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Transformations

Transformations of either the response or a predictor or both
can help alleviate assumption violations. There are three
main reasons for transforming the data.

1. To stabilize variance (address violation of
homoscedasticity assumption)

2. To normalize the dependent variable (address violation of
normality assumption)

3. To linearize the regression model (address violation of
linearity assumption)
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Heterogeneous variance
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Normality violation
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Transformations on Y

Nonnormality and unequal variance often appear together.
Frequently, these violations take the form of skewness and
increasing variability of the distribution of the error terms as
the mean response increases (i.e. variance is proportional to
the mean). We observed this pattern on Slide 3. Note the
normality violation for the same model shown on Slide 4. The
usual transformations of Y that remedy these departures are

1.
√

Y

2. log
10

Y

3. 1

Y
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Transformations on Y (cont.)

Often there is an established transformation in the literature
(e.g. log

10
(viral load)). In the absence of an established

functional form of the response, try various transformations to
see which one best alleviates the violation. Note that a
simultaneous transformation of X is often helpful or
necessary.
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Transformations on Y (cont.)

This is a plot of the residuals against the predicted values for
the same data as depicted in Slide 3. Here, both the
response variable and the predictor have had a logarithmic
transformation (base e).
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Transformations on Y (cont.)

Note that this transformation has also alleviated the normality
violation. Compare this normal qq plot of the residuals to that
in Slide 4.
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Box-Cox transformations of Y

(Summarized from SAS documentation.)

An automated approach to finding an appropriate
transformation on Y is the Box-Cox (1964) transformation.
This family of transformations of the positive dependent
variable Y is controlled by the parameter λ. The
transformation takes the form

(yλ − 1)/λ λ �= 0

log(y) λ = 0.
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Box-Cox transformations of Y (cont.)

More generally, Box-Cox transformations take the form

((y + c)λ − 1)/(λg) λ �= 0

log(y + c)/g λ = 0.

The parameter c can be used to rescale Y so that it is strictly
positive. By default, g = 1. Alternatively, g can be ẏλ−1 where
ẏ is the geometric mean of Y .
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HPV/HNCa cytokine data

Obs IL6 group Obs IL6 group Obs IL6 gr

1 4.570 1 19 8.070 2 37 7.470 4

2 43.320 1 20 8.670 2 38 7.090 4

3 2.400 1 21 13.570 2

4 22.340 1 22 81.240 2

5 11.380 1 23 17.110 2

6 5.040 1 24 38.130 2

7 7.250 1 25 10.840 3

8 8.510 1 26 1.350 3

9 5.990 1 27 3.060 3

10 15.050 1 28 0.675 3

11 4.870 1 29 0.675 3

12 7.500 1 30 3.480 3

13 13.070 2 31 2.980 3

14 58.840 2 32 3.860 3

15 12.240 2 33 8.210 3

16 15.100 2 34 14.100 3

17 37.420 2 35 3.530 4

18 59.770 2 36 11.760 4
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Regression of IL6 conc. on group

data one;

set cytokine;

if group = 1 then gpind1 = 1; else gpind1 = 0;

if group = 2 then gpind2 = 1; else gpind2 = 0;

if group = 3 then gpind3 = 1; else gpind3 = 0;

run;

ods html style = Journal;

ods graphics on;

ods select ResidualHistogram;

ods select QQPlot;

ods select ResidualByPredicted;

proc reg data = one plots(unpack);

model IL6 = gpind1 gpind2 gpind3;

run; quit;

ods graphics off;

ods html close;
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HPV/HNCa cytokine example
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HPV/HNCa cytokine example (cont.)
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HPV/HNCa cytokine example (cont.)
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Box-Cox in SAS

proc transreg data = one;

model boxcox(IL6) = identity(gpind1 gpind2 gpind3);

run;
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Box-Cox in SAS - output

Transformation Information for BoxCox(IL6)

Lambda R-Square Log Like Lambda R-Square Log Like

-3.00 0.18 -272.397 0.50 0.41 -83.921

-2.75 0.19 -251.336 0.75 0.37 -93.169

-2.50 0.19 -230.554 1.00 0.33 -104.491

-2.25 0.20 -210.104 1.25 0.30 -117.272

-2.00 0.21 -190.054 1.50 0.27 -131.151

-1.75 0.23 -170.498 1.75 0.25 -145.908

-1.50 0.25 -151.570 2.00 0.23 -161.395

-1.25 0.28 -133.473 2.25 0.21 -177.498

-1.00 0.31 -116.527 2.50 0.20 -194.129

-0.75 0.36 -101.267 2.75 0.18 -211.214

-0.50 0.41 -88.578 3.00 0.17 -228.689

-0.25 0.45 -79.752

0.00 + 0.46 -76.054 <

0.25 0.45 -77.766 *

< - Best Lambda * - Confidence Interval + - Convenient Lambda
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HPV/HNCa cytokine example - transformed

data two;

set one;

logIL6 = log(IL6);

run;

ods html style = Journal;

ods graphics on;

ods select ResidualHistogram;

ods select QQPlot;

ods select ResidualByPredicted;

proc reg data = two plots(unpack);

model logIL6 = gpind1 gpind2 gpind3;

run;

quit;

ods graphics off;

ods html close;
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HPV/HNCa cytokine - transformed
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HPV/HNCa cytokine - transformed
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HPV/HNCa cytokine - transformed
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Transformations on X

If you detect curvilinear behavior in a graphical assessment of
Y versus X, but there are no obvious violations of
homoscedasticity, then a transformation on the independent
variable X may induce linearity. The graphical methods to
assess that relationship are:

• scatterplots

• partial regression plots

• LOESS smoothed plots
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Assessing functional form of model covariates

You can assess the functional form of model covariates by
looking at partial residual plots. These plots give you a visual
assessment of the ‘shape’ of the relationship between the
response and an independent variable, while controlling for all
other covariates in the model. (Note: In the case of SLR, just
look at a scatterplot of Y versus X.)
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Assessing functional form of covariates (cont.)

By way of example, suppose we want to assess the shape of
the relationship between Y and X1 in the presence of X2 and
X3. Partial residual plots are constructed as follows:

1. Regress Y on X2 and X3. Let r = {r1, . . . , rn} be the
residuals from this regression. These residuals capture
variation in Y after the effects of X2 and X3 have been
removed.

2. Regress X1 on X2 and X3. Let r
∗ = {r∗

1
, . . . , r∗n} be the

residuals from this regression. These residuals capture
variation in X1 after the effects of X2 and X3 have been
removed.

3. Construct the scatterplot of r versus r
∗. This plot

graphically illustrates the relationship between Y and X1

after the effects of X2 and X3 have been removed.
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Partial regression residual plots

ods html style = statistical;
ods graphics on;
ods select PartialPlotPanel1;

proc reg data = one plots(unpack);
model infrisk = los cult beds/partial;

run;
quit;

ods graphics off;
ods html close;
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Partial regression residual plots
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LOESS

LOESS is a nonparametric smoother that helps determine the
shape of the relationship between a predictor and the
response. No adjustment is made for other covariates of
interest. The name LOESS comes from the method by which
the smoothed trend is fit - namely locally weighted least
squares.

Segue to LOESS applets.
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LOESS in SAS

ods rtf style = Journal;
ods graphics on;

proc loess data = one;
model infrisk = los;

*model infrisk = cult;

*model infrisk = beds;
run;

ods graphics off;
ods rtf close;
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LOESS in SAS (cont.)
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LOESS in SAS (cont.)
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LOESS in SAS (cont.)
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Fractional Polynomials

Royston and Altman (1994) proposed an ‘automated’
approach to finding flexible and interpretable transformations
of covariates in regression models. We’ll begin with a SLR
example. The goal is to rewrite

y = β0 + β1x + ε (linear model)

as either

y = β0 + β1F1(x) + ε (1st order FP)

or

y = β0 + β1F1(x) + β2F2(x) + ε (2nd order FP)
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Fractional Polynomials (cont.)

Here are the rules that define F1(x) and F2(x):

F1(x) =

{
xp1 p1 �= 0

log(x) p1 = 0

and

F2(x) =

⎧⎪⎨
⎪⎩

xp2 p2 �= p1, p2 �= 0

log(x) p2 �= p1, p2 = 0

F1(x) log(x) p2 = p1

p1 and p2 are selected from the set

{−2,−1,−0.5, 0, 0.5, 1, 2, 3}.
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Fractional Polynomials examples

1. 1st order FP with p1 = 0

2. 1st order FP with p1 = −0.5

3. 2nd order FP with p1 = 0 and p2 = −0.5

4. 2nd order FP with p1 = 2 and p2 = 2
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A small aside ... the Likelihood

The likelihood is a mathematical function that expresses the
probability of the observed data as a function of the unknown
parameters in a model. Fitting a statistical model to data (i.e.
obtaining estimates of model parameters - βs) is done by
finding the values of the parameters that maximize the
likelihood. (In practice, the natural logarithm of the likelihood
function is maximized or the negative of the log likelihood is
minimized.) Therefore, the estimated parameters are those
that maximize the probability of the observed data. Parameter
estimates obtained by this method are referred to as
maximum likelihood estimates or simply, MLEs.

It is easy to show that the LS solutions are equivalent to the
MLEs.
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Deviance and the likelihood ratio test

The deviance is defined as

d = −2 log-likelihood.

It is a measure of how far the proposed model deviates from
a model that fits the data perfectly (also known as a saturated
model). The smaller the deviance, the better the fit.

Let model1 and model2 be nested models with model1 nested
within model2. Let G = d(model1) - d(model2). Then

G ∼ χ2

ν

where ν is the number of parameters being tested. G is the
likelihood-ratio statistic and a test constructed from G is
called a likelihood ratio test.
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Implementing Fractional Polynomials

1. Let d(1) be the deviance for the linear model.

2. Let d(p1) be the deviance for the best fitting 1st order FP.

3. Let d(p1, p2) be the deviance for the best fitting 2nd order
FP.

Royston and Altman show that each FP contributes 2 df - one
for the parameter and one for the exponent. We conduct
partial likelihood ratio tests based on these deviances as
shown on pages 5 and 6 of the SAS MACRO documentation.
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Other implementations

Hosmer and Lemeshow (2000, pp. 100 - 103) suggest the
following method, which is equivalent to the Royston and
Altman method with no option for excluding the covariate:

1. Conduct a 3-df partial likelihood ratio test of the best 2nd
order FP model versus the linear model.
• If not significant, then model the covariate as linear.
• If significant, then proceed to next step.

2. Conduct 2-df partial likelihood ratio test of the best 2nd
order FP model versus the best 1st order FP model.
• If not significant, then use best 1st order FP model

model.
• If significant, then choose best 2nd order FP model.
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Additional precautions

Hosmer and Lemeshow (2000, p. 103) make the following
cautionary statement:

“In an applied setting, we recommend that if a more
complicated model is selected for use then it should provide a
statistically significant improvement over the linear model,
and it is vital that the transformation make clinical sense.”
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Better than the linear model?

• The test between the 2nd order FP model and the linear
model is a 3-df partial likelihood ratio test

• The test between the 1nd order FP model and the linear
model is a 1-df partial likelihood ratio test

For the transformation of the variable BEDS, the algorithm
selected the 1st order FP model with p1 = −0.05, and a
corresponding deviance of 305.498. The deviance of the
linear model is 313.469. Then the difference in the deviances
is 313.469 - 305.498 = 7.971. We compare this to a
chi-square distribution with 1-df to obtain a p-value. The
p-value = 0.005.

data test;

pval = 1 - probchi(7.971,1);

run;
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