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Correlation review

Correlation quantifies the direction and strength of the linear
association between two random variables. Consider the
scatterplot of risk of nosocomial infection by routine culturing
ratio. There appears to be a strong positively sloped linear
relationship between the two variables. We would like a single
index to quantify both features of this apparent relationship.
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Quantifying linear association
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Quantifying linear association

Consider data points (x, y) in each of the four quadrants, A, B,
C and D, formed by drawing a vertical line at the average
culturing ratio value (X), and a horizontal line at the average
value of nosocomial infection risk (Y).

Region x − x̄ y − ȳ (x − x̄)(y − ȳ)
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The sample correlation coefficient
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For points in quadrants A and C, (x − x̄)(y − ȳ) will be
negative. For points in quadrants B and D, (x − x̄)(y − ȳ) will
be positive. If a strong linear association exists, then the sum
of this product across all data points,

n∑
i=1

(xi − x̄)(yi − ȳ),

will be dominated by either positive or negative terms.
Correlation and the Analysis of Variance Approach to Simple Linear Regression – p. 5/35

The sample correlation coefficient (cont.)

sxy =

∑n
i=1(xi − x̄)(yi − ȳ)

n − 1
(1)

is an estimate of the covariance between X and Y , which
measures the strength of their association. (Population
covariance is denoted by σxy.)

It seems that Equation (1) is a good choice for assessing both
direction and strength of linear association, but there is one
drawback ... Equation (1) can be large because of the scale
of measurement of the variables themselves, rather than the
strength of a linear association. Therefore, we scale Equation
(1) by dividing by estimates of the standard deviations of X
and Y .
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The sample correlation coefficient (cont.)

Recall that

σ̂x = sx =

√∑n
i=1(xi − x̄)2

n − 1

and

σ̂y = sy =

√∑n
i=1(yi − ȳ)2

n − 1
.

Then our ‘standardized’ index of linear association is
n

i=1
(xi−x̄)(yi−ȳ)

n−1√
n

i=1
(xi−x̄)2

n−1

√
n

i=1
(yi−ȳ)2

n−1

=
sxy

sxsy

.
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Definition of sample correlation coefficient

This leads to the following definition of the sample correlation
coefficient, r. It is also known as the Pearson correlation
coefficient.

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
.

• r’s range of values is −1 to 1.

• r = 1 ⇒ observations lie on positively sloped line.

• r = −1 ⇒ observations lie on negatively sloped line.

• r is a dimensionless measure.

• r measures the strength of the linear association.

• r tends to be close to zero if there is no linear association.
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What does r estimate?

r is an index obtained from a sample of n observations and is
an estimator for an unknown population parameter. The
parameter is called the population correlation coefficient, and
is defined as

ρ =
Cov(x, y)√

V ar(x)V ar(y)
=

σxy

σxσy
.

In other words,
r = ρ̂.
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Picturing ρ and r

Each graph depicts a sample of 30 data points, (x, y), drawn from a
population with the specified value of ρ. r is calculated based on
the 30 data points.

rho =  −0.6 ;  r =  −0.691 rho =  −0.05 ;  r =  −0.201

rho =  0.4 ;  r =  0.556 rho =  0.9 ;  r =  0.892
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Inference about ρ

When r is non-zero, does that imply that ρ is non-zero? Not
necessarily. We must have a method that accounts for the
sampling variability in order to make rigorous inference about
whether ρ is different from zero.

We use the following hypothesis testing procedure.

H0 : ρ = 0 versus HA : ρ �= 0.

The test statistic is

t =
r
√

n − 2√
1 − r2

where r is the sample correlation coefficient and t ∼ tn−2

under H0.
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Correlation analysis in SAS

SAS’s PROC CORR computes the sample correlation, r, and
conducts a two-sided α = 0.05-level test of the null hypothesis
H0 : ρ = 0.

proc corr data = one;
var infrisk cult;

run;
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PROC CORR output

Pearson Correlation Coefficients, N = 113
Prob > |r| under H0: Rho=0

INFRISK CULT

INFRISK 1.00000 0.55916
RISK OF INFECTION <.0001

CULT 0.55916 1.00000
CULTURE RATIO <.0001

We conclude, at α = 0.05, that the true correlation between
risk of nosocomial infection and routine culturing ratio differs
significantly from zero.
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CIs for correlation coefficients in SAS

Use the ‘FISHER’ PROC option in PROC CORR to obtain a
95% CI for the correlation coefficient. The CI is constructed
based on ‘Fisher’s z transformation’ (see Rosner, Chapter
11).

proc corr data = one fisher;
var infrisk cult;

run;
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FISHER PROC option output

Pearson Correlation Statistics
(Fisher’s z Transformation)

With
Variable Variable 95% Confidence Limits

INFRISK CULT 0.415497 0.672880
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Specifying other null values

Use the ‘RHO0’ FISHER option in PROC CORR to test the
null hypothesis H0 : ρ = ρ0 where ρ0 �= 0.

proc corr data = one fisher (rho0 = 0.3);
var infrisk cult;

run;
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RHO0 option output

Pearson Correlation Statistics

(Fisher’s z Transformation)

With ------H0:Rho=Rho0-----

Variable Variable 95% Confidence Limits Rho0 p Value

INFRISK CULT 0.415497 0.672880 0.30000 0.0008
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Final comments about correlation in SAS

• SAS does not conduct a hypothesis test of H0 : ρ1 = ρ2

(See Rosner, Section 11.11.4)

• Use Spearman’s rank-order correlation coefficient when
both variables are continuous but at least one is not
normally distributed. (See Rosner, Section 12.6)

• Use Kendall’s tau b correlation coefficient when at least
one variable is ordinal. Here, we assume there exists an
latent (unobserved) continuous variable underlying the
ordinal variable.
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Other correlation coefficients in SAS

proc corr data = one spearman;
var infrisk cult;

run;

Spearman Correlation Coefficients, N = 113
Prob > |r| under H0: Rho=0

INFRISK CULT

INFRISK 1.00000 0.56036
RISK OF INFECTION <.0001

CULT 0.56036 1.00000
CULTURE RATIO <.0001
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The analysis of variance approach to SLR

Our approach to SLR has been to find the straight line that
best describes the linear relationship between X and Y .
Another way of looking at this problem is as follows:

1. There is a certain amount of variability in the dependent
variable, Y .

2. If we believe there is a linear association between X and
Y , then this association accounts for some proportion of
the observed variability in Y .

3. The best line is the one that ‘explains’ the greatest
proportion of the total variability in Y .
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The ANOVA approach to SLR (cont.)
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Summarizing sources of variability in SLR

Given yi, ŷi, and ȳ, the following statements are true∗:

•
∑n

i=1(yi − ȳ)2 estimates the total variability in the set of
yis.

•
∑n

i=1(ŷi − ȳ)2 estimates the variability in the set of yis
explained by the regression of Y on X.

•
∑n

i=1(yi − ŷ)2 estimates the unexplained (residual)
variability in the set of yis.

∗ up to a constant of proportionality
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Sources of variability in SLR (cont.)

This leads to the following fundamental principle of
regression:

total variation = variation due to regression + residual variation.

That is:

n∑
i=1

(yi − ȳ)2 =
n∑

i=1

(ŷi − ȳ)2 +
n∑

i=1

(yi − ŷi)
2

or
SSY = SSR + SSE,

where ‘SS’ stands for ‘sum of squares’, and ‘Y’, ‘R’ and ‘E’
are, respectively, ‘Y’, ’regression’ and ‘error’.
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Sources of variability in SLR (cont.)

By simple algebra, we have
SSR = SSY − SSE.

Recall that our goal is to explain as much of the total
variability in Y by the regression of Y on X. Therefore, we
want the ratio

SSR
SSY

=
SSY − SSE

SSY
(2)

to be as large as possible. The closer the ratio in (2) is to 1,
the better the regression at explaining Y ’s variability.
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Relating r to SLR

It can be shown that the square of the sample correlation
coefficient is

r2 =

∑n
i=1(yi − ȳ)2 − ∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2

or, as we’ve just seen,

r2 =
SSY − SSE

SSY
=

SSR
SSY

.
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Relating r to SLR (cont.)

In words, the square of the sample correlation coefficient is
equivalent to the ratio of SSR to SSY. We therefore
conveniently refer to SSR/SSY as R2. We note the following
properties of R2.

1. R2 is bounded between 0 and 1.

2. If R2 = 1, then all of the variation in Y is explained by the
regression.

3. If R2 = 0, then none of the variation in Y is explained by
the regression.
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The ANOVA table for SLR

The results of a SLR can be conveniently summarized in an
ANOVA table

Source df SS MS F

Regression 1 SSR = SSY - SSE MSR = SSR
1

MSR
MSE

Residual n − 2 SSE MSE = SSE
n−2

Total n − 1 SSY

where MSR stands for ‘mean square regression’ and MSE
stands for ‘mean square error’.
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The ANOVA table for the SENIC example

proc reg data = one;

model infrisk = cult;

run;

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 62.96314 62.96314 50.49 <.0001

Error 111 138.41668 1.24700

Corrected Total 112 201.37982

Root MSE 1.11669 R-Square 0.3127
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ANOVA table for the SENIC example (cont.)

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 62.96314 62.96314 50.49 <.0001

Error 111 138.41668 1.24700

Corrected Total 112 201.37982

Root MSE 1.11669 R-Square 0.3127

SSR .
= 63.0 SSE .

= 138.4 SSY .
= 201.4

σ̂2 = s2 = MSE = SSE
n−2

.
= 1.2 ⇒ σ̂ = s

.
= 1.1

R2 .
= 0.31 ⇒ r

.
= 0.56 (r = sign(β̂1)

√
r2).

Approximately 31% of the total variability in risk of nosocomial
infection is explained by its linear association with routine
culturing ratio.
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Overall test for significance of the regression

The value in the “F ” column is the test statistic for the overall
test for the regression. The general form of the test is as
follows:

H0: No linear association between X and Y
HA: There is a linear association between X and Y

In SLR, testing for significance of the regression is equivalent
to testing for significance of the slope. Therefore, we can
restate the null and alternative hypotheses as

H0 : β1 = 0
HA : β1 �= 0
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Overall test (cont.)

Source df SS MS F

Regression 1 SSR = SSY - SSE MSR = SSR
1

MSR
MSE

Residual n − 2 SSE MSE = SSE
n−2

Total n − 1 SSY

F = MSR/MSE will be small (close to zero) when the
regression of Y on X fails to explain a meaningful proportion
of Y ’s variability (i.e. when the null hypothesis is true).
Alternatively, F = MSR/MSE will be large when the
regression explains a meaningful proportion of Y ’s variability
(i.e. when the alternative hypothesis is true).
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Overall test (cont.)

The test of the null hypothesis that there is no linear
association between X and Y against the alternative that
there is a linear association between X and Y is summarized
as follows:

Test statistic: F = MSR
MSE = SSR/1

SSE/(n−2)
.

Distribution under H0: F ∼ F1,n−2.

P-value: p-value = Pr
(
F > MSR

MSE

)
where F ∼ F1,n−2. (Note

that this is a one-sided test.)

Conclusion: Same as conclusion for test on the slope since, in
SLR, the overall test is the same as the test on the slope.
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SENIC example

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 62.96314 62.96314 50.49 <.0001

Error 111 138.41668 1.24700

Corrected Total 112 201.37982

F = MSR/MSE ∼ F1,111. From the SAS output, MSR/MSE =
63.0/1.2 = 50.5, and Pr(F > 50.5) < 0.0001, where F ∼ F1,111.
Therefore, at α = 0.05, we reject H0 and conclude that there
is a significant linear association between risk of nosocomial
infection and routine culturing ratio.
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Equivalence of F and t test in SLR

As a final note, we stated on Slide 30 that, in SLR, the overall
test for significance of the regression is equivalent to the test
for significance of the slope. In fact, it can be shown that

F1,ν,1−α = t2ν,1−α/2 = t2ν,α/2.
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Equivalence of F and t test (cont.)

This can be verified from the PROC REG SAS output. The
test-statistic for the test of slope is 7.11, the test statistic for
significance of the regression is 50.49, and (7.11)2 = 50.5521.

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 62.96314 62.96314 50.49 <.0001

Error 111 138.41668 1.24700

Corrected Total 112 201.37982

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 3.19790 0.19377 16.50 <.0001

CULT 1 0.07326 0.01031 7.11 <.0001
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