : βDRUG = 0

HA : βDRUG �= 0

• The overall test of model fit is tested via the likelihood ratio test,

namely

[−2 lnL(reduced)] − [−2 lnL(full)] ∼ χ2
d

where d is the number of variables being tested.
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Interpretation of output (cont.)

• In this example, the full model is the model containing DRUG and

the baseline hazard, and the reduced model contains only the

baseline hazard. Therefore, under the null hypothesis (above) the

likelihood ratio test statistic is distributed χ2
1.

• The likelihood ratio test is highly significant (p = 0.0014) so we

reject H0 and conclude that DRUG contributes significantly to the

model containing only the baseline hazard.
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Interpretation of output (cont.)

• The chi-square tests for the MLEs test the null hypothesis that

the corresponding β equals 0 given that all other covariates are in

the model.

• In this example, there are no other covariates in the model besides

DRUG. Therefore the test on the MLE for DRUG is asymptotically

equivalent to the likelihood ratio test (LR test is the overall test

for the model).
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Obtaining hazard ratios

The fitted model is

h(t|DRUG) = h0(t)e
0.78.

We can use the fitted model to obtain estimates of hazard ratios.

Specifically, suppose we want to compare the hazards of failure for

subjects with and without an injecting drug use history.

• For the subject with an injecting drug use history,

h(t|DRUG = 1) = h0(t)e
0.78×1.

• For the subject without an injecting drug use history,

h(t|DRUG = 0) = h0(t)e
0.78×0 = h0(t).

• The hazard ratio is

h(t|DRUG = 1)

h(t|DRUG = 0)
=

h0(t)e
0.78×1

h0(t)e0.78×0
= e0.78×1 = 2.18.
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Hazard ratios for categorical predictors

In general, let X be a k-level categorical variable. Let

Z1, Z2, . . . , Zk−1 be the k − 1 dummy variables associated with X .

Assume βj is the regression coefficient of Zj obtained from a Cox-PH

regression model, where j = 1, . . . , k − 1. Then eβj is the hazard ratio

comparing the jth level of X to the reference level.
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Confidence intervals for hazard ratios

A 95% confidence interval for the HR is simply

eβ̂ ± 1.96ŜE(β̂).

Therefore, from the output on Slide 15, a 95% CI for the HR of death

for those with a history of IDU relative to those without a history of

IDU, is

e0.77919 ± 1.96×0.24226 = (1.36, 3.50).

Because the CI does not contain the null value of 1, we conclude that

the difference in risk between HIV+ IDUs and HIV+ non-IDUs is

significant.
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Confidence intervals for RRs in SAS

proc phreg data = one;

model time*censor(0) = drug/rl;

run;

Hazard 95% Hazard Ratio

Variable Ratio Confidence Limits

drug 2.180 1.356 3.504



Biometry 755 - Hazard function regression 23

Multivariable models

We now fit the model

h(t|DRUG, AGE) = h0(t)e
βDRUGDRUG+βAGEAGE.

proc phreg data = one;

model time*censor(0) = drug age/rl;

run;
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Multivariable models (cont.)

Model Fit Statistics

Without With

Criterion Covariates Covariates

-2 LOG L 598.390 563.408

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 34.9819 2 <.0001
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Multivariable models (cont.)

Analysis of Maximum Likelihood Estimates

Parameter Standard

Variable DF Estimate Error Chi-Square Pr > ChiSq

drug 1 0.94108 0.25550 13.5662 0.0002

age 1 0.09151 0.01849 24.5009 <.0001

Hazard 95% Hazard Ratio

Variable Ratio Confidence Limits

drug 2.563 1.553 4.229

age 1.096 1.057 1.136

Biometry 755 - Hazard function regression 26

Interpreting default HRs and CIs

• The hazard of death among HIV+ subjects with a history of IDU

is 2.6 times that of subjects with no history of IDU of the same

age. (Can also say ‘... controlling for age.’)

• There is a 10% increase in the hazard of death for every year

increase in age for HIV+ subjects with the same history of IDU.

(Can also say ‘... controlling for history of IDU.’)
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Other HRs and CIs

To compute the relative risk and corresponding 95% CI comparing

subjects with values for a continuous covariate that differ by a fixed

amount, say ∆x, we use the following principle:

ĤR = e∆xβ̂

and the 95% CI is

(e∆xβ̂−1.96×|∆x|×SE(β̂), e∆xβ̂+1.96×|∆x|×SE(β̂)).
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Other HRs and CIs (cont.)

For example, to compute the HR for subjects who differ in age by 10

years (or some other meaningful time period of interest) with the same

history of IDU,

ĤR = e0.09151×10 .
= 2.50.

The corresponding 95% CI is

e0.09151×10 ± 1.96×10×0.01849 = (1.74, 3.59).
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Handling categorical variables in PROC PHREG

There is no “class” statement in PROC PHREG that allows us to

conveniently handle categorical variables. However, PROC PHREG

allows us to program the dummy variables ‘on the fly’.

Suppose I wish to consider the model containing DRUG, AGE and

RACE as covariates. It would be inappropriate to enter the variable

RACE as is into the model (Why?). Rather, we create dummy

variables within the procedure.

proc phreg data = two;

model time*censor(0) = drug age race1 race2/rl;

if race = 1 then race1 = 1; else race1 = 0;

if race = 2 then race2 = 1; else race2 = 0;

run;
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Handling categorical variables in PROC PHREG (cont.)

Analysis of Maximum Likelihood Estimates

Parameter Standard

Variable DF Estimate Error Chi-Square Pr > ChiSq

drug 1 0.96242 0.25717 14.0055 0.0002

age 1 0.09567 0.01876 26.0054 <.0001

race1 1 0.27026 0.36474 0.5490 0.4587

race2 1 0.67565 0.36678 3.3934 0.0655

Analysis of Maximum Likelihood Estimates

Hazard 95% Hazard Ratio

Variable Ratio Confidence Limits

drug 2.618 1.582 4.334

age 1.100 1.061 1.142

race1 1.310 0.641 2.678

race2 1.965 0.958 4.033
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Testing the significance of categorical variables

To test the significance of the variable RACE in the model, it would be

inappropriate to use the significance tests on the individual dummy

variables. Rather, you should test the significance of the contribution

of the collection of dummy variables that represent the effect of RACE

on the hazard of death. This is accomplished in PROC PHREG using

a TEST statement.

proc phreg data = two;

model time*censor(0) = drug age race1 race2/rl;

if race = 1 then race1 = 1; else race1 = 0;

if race = 2 then race2 = 1; else race2 = 0;

NoRace: test race1, race2;

run;
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Testing the significance of categorical variables (cont.)

Linear Hypotheses Testing Results

Wald

Label Chi-Square DF Pr > ChiSq

NoRace 3.6047 2 0.1649

We conclude that RACE does not contribute significantly to the model.
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Computing survival estimates

Suppose we would like estimates of the survival function for those with

and without a history of injecting drug use based on our fitted Cox

model.

proc phreg data = one;

model time*censor(0) = drug age/rl;

baseline out = survest survival = _all_/cltype = loglog;

run;

proc print data = survest; run;

StdErr Lower Upper

Obs drug age time Survival Survival Survival Survival

1 0.49 36.07 0 1.00000 . . .

2 0.49 36.07 1 0.88063 0.027265 0.81473 0.92416

3 0.49 36.07 2 0.83570 0.033079 0.75841 0.89003

4 0.49 36.07 3 0.73104 0.041888 0.63868 0.80340
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Computing survival estimates (cont.)

Note that the BASELINE statement computes survival at the mean of

the covariate values. Although average age is meaningful, the average

value of DRUG is not meaningful since its values (0/1) represent

categories. To get meaningful survival estimates, we modify the code

on the previous slide as follows.
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Computing survival estimates (cont.)

data covvals;

input drug age;

cards;

0 36.07

1 36.07

;

run;

proc phreg data = one;

model time*censor(0) = drug age/rl;

baseline out = survest covariates = covvals

survival = _all_/nomean cltype = loglog;

run;

proc print data = survest; run;
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Computing survival estimates (cont.)

StdErr Lower Upper

Obs drug age time Survival Survival Survival Survival

1 No IDU history 36.07 0 1.00000 . . .

2 No IDU history 36.07 1 0.92297 0.021532 0.86779 0.95570

3 No IDU history 36.07 2 0.89299 0.027546 0.82441 0.93581

4 No IDU history 36.07 3 0.82074 0.038967 0.72876 0.88397

29 IDU history 36.07 0 1.00000 . . .

30 IDU history 36.07 1 0.81430 0.040532 0.71871 0.88006

31 IDU history 36.07 2 0.74822 0.048153 0.63886 0.82881

32 IDU history 36.07 3 0.60275 0.056909 0.48207 0.70380
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Graphing survival estimates

proc gplot data = survest;

plot survival*time = drug;

symbol1 interpol=stepLJ c=blue;

symbol2 interpol=stepLJ c=red;

run;

quit;
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Graphing survival estimates (cont.)


