Lecture 19: Multiple Logistic Regression

Mulugeta Gebregziabher, Ph.D.

BMTRY 701/755: Biostatistical Methods II Spring 2007 Department of Biostatistics, Bioinformatics and Epidemiology Medical University of South Carolina

- Model Fitting Strategies
- Goodness of Fit and Model Diagnostics
- matching (group and individual)
- Conditional vs Unconditional analysis
- Methods III: Advanced Regression Methods

OR use stepwise methods (mechanical selection methods)–importance of a variable is determined by "significance". But, unless the problem is new, it is not recommended

- 1. Forward selection Start with a small model and keep adding. It can lead to "too many" significant findings. So, it is better to start from a smaller α
- 2. Backward elimination Start with a full model and drop variables. Has better control of type-I error rate. BUT very difficult for large number of variables
- 3. Best-subset selection –gives "Best" subset of models (one variable, two variable,...)
- 4. Stepwise regression combination of the forward and backward methods

- after fitting a multivariable model then verify the importance of each variable via the Wald test and the difference in the coefficient with the univariate model containing only that variable.
- continue until you get the main effects model. Then check if the logit is linear for the continuous variables (plot the logit against the covariate).
- after the main effects model, look for any interaction (statistical test, clinical sense).
 Typically, an interaction term that is significant would alter both the point and interval estimates. Then you get final model
- Note that:
 - 1. you can not interpret the exclusion of a variable from the model as lack of relationship
 - 2. it is not safe to interpret inclusion in the model as indication of a direct relationship
 - 3. Pay attention to the number of variables considered viz the sample size (10 for each variable)

Data Example for stepwise, forward and backward methods

SIZE: 116 observations (29 cases, 87 controls), 9 variables

LIST OF VARIABLES:

Note: since data is individually matched, the correct analysis is using conditional logistic

SAS code for stepwise, forward and backward methods

```
title 'Forward Selection on Low birth Weight Data';
  proc logistic data=library.lowbwt13;
      model low=age lwt smoke ptd ht ui/ selection=backward
                                         slentry=0.2 ctable;
   run;
title 'Backward Elimination on Low birth Weight Data';
  proc logistic data=library.lowbwt13;
      model low=age lwt smoke ptd ht ui/ selection=backward fast
                                         slstay=0.2 ctable;
   run;
title 'Stepwise Regression on Low birth Weight Data';
  proc logistic data=library.lowbwt13 desc outest=betas covout;
      model low=age lwt smoke ptd ht ui/ selection=stepwise
                     slentry=0.3 slstay=0.35 details lackfit;
      output out=pred p=phat lower=lcl upper=ucl predprob=(individual cross
   run;
```

Summary of the stepwise method

- SLENTRY=0.3 implies a significance level of 0.3 is required to allow a variable into the model
- SLSTAY=0.35 implies a significance level of 0.35 is required for a variable to stay in the model.
- A detailed account of the variable selection process is requested by specifying the DETAILS option.
- In stepwise selection, an attempt is made to remove any insignificant variables from the model before adding a significant variable to the model.
- the FAST option operates only on backward elimination steps. In this example, the stepwise process only adds variables, so the FAST option would not be useful

Step 0. Intercept entered:

A	nalysis	of Maximum	Likelihood Standard	Estimates Wald	
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	1	-1.0986	0.2144	26.2511	<.0001
Th	e LOGIS	TIC Procedur	e		
R	esidual	Chi-Square	Test		
Chi-Sq	uare	DF P	r > ChiSq		
18.	3672	6	0.0054		
Analysis	of Eff	ects Eligibl Score	e for Entry		
Effect	DF	Chi-Square	Pr > Chi	Sq	
AGE	1	0.0000	1.00	00	
LWT	1	2.4562	0.11	71	
SMOKE	1	5.2581	0.02	18	
PTD	1	14.8178	0.00	01	
HT	1	0.0697	0.79	18	
UI	1	5.2242	0.02	23	

Model fitting strategies: Example

Step 1. Effect PTD entered:					
	Anal	ysis of Maxim	um Likelihoo	d Estimates	
			Standard	Wald	
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	1	-1.4917	0.2609	32.6944	<.0001
PTD	1	1.9436	0.5494	12.5157	0.0004
Analysis of	Effect	s Eligible fo	or Entry		
		Score			
Effect	DF	Chi-Square	Pr > ChiSq		
AGE	1	0.1297	0.7187		
LWT	1	1.0145	0.3138		
SMOKE	1	1.8865	0.1696		
HT	1	0.0094	0.9229		
UI	1	1.2965	0.2548		
Step 2. Eff	fect SM	OKE entered:			
	Anal	ysis of Maxim	um Likelihoo	d Estimates	
			Standard	Wald	
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	1	-1.7458	0.3358	27.0256	<.0001
SMOKE	1	0.6458	0.4745	1.8529	0.1734
PTD	1	1.7389	0.5685	9.3560	0.0022

Model fitting strategies: Example

Analysis	of	Effec	ts Eligible for	Ent	cry
			Score		
Effect		DF	Chi-Square	Pr	> ChiSq
AGE		1	0.0793		0.7783
LWT		1	0.9037		0.3418
HT		1	0.0042		0.9483
UI		1	1.2472		0.2641

Step 3. Effect UI entered:

Analysis of Maximum Likelihood Estimates

Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	-1.8489	0.3551	27.1042	<.0001
SMOKE	1	0.6418	0.4772	1.8088	0.1787
PTD	1	1.5463	0.5926	6.8084	0.0091
UI	1	0.6139	0.5536	1.2296	0.2675

Step 4. No (additional) effects met the 0.3 significance level for entry into the model.

- First, the intercept-only model is fitted and individual score statistics for the potential variables are evaluated.
- In Step 1, variable PTD is selected into the model since it is the most significant variable among those to be chosen(p=0.0001). Then, the model that contains an intercept and PTD is fitted. PTD remains significant and is not removed.
- In Step 2, variable SMOKE is added to the model with (p=0.1696 < 0.3). The model then contains an intercept and variables PTD and SMOKE. PTD remains significant (p=0.0022) and SMOKE is also significant at 0.35 level. Therefore, neither PTD or SMOKE is removed from the model.
- In step 3, variable UI is added to the model (p=0.2641 <0.3). The model then contains an intercept and variables PTD, SMOKE, and UI. None of these variables are removed from the model since all are significant at the 0.35 level.
- Finally, none of the remaining variables outside the model meet the entry criterion, and the stepwise selection is terminated.

Goodness of Fit and Model Diagnostics-I

- assuming that we are preliminarily satisfied with the final model (model contains main and interaction effects in their correct functional form)
- the objective is to look at how closely model fitted responses approximate observed responses
- measure statistics are usually based on observed (d_1, \dots, d_n) and fitted $(\hat{d}_1, \dots, \hat{d}_n)$ value differences
 - 1. Overall measures of fit: Deviance, Pearson Chi-square, Hosmer-Lemeshow test
 - 2. Detecting influential observations: Residual analysis, Plot of residuals, influence statistics

• To assess model performance, we must evaluate the fit of the model under different covariate patterns (which is a set of values for the covariates in the model)

Example: for low-birth-weight final model, 8 patterns: 000 001 010 011 100 101 110 111

Example: if age was included, the covariate pattern could be as large as n

 SAS computes predicted values and residuals for each each individual and you need to aggregate your data by covariate pattern. You can do this by using scale=none and aggregate=(smoke ui ptd) in the model options. Summary statistics for goodness of fit and diagnostics are based on differences between observed and fitted values.

J = the number of distinct covariate patterns (<=n) $m_j = \text{the number of subjects with the } j\text{th covariate pattern}$ $d_j = \text{the number of } d = 1 \text{ in the } j\text{th pattern}$ $\hat{\pi}_j = \text{estimated } \Pr(D=1|X) \text{ from logistic regression for the } j\text{th pattern}$ $Pearson residual = r_j = \frac{d_j - m_j \hat{\pi}_j}{\sqrt{m_j \hat{\pi}_j (1 - \hat{\pi}_j)}}$

Deviance residual =
$$l_j = \pm \sqrt{2[d_j \log \frac{d_j}{m_j \hat{\pi}_j} + (m_j - d_j) \log \left(\frac{(m_j - d_j)}{m_j (1 - \hat{\pi}_j)}\right)]}$$

Pearson chisquare = $\sum_{j=1}^{J} r_j^2$ is chisquare with df=J - number of parms in model

Deviance Statistic = $\sum_{j=1}^{J} l_j^2$ is chisquare with df=*J* - number of parms in model Note: if J < n then both have chisquare distributions as $m_i \to \infty$ if $J \approx n$ then use the Hosmer-Lemeshow test

- Collapse the observed/expected table into G (usually 10) groups based on the percentiles of the estimated probabilities (lower 10th percentile,...,to upper 90th percentile)
- OR Collapse the observed/expected table into 10 groups based on fixed values of the estimated probabilities (0-9percent,...,90-100 percent)

$$\hat{C} = \sum_{g=1}^{10} \frac{(O_g - n_g \bar{\pi}_g)^2}{n_g \bar{\pi}_g (1 - \bar{\pi}_g)}$$

where n_g number of subjects in each group, O_g number of observed d = 1 in each group

- \hat{C} follows a chi-square distribution with df=10 2
- The Hosmer and Lemeshow goodness-of-fit test for the final selected model is requested by specifying the LACKFIT option in SAS.

Partition for the Hosmer and Lemeshow Test

		LO	W = 0	LO	W = 1
Group	Total	Observed	Expected	Observed	Expected
1	13	4	4.58	9	8.42
2	11	8	6.28	3	4.72
3	28	21	21.55	7	6.45
4	8	4	6.20	4	1.80
5	56	50	48.38	6	7.62
	Hosmer	and Lemeshow	Goodness-of	E-Fit Test	
	Chi-	Square	DF Pr >	> ChiSq	
		5.1253	3	0.1628	

There is no evidence to reject H0, so the fit is Good???.

Deviance a	and	Pearson	Goodness-of-Fit	Statistics
------------	-----	---------	-----------------	------------

Criterion	Value	DF	Value/DF	Pr > ChiSq
Deviance	13.4227	4	3.3557	0.0094
Pearson	12.0334	4	3.0084	0.0171

Number of unique profiles: 8

Note: When J«n these two tests are more appropriate tests of goodness of fit

- H=name...specifies the diagonal element of the hat matrix for detecting extreme points in the design space.
- RESCHI=name...specifies the Pearson (Chi) residual for identifying observations that are poorly accounted for by the model.
- RESDEV=name...specifies the deviance residual for identifying poorly fitted observations.

The Next important step in model building is to perform an analysis of residuals and diagnostic statistics to study the influence of observations.

To do this we need the h statistic in addition to the residuals $(r_j \text{ and } l_j)$.

The *h* statistic for each covariate pattern is obtained from the hat matrix,

 $H = V^{1/2} X (X'VX)^{-1} X'V^{1/2}$

where V is the JxJ diagonal matrix with elements $v_j = m_j \hat{\pi}(x_j) [1 - \hat{\pi}(x_j)]$.

The diagnostic measures we consider here are based on deletion of subjects with the jth covariate pattern

• Influence on parameter estimates is studied by the DFBETA

$$\Delta \hat{\beta}_j = \frac{r_j^2 h_j}{(1-h_j)^2}$$

- Influence on the overall significance is studied by change in the chisquare OR $\Delta \chi^2{}_j = \frac{r_j^2}{(1-h_j)}$
- change in Deviance

$$\Delta D_j = \frac{l_j^2}{(1-h_j)}$$

- Change in chisquare and Deviance help to identify poorly fit covariate patterns In logistic regression, diagnostics are interpreted by visual assessment.
- plot of $riangle \chi^2{}_j$ versus $\hat{\pi}_j$
- plot of $\triangle D_j$ versus $\hat{\pi}_j$ AND plot of $\triangle \hat{\beta}_j$ versus $\hat{\pi}_j$

- if you identify an observation or set of observation which have an influence on one or more of the three diagnostic statistics, then investigate the observations one by one to see what is going on
- you might also want to see if removing the bad behaving observation(s) brings any change in the goodness of fit statistics (Hosmer-Lemeshow C statistic)

In SAS, you can output diagnostic statistics using key words,

- C=name...specifies the confidence interval displacement diagnostic that measures the influence of individual observations on the regression estimates.
- CBAR=name...specifies the another confidence interval displacement diagnostic, which measures the overall change in the global regression estimates due to deleting an individual observation.

- DFBETAS= _ALL_ and DFBETAS=var-list...specifies the standardized differences in the regression estimates for assessing the effects of individual observations on the estimated regression parameters in the fitted model. You can specify a list of the explanatory variables in the MODEL statement, or you can specify just the keyword _ALL_. In the former specification, the first variable contains the standardized differences in the intercept estimate for the first explanatory variable in the MODEL statement, and so on. In the latter specification, the DFBETAS statistics are named DFBETA_xxx, where xxx is the name of the regression parameter. For example, if the model contains two variables X1 and X2, the specification DFBETAS=_ALL_ produces three DFBETAS statistics: DFBETA_Intercept, DFBETA_X1, and DFBETA_X2. If an explanatory variable is not included in the final model, the corresponding output variable named in DFBETAS=var-list contains missing values.
- DIFCHISQ=name...specifies the change in the chi-square goodness-of-fit statistic attributable to deleting the individual observation.
- DIFDEV=name...specifies the change in the deviance attributable to deleting the individual observation.

```
title 'Stepwise Regression on Low birth Weight Data';
proc logistic data=library.lowbwt13;
model low=smoke ptd ui/lackfit influence iplots scale=none aggregate=(smo
output out=pred p=phat h=hat reschi=chires resdev=devres c=csmoke cbar=cl
dfbetas=_all_ difchisq=difchi difdev= difdev lower=lcl upper=ucl
run;
```

				Regres	sion Diagnos	stics		
		Covar	iates			Hat		
Case				Pearso	n Deviance	Matrix	Intercept	SMO
Number	SMOKE	PTD	UI	Residual	Residual	Diagonal	DfBeta	DfBet
1	0	0	0	-2.5205	-1.9975	0.0148	-0.3115	0.18
2	0	0	0	0.3968	0.5407	0.0148	0.0490	-0.029
3	1	0	0	0.5469	0.7234	0.0269	0.0168	0.062
4	0	0	0	0.3968	0.5407	0.0148	0.0490	-0.029
5	1	1	1	-0.6209	-0.8076	0.0700	0.0518	-0.042
6	0	0	0	0.3968	0.5407	0.0148	0.0490	-0.029
7	1	0	0	0.5469	0.7234	0.0269	0.0168	0.062
•								

```
title 'Stepwise Regression on Low birth Weight Data';
proc logistic data=library.lowbwt13;
model low=smoke ptd ui/lackfit influence iplots scale=none aggregate
output out=pred p=phat h=hat reschi=chires resdev=devres c=csmoke cb
dfbetas=_all_ difchisq=difchi difdev= difdev lower=lcl upper=ucl
run;
```

		Confidence	Confidence		
		Interval	Interval		
Case	UI	Displacement	Displacement	Delta	Delta
Number	DfBeta	С	CBar	Deviance	Chi-Squar
1	0.0945	0.0970	0.0956	4.0857	6.4483
2	-0.0149	0.00240	0.00237	0.2947	0.1598
3	-0.0252	0.00850	0.00827	0.5316	0.3073
4	-0.0149	0.00240	0.00237	0.2947	0.1598
5	-0.0880	0.0312	0.0290	0.6812	0.4146
б	-0.0149	0.00240	0.00237	0.2947	0.1598
7	-0.0252	0.00850	0.00827	0.5316	0.3073

Model Diagnostics example

Model Diagnostics example

Model Diagnostics example

Matching

The main objective of matching is to make the comparison groups same on everything except the variable of interest

First lets consider paired binary data (eg. data that comes from pre and post treatment, two eyes, twins)

Consider a hypothetical data of 595 subjects pre and post intervention and evaluated for their outcome

	outcome	;
D=1	D=0	total
166	429	595
276	319	595
442	748	1190
	D=1 166 276 442	outcome D=1 D=0 166 429 276 319 442 748

Can we test change in outcome (H0: Pr(D=1/pre trt)=Pr(D=1/post trt)) using a Chi-square test? NO, because the Chi-square test assumes the rows are INDEPENDENT samples, but we have the same people pre and post intervention.

As in paired t test, it is required to analyze the data differently as follows:

	post		
pre	D=0	D=1	
D=0	n_{00}	n_{01}	
D=1	n_{10}	n_{11}	

Paired Match Data

- The concordant pairs (n_{00} and n_{11}) do not contribute any information about the effect of X or the intervention.
- So, we use the information in the discordant pairs (*n*₀₁ and *n*₁₀) to measure treatment effect
- The appropriate test for (H0: Pr(D=1/pre trt)=Pr(D=1/post trt)) is the McNemar's test
- Under H0, we expect equal change from 0 to 1 and from 1 to 0, i.e $E(n_{10}) = E(n_{01})$. So, under the null,

 $n_{10}|(n_{01}+n_{10})$ is Binomial $(n_{01}+n_{10},1/2)$

$$Z = \frac{n_{10} - E(n_{10})}{\sqrt{((n_{01} + n_{10})1/2(1 - 1/2))}} \sim N(0, 1)$$

 Z^2 is approximately distributed $\chi^2(1)$

The MLE for the odds ratio comparing pre and post trt groups is

 $OR = \frac{n_{01}}{n_{10}}$

For the example data we considered above,

	post			
pre	D=0	D=1		
D=0	251	178		
D=1	68	98		

Hypothesis: H0: Pr(D=1/pre trt)=Pr(D=1/post trt))

$$Z = \frac{n_{10} - E(n_{10})}{\sqrt{((n_{01} + n_{10})1/2(1 - 1/2))}} \sim N(0, 1)$$

= $\frac{178 - (178 + 68)/2}{\sqrt{(178 + 68)/4}}$ =7.01 leads to p-value<0.001

OR=178/68=2.62

SAS results (Corrected!)

```
*McNemar's test in Proc FREQ;
Data pairedbinary;
input pre post repeat;
datalines;
0 0 251
0 1 178
1 0 68
1 1 98
;
run;
proc freq data=pairedbinary order=data;
table pre*post/agree cl; * we can use exact mcnem;
weight repeat;
run;
     McNemar's Test
 Statistic (S) 49.1870
 DF
                         1
                  <.0001
 Pr > S
```

In STATA, this is easily done by mcci 251 178 68 98

Matching in case-control studies

- It can be "individually matched" where one case is matched to one or more controls or "group matched" where two or more cases are matched to one or more controls
- we focus on the commonly used design, one case with one to five controls are matched
- The most commonly used design is 1:1 matched
- once we match on certain factors, we are forfeiting estimating their effect
- So, they are nuisance parameters in the model

Conditional vs Unconditional Logistic Likelihood

The model for a matched data with k = 1, ..., K strata is

 $\begin{aligned} \text{logit}(\pi_k(X) &= \alpha_k + \beta_1 X_1 + \ldots + \beta_p X_p \\ \text{Where } \pi_k(X) &= \Pr(D_{ik} = 1 | X), \, \alpha_k \text{ is log-odds in the } k \text{th stratum} \end{aligned}$

- unless the number of subjects in each stratum is large, fitting these models using the unconditional ML does not work well
- if we use to do fully stratified analysis, we end up with p + K parameters to estimate using $n = n_1 + ... + n_K$ samples. For 1:1 matching using 2n pairs.
- in individually matched there is only one case in each stratum and hence we need some way of getting rid of the nuisance parameters
- Conditional likelihood condition on a sufficient statistic for the nuisance parameter
- the sufficient statistic for α_k is the total number of cases observed in stratum k
- so the conditional likelihood for the k the stratum is obtained as the probability of the observed data conditional on the stratum total and the number of cases observed

Consider the simplest case, the 1:1 matched design with k = 1, ..., K strata and p covariates

$$\begin{split} \text{logit}(\pi_k(X)) &= \alpha_k + \beta' X\\ \text{Where } \pi_k(X) &= \Pr(D_{ik} = 1 | X), \, \alpha_k \text{ is log-odds in the } k \text{th stratum} \end{split}$$

- There are two subjects in each stratum
- assume X_{0k} be the data vector for the control and X_{1k} be the data vector for the case

$$L_k(\beta) = \Pr(D_{1k} = 1 | X_{1k}, ncases = 1, n_k = 2)$$

=
$$\frac{\Pr(D_{1k} = 1 | X_{1k})}{\Pr(D_{1k} = 1 | X_{1k}) + \Pr(D_{0k} = 1 | X_{0k})}$$

$$= \frac{exp(\alpha_k + \beta' X_{1k})}{exp(\alpha_k + \beta' X_{1k}) + exp(\alpha_k + \beta' X_{0k})}$$

$$= \frac{exp(\beta'X_{1k})}{exp(\beta'X_{1k}) + exp(\beta'X_{0k})}$$

$$L(\beta) = \prod_{k=1}^{K} L_k$$

• This for binary univariate X results in the same OR reported above.

SIZE: 112 observations (56 cases, 56 controls), 8 variables

LIST OF VARIABLES:

Variable	Abbreviation
Stratum Number	PAIR
Age of the Mother in Years	AGE
Low Birth Weight (0 = Birth Weight ge 2500g, l = Birth Weight < 2500g)	LOW
Weight in Pounds at the Last Menstrual Period	LWT
Smoking Status During Pregnancy (1 = Yes, 0 = No)	SMOKE
History of Hypertension $(1 = Yes, 0 = No)$	HT
Presence of Uterine Irritability (1 = Yes, 0 = No)	UI
History of Premature Labor (0 = None, 1 = Yes)	PTD

Note: since data is individually matched, the correct analysis is using conditional logistic

Conditional logistic in SAS-low birthweight data

```
* full stratified analysis;
proc logistic data=library.lowbwt11 desc;
class pair;
      model low=pair smoke/expb;
* McNemar's test;
proc freq data=library.lowbwt11 desc;
table low*smoke/agree cl;
run;
*conditional logistic;
proc logistic data=library.lowbwt11 desc;
      model low=smoke ptd /expb;
      strata pair;
   run;
title 'Stepwise Regression on Low birth Weight Data';
   proc logistic data=library.lowbwt11 desc outest=betas covout;
      model low=age lwt smoke ptd ht ui/ selection=stepwise slentry=0.3
                     slstay=0.35 details lackfit;
      strata pair;
      output out=pred p=phat lower=lcl upper=ucl dfbeta=\ all\ h=hat;
   run;
```

Strata Summary

	L	OW		
Response		Numk	per of	
Pattern	1	0	Strata	Frequency
1	1	1	56	112

Newton-Raphson Ridge Optimization

Without Parameter Scaling

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics						
	Without	With				
Criterion	Covariates	Covariates				
AIC	77.632	72.839				
SC	77.632	75.557				
-2 Log L	77.632	70.839				

Conditional logistic in SAS-low birthweight data

		The Cor	LOGISTIC P nditional	rocedur Analysi	e s		
	Te	sting Globa	al Null Hy	pothesi	s: BETA	=0	
Test			Chi-Squar	e	DF	Pr > ChiSq	
Likeli	hood	Ratio	6.793	9	1	0.0091	
Wald			6.003	6	1	0.0108	
	Ana	lysis of Ma	aximum Lik	elihood	Estima	tes	
			Standar	d Wal	d		
Parameter	DF	Estimate	Error	Chi-Sq	uare	pr > Chisq	Exp(Est)
SMOKE	1	1.0116	0.4129	6.003	6	0.0143	2.750
		Odds Ra	tio Estima	tes			
Effe SMOK	ect IE	Point Estimate 2.750	Conf 1.2	95% Wal idence 24	d Limits 6.177		

Conditional logistic in SAS-low birthweight data

					The LOGISTIC	Procedure		
Full Stratified Analysis								
			Ar	nalys	sis of Maximum	1 Likelihoo	od Estimates	
						Standard	Wald	
Paramet	ter			DF	Estimate	Error	Chi-Square	Pr > ChiSq
Interce	ept			1	-0.8310	0.3139	7.0067	0.0081
PAIR		1		1	-0.1806	1.5841	0.0130	0.9092
PAIR		2		1	0.8310	1.4238	0.3406	0.5595
•								
•								
PAIR		55		1	-0.1806	1.5841	0.0130	0.9092
SMOKE				1	2.0232	0.5839	12.0071	0.0005
00	dds	Rat	tio	Esti	mates			
					Point	95% Wal	d	
Effect	t				Estimate	Confider	nce Limits	
PAIR	1	vs	56		1.000	0.012	84.111	
PAIR	2	vs	56		2.750	0.040	187.621	
•								
•								
PAIR	55	vs	56		1.000	0.012	84.111	
SMOKE					7.562	2.408	23.750	

Mcnemar's test in SAS-low birthweight data

-----Please fix this -----

The FREQ Procedure

Statistics for Table of LOW by SMOKE

Estimates of the Relative Risk (Row1/Row2)

Type of Study	Value	95% Confide	nce Limits
Case-Control (Odds Ratio)	2.8846	1.3193	6.3069
Cohort (Coll Risk)	1.5385	1.1099	2.1324
Cohort (Col2 Risk)	0.5333	0.3298	0.8624

McNemar's Test

Statistic	(S)	2.3810
DF		1
Pr > S		0.1228

Conditional logistic in SAS-the full model from variable

selection

		The	e LOGISTI	IC Proc	edure vsis			
	Т	esting Glok	al Null	Hypoth	esis: BE	TA=0		
Test Chi-Square DF Pr > ChiSq								
Likel	ihoo	d Ratio	16.0	5464	3		0.0008	
Score			13.9	9668	3		0.0030	
Wald			10.6	5506	3		0.0138	
	Ana	alysis of M	laximum l	Likelih	ood Esti	mates		
			Standa	ard Wa	ld			
Parameter	DF	Estimate	Error	Chi	-Square	Pr > C	hiSq	Exp(Est)
SMOKE	1	1.1867	0.4745		6.2533	0.	0124	3.276
PTD	1	1.4183	0.6262		5.1300	0.	0235	4.130
UI	1	1.0046	0.6417		2.4506	0.1	1175	2.731
			Odds	Ratio	Estimate	s		
				Point		95% Wa	ald	
Effect Estimate Confidence Limits						3		
		SMOKE	ר ג	3.276	1.	293	8.30)4
		PTD		4.130	1.	210	14.09	93
		UI		2.731	0.	776	9.60)6

SIZE: 116 observations (29 cases, 87 controls), 9 variables

LIST OF VARIABLES:

Variable	Abbreviation
Stratum Number	STRATUM
Observation Type (1 = Case, 2,3,4 = Controls)	OBS
Age of the Mother in Years	AGE
Low Birth Weight (0 = Birth Weight ge 2500g,	LOW
l = Birth Weight < 2500g)	
Weight in Pounds at the Last Menstrual Period	LWT
Smoking Status During Pregnancy (1 = Yes, 0 = No)	SMOKE
History of Hypertension (1 = Yes, 0 = No)	HT
Presence of Uterine Irritability (1 = Yes, 0 = No)	UI
History of Premature Labor ($0 = None$, $1 = Yes$)	PTD

Note: since data is individually matched, the correct analysis is using conditional logistic

Homework

- 1. estimate the association between smoking and birth weight in the 1:3 matched low birth weight data using fully stratified analysis
- 2. estimate the association between smoking and birth weight in the 1:3 matched low birth weight data using conditional logistic
- 3. check if there is interaction between smoking and UI in model 2
- 4. does UI confound the relationship between smoking and low birth weight?
- predict low birth weight in the 1:3 matched low birth weight data using conditional logistic (find the best predictive model. Do not use mechanical variable selection techniques
- 6. write the interpretation of the regression coefficients of the model in (2)
- 7. report the Wald test for the coefficient of smoking of the model in (2)
- 8. predict low birth weight in the 1:3 matched low birth weight data using conditional logistic (find the best predictive model) using stepwise
- 9. Assess the goodness of fit of the model in (8) using Hosmer-Lemeshow test, Deviance and Pearson Chisquare
- 10. Find any influential observations in the model in (8) using DFBETAS

Methods III: New course in Fall 2007

- Risk evaluation: Measures of Disease Occurrence, Measures of Association, Attributable Risk, Asymptotic Theory (delta methods, Slutsky's theorem, Cramer Rao lower bound)
- 2. Logistic regression for different sampling models: Cross-sectional, Cohort, Case-control (matched and unmatched).
- 3. Multinomial logistic regression: Model specification, Estimation of Parameters, Interpretation of Parameter Estimates, Model Diagnostics
- 4. Ordinal logistic regression: Model specification, Estimation of Parameters, Interpretation of Parameter estimates, Model Diagnostics
- 5. Logistic regression for correlated data: Generalized Estimating Equations, Covariance Structure, Model Diagnostics
- 6. Exact Methods for Logistic Regression
- 7. Analysis of Count Data (Poisson and Log-Binomial regression): Model specification, Estimation of Parameters, Interpretation of Parameter estimates
- 8. Likelihood Techniques: Full Likelihood, Marginal Likelihood, Quasi Likelihood, Profile Likelihood
- 9. Missing Data Methods: Nature of Missing Data, Adhoc Missing data techniques, Multiple Imputation