
Chapter 5

Working with Matrices

Contents
Overview of Working with Matrices . 41
Entering Data as Matrix Literals . 42

Scalars . 42
Matrices with Multiple Elements . 43

Using Assignment Statements . 44
Simple Assignment Statements . 44
Functions That Generate Matrices . 45
Index Vectors . 49

Using Matrix Expressions . 50
Operators . 50
Compound Expressions . 51
Elementwise Binary Operators . 52
Subscripts . 53
Subscript Reduction Operators . 59

Displaying Matrices with Row and Column Headings . 61
The AUTONAME Option in the RESET Statement 61
The ROWNAME= and COLNAME= Options in the PRINT Statement 62
The MATTRIB Statement . 62

More about Missing Values . 63

Overview of Working with Matrices

SAS/IML software provides many ways to create matrices. You can create matrices by doing any of the
following:

� entering data as a matrix literal

� using assignment statements

� using functions that generate matrices

� creating submatrices from existing matrices with subscripts

42 F Chapter 5: Working with Matrices

� using SAS data sets (see Chapter 7, “Working with SAS Data Sets,” for more information)

Chapter 3, “Understanding the SAS/IML Language,” describes some of these techniques.

After you define matrices, you have access to many operators and functions for forming matrix expressions.
These operators and functions facilitate programming and enable you to refer to submatrices. This chapter
describes how to work with matrices in the SAS/IML language.

Entering Data as Matrix Literals

The simplest way to create a matrix is to define a matrix literal by entering the matrix elements. A matrix
literal can contain numeric or character data. A matrix literal can be a single element (called a scalar), a
single row of data (called a row vector), a single column of data (called a column vector), or a rectangular
array of data (called a matrix). The dimension of a matrix is given by its number of rows and columns. An
n � p matrix has n rows and p columns.

Scalars

Scalars are matrices that have only one element. You can define a scalar by typing the matrix name on the
left side of an assignment statement and its value on the right side. The following statements create and
display several examples of scalar literals:

proc iml;
x = 12;
y = 12.34;
z = .;
a = 'Hello';
b = "Hi there";
print x y z a b;

The output is displayed in Figure 5.1. Notice that you need to use either single quotes (') or double quotes
(") when defining a character literal. Using quotes preserves the case and embedded blanks of the literal. It
is also always correct to enclose data values within braces ({ }).

Figure 5.1 Examples of Scalar Quantities

x y z a b

12 12.34 . Hello Hi there

Matrices with Multiple Elements F 43

Matrices with Multiple Elements

To enter a matrix having multiple elements, use braces ({ }) to enclose the data values. If the matrix has
multiple rows, use commas to separate them. Inside the braces, all elements must be either numeric or
character. You cannot have a mixture of data types within a matrix. Each row must have the same number
of elements.

For example, suppose you have one week of data on daily coffee consumption (cups per day) for four people
in your office. Create a 4 � 5 matrix called coffee with each person’s consumption represented by a row
of the matrix and each day represented by a column. The following statements use the RESET PRINT
command so that the result of each assignment statement is displayed automatically:

proc iml;
reset print;
coffee = {4 2 2 3 2,

3 3 1 2 1,
2 1 0 2 1,
5 4 4 3 4};

Figure 5.2 A 4 � 5 Matrix

coffee 4 rows 5 cols (numeric)

4 2 2 3 2
3 3 1 2 1
2 1 0 2 1
5 4 4 3 4

Next, you can create a character matrix called names with rows that contains the names of the coffee drinkers
in your office. Notice in Figure 5.3 that if you do not use quotes, characters are converted to uppercase.

names = {Jenny, Linda, Jim, Samuel};

Figure 5.3 A Column Vector of Names

names 4 rows 1 col (character, size 6)

JENNY
LINDA
JIM
SAMUEL

Notice that RESET PRINT statement produces output that includes the name of the matrix, its dimensions,
its type, and (when the type is character) the element size of the matrix. The element size represents the
length of each string, and it is determined by the length of the longest string.

Next display the coffee matrix using the elements of names as row names by specifying the ROWNAME=
option in the PRINT statement:

44 F Chapter 5: Working with Matrices

print coffee[rowname=names];

Figure 5.4 Rows of a Matrix Labeled by a Vector

coffee

JENNY 4 2 2 3 2
LINDA 3 3 1 2 1
JIM 2 1 0 2 1
SAMUEL 5 4 4 3 4

Using Assignment Statements

Assignment statements create matrices by evaluating expressions and assigning the results to a matrix. The
expressions can be composed of operators (for example, the matrix addition operator (+)), functions (for ex-
ample, the INV function), and subscripts. Assignment statements have the general form result = expression
where result is the name of the new matrix and expression is an expression that is evaluated. The resulting
matrix automatically acquires the appropriate dimension, type, and value. Details about writing expressions
are described in the section “Using Matrix Expressions” on page 50.

Simple Assignment Statements

Simple assignment statements involve an equation that has a matrix name on the left side and either an
expression or a function that generates a matrix on the right side.

Suppose that you want to generate some statistics for the weekly coffee data. If a cup of coffee costs 30
cents, then you can create a matrix with the daily expenses, dayCost, by multiplying the per-cup cost with
the matrix coffee. You can turn off the automatic printing so that you can customize the output with
the ROWNAME=, FORMAT=, and LABEL= options in the PRINT statement, as shown in the following
statements:

reset noprint;
dayCost = 0.30 # coffee; /* elementwise multiplication */
print dayCost[rowname=names format=8.2 label="Daily totals"];

Figure 5.5 Daily Cost for Each Employee

Daily totals

JENNY 1.20 0.60 0.60 0.90 0.60
LINDA 0.90 0.90 0.30 0.60 0.30
JIM 0.60 0.30 0.00 0.60 0.30
SAMUEL 1.50 1.20 1.20 0.90 1.20

Functions That Generate Matrices F 45

You can calculate the weekly total cost for each person by using the matrix multiplication operator (*).
First create a 5 � 1 vector of ones. This vector sums the daily costs for each person when multiplied with
the coffee matrix. (A more efficient way to do this is by using subscript reduction operators, which are
discussed in “Using Matrix Expressions” on page 50.) The following statements perform the multiplication:

ones = {1,1,1,1,1};
weektot = dayCost * ones; /* matrix-vector multiplication */
print weektot[rowname=names format=8.2 label="Weekly totals"];

Figure 5.6 Weekly Total for Each Employee

Weekly totals

JENNY 3.90
LINDA 3.00
JIM 1.80
SAMUEL 6.00

You might want to calculate the average number of cups consumed per day in the office. You can use the
SUM function, which returns the sum of all elements of a matrix, to find the total number of cups consumed
in the office. Then divide the total by 5, the number of days. The number of days is also the number
of columns in the coffee matrix, which you can determine by using the NCOL function. The following
statements perform this calculation:

grandtot = sum(coffee);
average = grandtot / ncol(coffee);
print grandtot[label="Total number of cups"],

average[label="Daily average"];

Figure 5.7 Total and Average Number of Cups for the Office

Total number of cups

49

Daily average

9.8

Functions That Generate Matrices

SAS/IML software has many useful built-in functions that generate matrices. For example, the J function
creates a matrix with a given dimension and specified element value. You can use this function to initialize
a matrix to a predetermined size. Here are several functions that generate matrices:

BLOCK creates a block-diagonal matrix

DESIGNF creates a full-rank design matrix

I creates an identity matrix

46 F Chapter 5: Working with Matrices

J creates a matrix of a given dimension

REPEAT creates a new matrix by repeating elements of the argument matrix

SHAPE shapes a new matrix from the argument

The sections that follow illustrate the functions that generate matrices. The output of each example is
generated automatically by using the RESET PRINT statement:

reset print;

The BLOCK Function

The BLOCK function has the following general form:

BLOCK (matrix1,< matrix2,. . . ,matrix15 >) ;

The BLOCK function creates a block-diagonal matrix from the argument matrices. For example, the fol-
lowing statements form a block-diagonal matrix:

a = {1 1, 1 1};
b = {2 2, 2 2};
c = block(a,b);

Figure 5.8 A Block-Diagonal Matrix

c 4 rows 4 cols (numeric)

1 1 0 0
1 1 0 0
0 0 2 2
0 0 2 2

The J Function

The J function has the following general form:

J (nrow < ,ncol < ,value > >) ;

It creates a matrix that has nrow rows, ncol columns, and all elements equal to value. The ncol and value
arguments are optional; if they are not specified, default values are used. In many statistical applications, it
is helpful to be able to create a row (or column) vector of ones. (You did so to calculate coffee totals in the
previous section.) You can do this with the J function. For example, the following statement creates a 5 � 1
column vector of ones:

ones = j(5,1,1);

Functions That Generate Matrices F 47

Figure 5.9 A Vector of Ones

ones 5 rows 1 col (numeric)

1
1
1
1
1

The I Function

The I function creates an identity matrix of a given size. It has the following general form:

I (dimension) ;

where dimension gives the number of rows. For example, the following statement creates a 3 � 3 identity
matrix:

I3 = I(3);

Figure 5.10 An Identity Matrix

I3 3 rows 3 cols (numeric)

1 0 0
0 1 0
0 0 1

The DESIGNF Function

The DESIGNF function generates a full-rank design matrix, which is useful in calculating ANOVA tables.
It has the following general form:

DESIGNF (column-vector) ;

For example, the following statement creates a full-rank design matrix for a one-way ANOVA, where the
treatment factor has three levels and there are n1 D 3, n2 D 2, and n3 D 2 observations at the factor levels:

d = designf({1,1,1,2,2,3,3});

Figure 5.11 A Design Matrix

d 7 rows 2 cols (numeric)

48 F Chapter 5: Working with Matrices

Figure 5.11 continued

1 0
1 0
1 0
0 1
0 1
-1 -1
-1 -1

The REPEAT Function

The REPEAT function creates a new matrix by repeating elements of the argument matrix. It has the
following syntax:

REPEAT (matrix, nrow, ncol) ;

The function repeats matrix a total of nrow� ncol times. The argument is repeated nrow times in the vertical
direction and ncol times in the horizontal direction. For example, the following statement creates a 4 � 6
matrix:

x = {1 2, 3 4};
r = repeat(x, 2, 3);

Figure 5.12 A Matrix of Repeated Values

r 4 rows 6 cols (numeric)

1 2 1 2 1 2
3 4 3 4 3 4
1 2 1 2 1 2
3 4 3 4 3 4

The SHAPE Function

The SHAPE function creates a new matrix by reshaping an argument matrix. It has the following general
form:

SHAPE (matrix, nrow < ,ncol < ,pad-value > >) ;

The ncol and pad-value arguments are optional; if they are not specified, default values are used. The
following statement uses the SHAPE function to create a 3 � 3 matrix that contains the values 99 and 33.
The function cycles back and repeats values to fill in the matrix when no pad-value is given.

aa = shape({99 33, 33 99}, 3, 3);

Figure 5.13 A Matrix of Repeated Values

aa 3 rows 3 cols (numeric)

Index Vectors F 49

Figure 5.13 continued

99 33 33
99 99 33
33 99 99

Alternatively, you can specify a value for pad-value that is used for filling in the matrix:

bb = shape({99 33, 33 99}, 3, 3, 0);

Figure 5.14 A Matrix Padded with Zeroes

bb 3 rows 3 cols (numeric)

99 33 33
99 0 0
0 0 0

The SHAPE function cycles through the argument matrix elements in row-major order and fills in the matrix
with zeros after the first cycle through the argument matrix.

Index Vectors

You can create a row vector by using the index operator (:). The following statements show that you can use
the index operator to count up, count down, or to create a vector of character values with numerical suffixes:

r = 1:5;
s = 10:6;
t = 'abc1':'abc5';

Figure 5.15 Row Vectors Created with the Index Operator

r 1 row 5 cols (numeric)

1 2 3 4 5

s 1 row 5 cols (numeric)

10 9 8 7 6

t 1 row 5 cols (character, size 4)

abc1 abc2 abc3 abc4 abc5

50 F Chapter 5: Working with Matrices

To create a vector based on an increment other than 1, use the DO function. For example, if you want a
vector that ranges from �1 to 1 by 0:5, use the following statement:

u = do(-1,1,.5);

Figure 5.16 Row Vector Created with the DO Function

u 1 row 5 cols (numeric)

-1 -0.5 0 0.5 1

Using Matrix Expressions

A matrix expression is a sequence of names, literals, operators, and functions that perform some calcula-
tion, evaluate some condition, or manipulate values. Matrix expressions can appear on either side of an
assignment statement.

Operators

Operators used in matrix expressions fall into three general categories:

Prefix operators are placed in front of operands. For example, -A uses the sign reversal prefix operator
(�) in front of the matrix A to reverse the sign of each element of A.

Binary operators are placed between operands. For example, A + B uses the addition binary operator
(+) between matrices A and B to add corresponding elements of the matrices.

Postfix operators are placed after an operand. For example, A‘ uses the transpose postfix operator (`)
after the matrix A to transpose the matrix.

Matrix operators are described in detail in Chapter 23, “Language Reference.”

Table 5.1 shows the precedence of matrix operators in the SAS/IML language.

Table 5.1 Operator Precedence

Priority Group Operators
I (highest) ˆ ` subscripts �(prefix) ## **
II * # <> >< / @
III + �

IV k // :
V < <= > >= = ˆ =
VI &
VII (lowest) |

Compound Expressions F 51

Compound Expressions

With SAS/IML software, you can write compound expressions that involve several matrix operators and
operands. For example, the following statements are valid matrix assignment statements:

a = x+y+z;
a = x+y*z`;
a = (-x)#(y-z);

The rules for evaluating compound expressions are as follows:

� Evaluation follows the order of operator precedence, as described in Table 5.1. Group I has the highest
priority; that is, Group I operators are evaluated first. Group II operators are evaluated after Group I
operators, and so forth. Consider the following statement:

a = x+y*z;

This statement first multiplies matrices y and z since the * operator (Group II) has higher precedence
than the + operator (Group III). It then adds the result of this multiplication to the matrix x and assigns
the new matrix to a.

� If neighboring operators in an expression have equal precedence, the expression is evaluated from left
to right, except for the Group I operators. Consider the following statement:

a = x/y/z;

This statement first divides each element of matrix x by the corresponding element of matrix y. Then,
using the result of this division, it divides each element of the resulting matrix by the corresponding
element of matrix z. The operators in Group I, described in Table 5.1, are evaluated from right to left.
For example, the following expression is evaluated as �.X2/:

-x**2

When multiple prefix or postfix operators are juxtaposed, precedence is determined by their order
from inside to outside.

For example, the following expression is evaluated as .AJ/Œi; j �:

a`[i,j]

� All expressions enclosed in parentheses are evaluated first, using the two preceding rules. Consider
the following statement:

a = x/(y/z);

This statement is evaluated by first dividing elements of y by the elements of z, then dividing this
result into x.

52 F Chapter 5: Working with Matrices

Elementwise Binary Operators

Elementwise binary operators produce a result matrix from element-by-element operations on two argument
matrices.

Table 5.2 lists the elementwise binary operators.

Table 5.2 Elementwise Binary Operators

Operator Description
C Addition; string concatenation
� Subtraction
Elementwise multiplication
Elementwise power
= Division
<> Element maximum
>< Element minimum

| Logical OR
& Logical AND
< Less than
<D Less than or equal to

> Greater than
>D Greater than or equal to
ˆ = Not equal to
D Equal to

For example, consider the following two matrices:

A D
�
2 2

3 4

�
;B D

�
4 5

1 0

�

The addition operator .C/ adds corresponding matrix elements, as follows:

AC B is
�
6 7

4 4

�

The elementwise multiplication operator .#/ multiplies corresponding elements, as follows:

A#B is
�
8 10

3 0

�

The elementwise power operator .##/ raises elements to powers, as follows:

A##2 is
�
4 4

9 16

�

Subscripts F 53

The element maximum operator .<>/ compares corresponding elements and chooses the larger, as follows:

A <> B is
�
4 5

3 4

�
The less than or equal to operator .<D/ returns a 1 if an element of A is less than or equal to the corre-
sponding element of B, and returns a 0 otherwise:

A <D B is
�
1 1

0 0

�

All operators can work on scalars, vectors, or matrices, provided that the operation makes sense. For
example, you can add a scalar to a matrix or divide a matrix by a scalar. For example, the following
statement replaces each negative element of the matrix x with 0:

y = x#(x>0);

The expression x>0 is an operation that compares each element of x to (scalar) zero and creates a temporary
matrix of results; an element of the temporary matrix is 1 when the corresponding element of x is positive,
and 0 otherwise. The original matrix x is then multiplied elementwise by the temporary matrix, resulting in
the matrix y. To fully understand the intermediate calculations, you can use the RESET statement with the
PRINTALL option to have the temporary result matrices displayed.

Subscripts

Subscripts are special postfix operators placed in square brackets ([]) after a matrix operand. Subscript
operations have the general form operand[row,column] where

operand is usually a matrix name, but it can also be an expression or literal.

row refers to a scalar or vector expression that selects one or more rows from the operand.

column refers to a scalar or vector expression that selects one or more columns from the operand.

You can use subscripts to do any of the following:

� refer to a single element of a matrix

� refer to an entire row or column of a matrix

� refer to any submatrix contained within a matrix

� perform a reduction across rows or columns of a matrix. A reduction is a statistical operation (often a
sum or mean) applied to the rows or to the columns of a matrix.

In expressions, subscripts have the same (high) precedence as the transpose postfix operator (`). When both
row and column subscripts are used, they are separated by a comma. If a matrix has row or column names
associated with it from a MATTRIB or READ statement, then the corresponding row or column subscript
can also be a character matrix whose elements match the names of the rows or columns to be selected.

54 F Chapter 5: Working with Matrices

Selecting a Single Element

You can select a single element of a matrix in several ways. You can use two subscripts (row, column) to
refer to its location, or you can use one subscript to index the elements in row-major order.

For example, for the coffee example used previously in this chapter, there are several ways to find the
element that corresponds to the number of cups that Samuel drank on Monday.

First, you can refer to the element by row and column location. In this case, you want the fourth row and
first column. The following statements extract the datum and place it in the matrix c41:

coffee={4 2 2 3 2, 3 3 1 2 1, 2 1 0 2 1, 5 4 4 3 4};
names={Jenny, Linda, Jim, Samuel};
print coffee[rowname=names];
c41 = coffee[4,1];
print c41;

Figure 5.17 Datum Extracted from a Matrix

coffee

JENNY 4 2 2 3 2
LINDA 3 3 1 2 1
JIM 2 1 0 2 1
SAMUEL 5 4 4 3 4

c41

5

You can also use row and column names, which can be assigned with an MATTRIB statement as follows:

mattrib coffee rowname=names
colname={'MON' 'TUE' 'WED' 'THU' 'FRI'};

cSamMon = coffee['SAMUEL','MON'];
print cSamMon;

Figure 5.18 Datum Extracted from a Matrix with Assigned Attributes

cSamMon

5

You can also look for the element by enumerating the elements of the matrix in row-major order. In this
case, you refer to this element as the sixteenth element of coffee:

c16 = coffee[16];
print c16;

Subscripts F 55

Figure 5.19 Datum Extracted from a Matrix by Specifying the Element Number

c16

5

Selecting a Row or Column

To refer to an entire row of a matrix, specify the subscript for the row but omit the subscript for the column.
For example, to refer to the row of the coffee matrix that corresponds to Jim, you can specify the submatrix
that consists of the third row and all columns. The following statements extract and print this submatrix:

jim = coffee[3,];
print jim;

Alternately, you can use the row names assigned by the MATTRIB statement. Both results are shown in
Figure 5.20.

jim2 = coffee['JIM',];
print jim2;

Figure 5.20 Row Extracted from a Matrix

jim

2 1 0 2 1

jim2

2 1 0 2 1

If you want to extract the data for Friday, you can specify the subscript for the fifth column. You omit the
row subscript to indicate that the operation applies to all rows. The following statements extract and print
this submatrix:

friday = coffee[,5];
print friday;

Figure 5.21 Column Extracted from a Matrix

friday

2
1
1
4

Alternatively, you could also index by the column name as follows:

friday = coffee[,'FRI'];

56 F Chapter 5: Working with Matrices

Submatrices

You refer to a submatrix by specifying the rows and columns that determine the submatrix. For example,
to create the submatrix of coffee that consists of the first and third rows and the second, third, and fifth
columns, use the following statements:

submat1 = coffee[{1 3}, {2 3 5}];
print submat1;

Figure 5.22 Submatrix Extracted from a Matrix

submat1

2 2 2
1 0 1

The first vector, {1 3}, selects the rows and the second vector, {2 3 5}, selects the columns. Alternately,
you can create the vectors of indices and use them to extract the submatrix, as shown in following state-
ments:

rows = {1 3};
cols = {2 3 5};
submat1 = coffee[rows,cols];

You can also use the row and column names:

rows = {'JENNY' 'JIM'};
cols = {'TUE' 'WED' 'FRI'};
submat1 = coffee[rows, cols];

You can use index vectors generated by the index creation operator (:) in subscripts to refer to successive
rows or columns. For example, the following statements extract the first three rows and last three columns
of coffee:

submat2 = coffee[1:3, 3:5];
print submat2;

Figure 5.23 Submatrix of Contiguous Rows and Columns

submat2

2 3 2
1 2 1
0 2 1

Selecting Multiple Elements

All SAS/IML matrices are stored in row-major order. This means that you can index multiple elements of a
matrix by listing the position of the elements in an n�p matrix. The elements in the first row have positions

Subscripts F 57

1 through p, the elements in the second row have positions p C 1 through 2p, and the elements in the last
row have positions .n � 1/p C 1 through np.

For example, in the coffee data discussed previously, you might be interested in finding occurrences for
which some person (on some day) drank more than two cups of coffee. The LOC function is useful for
creating an index vector for a matrix that satisfies some condition. The following statement uses the LOC
function to find the data that satisfy the desired criterion:

h = loc(coffee > 2);
print h;

Figure 5.24 Indices That Correspond to a Criterion

h
COL1 COL2 COL3 COL4 COL5

ROW1 1 4 6 7 16

h
COL6 COL7 COL8 COL9

ROW1 17 18 19 20

The row vector h contains indices of the coffee matrix that satisfy the criterion. If you want to find the
number of cups of coffee consumed on these occasions, you need to subscript the coffee matrix with the
indices, as shown in the following statements:

cups = coffee[h];
print cups;

Figure 5.25 Values That Correspond to a Criterion

cups

4
3
3
3
5
4
4
3
4

Notice that SAS/IML software returns a column vector when a matrix is subscripted by a single array of
indices. This might surprise you, but clearly the cups matrix cannot be the same shape as the coffee matrix
since it contains a different number of elements. Therefore, the only reasonable alternative is to return either
a row vector or a column vector. Either would be a valid choice; SAS/IML software returns a column vector.

Even if the original matrix is a row vector, the subscripted matrix will be a column vector, as the following
example shows:

58 F Chapter 5: Working with Matrices

v = {-1 2 5 -2 7}; /* v is a row vector */
v2 = v[{1 3 5}]; /* v2 is a column vector */
print v2;

Figure 5.26 Column Vector of Extracted Values

v2

-1
5
7

If you want to index into a row vector and you want the resulting variable also to be a row vector, then use
the following technique:

v3 = v[,{1 3 5}]; /* Select columns. Note the comma. */
print v3;

Figure 5.27 Row Vector of Extracted Values

v3

-1 5 7

Subscripted Assignment

You can assign values into a matrix by using subscripts to refer to the element or submatrix. In this type of
assignment, the subscripts appear on the left side of the equal sign. For example, to assign the value 4 in
the first row, second column of coffee, use subscripts to refer to the appropriate element in an assignment
statement, as shown in the following statements and in Figure 5.27:

coffee[1,2] = 4;
print coffee;

To change the values in the last column of coffee to zeros, use the following statements:

coffee[,5] = {0,0,0,0}; /* alternatively: coffee[,5] = 0; */
print coffee;

Figure 5.28 Matrices after Assigning Values to Elements

coffee

4 4 2 3 2
3 3 1 2 1
2 1 0 2 1
5 4 4 3 4

Subscript Reduction Operators F 59

Figure 5.28 continued

coffee

4 4 2 3 0
3 3 1 2 0
2 1 0 2 0
5 4 4 3 0

In the next example, you locate the negative elements of a matrix and set these elements to zero. (This
can be useful in situations where negative elements might indicate errors.) The LOC function is useful for
creating an index vector for a matrix that satisfies some criterion. The following statements use the LOC
function to find and replace the negative elements of the matrix T:

t = {3 2 -1,
6 -4 3,
2 2 2 };

i = loc(t<0);
print i;
t[i] = 0;
print t;

Figure 5.29 Results of Finding and Replacing Negative Values

i

3 5

t

3 2 0
6 0 3
2 2 2

Subscripts can also contain expressions. For example, the previous example could have been written as
follows:

t[loc(t<0)] = 0;

If you use a noninteger value as a subscript, only the integer portion is used. Using a subscript value less
than one or greater than the dimension of the matrix results in an error.

Subscript Reduction Operators

A reduction operator is a statistical operation (for example, a sum or a mean) that returns a matrix of a
smaller dimension. Reduction operators are often encountered in frequency tables: the marginal frequencies
represent the sum of the frequencies across rows or down columns.

60 F Chapter 5: Working with Matrices

In SAS/IML software, you can use reduction operators in place of values for subscripts to get reductions
across all rows or columns. Table 5.3 lists operators for subscript reduction.

Table 5.3 Subscript Reduction Operators

Operator Description
C Addition
Multiplication
<> Maximum
>< Minimum
<W> Index of maximum
>W< Index of minimum
W Mean

Sum of squares

For example, to get row sums of a matrix X, you can sum across the columns with the syntax X[,+].
Omitting the first subscript specifies that the operator apply to all rows. The second subscript (+) specifies
that summation reduction take place across the columns. The elements in each row are added, and the new
matrix consists of one column that contains the row sums.

To give a specific example, consider the coffee data from earlier in the chapter. The following statements
use the summation reduction operator to compute the sums for each row:

coffee={4 2 2 3 2, 3 3 1 2 1, 2 1 0 2 1, 5 4 4 3 4};
names={Jenny, Linda, Jim, Samuel};
mattrib coffee rowname=names colname={'MON' 'TUE' 'WED' 'THU' 'FRI'};
Total = coffee[,+];
print coffee Total;

Figure 5.30 Summation across Columns to Find the Row Sums

coffee MON TUE WED THU FRI Total

JENNY 4 2 2 3 2 13
LINDA 3 3 1 2 1 10
JIM 2 1 0 2 1 6
SAMUEL 5 4 4 3 4 20

You can use these reduction operators to reduce the dimensions of rows, columns, or both. When both rows
and columns are reduced, row reduction is done first.

For example, the expression AŒC; <>� results in the maximum .<>/ of the column sums .C/.

You can repeat reduction operators. To get the sum of the row maxima, use the expression
AŒ; <>�ŒC; �, or, equivalently, AŒ; <>�ŒC�.

A subscript such as AŒf2 3g;C� first selects the second and third rows of A and then finds the row sums of
that submatrix.

Displaying Matrices with Row and Column Headings F 61

The following examples demonstrate how to use the operators for subscript reduction. Consider the follow-
ing matrix:

A D

24 0 1 2

5 4 3

7 6 8

35
The following statements are true:

AŒf2 3g;C� is
�
12

21

�
(row sums for rows 2 and 3)

AŒC; <>� is
�
13

�
(maximum of column sums)

AŒ<>;C� is
�
21

�
(sum of column maxima)

AŒ; ><�ŒC; � is
�
9
�

(sum of row minima)

AŒ; <W>� is

24 3

1

3

35 (indices of row maxima)

AŒ>W<; � is
�
1 1 1

�
(indices of column minima)

AŒW� is
�
4
�

(mean of all elements)

Displaying Matrices with Row and Column Headings

You can customize the way matrices are displayed with the AUTONAME option, with the ROWNAME=
and COLNAME= options, or with the MATTRIB statement.

The AUTONAME Option in the RESET Statement

You can use the RESET statement with the AUTONAME option to automatically display row and column
headings. If your matrix has n rows and p columns, the row headings are ROW1 to ROWn and the column
headings are COL1 to COLp. For example, the following statements produce the subsequent matrix:

coffee={4 2 2 3 2, 3 3 1 2 1, 2 1 0 2 1, 5 4 4 3 4};
reset autoname;
print coffee;

62 F Chapter 5: Working with Matrices

Figure 5.31 Result of the AUTONAME Option

coffee
COL1 COL2 COL3 COL4 COL5

ROW1 4 2 2 3 2
ROW2 3 3 1 2 1
ROW3 2 1 0 2 1
ROW4 5 4 4 3 4

The ROWNAME= and COLNAME= Options in the PRINT Statement

You can specify your own row and column headings. The easiest way is to create vectors that contain the
headings and then display the matrix by using the ROWNAME= and COLNAME= options in the PRINT
statement. For example, the following statements display row names and column names for a matrix:

names={Jenny, Linda, Jim, Samuel};
days={Mon Tue Wed Thu Fri};
mattrib coffee rowname=names colname=days;
print coffee;

Figure 5.32 Result of the ROWNAME= and COLNAME= Options

coffee
MON TUE WED THU FRI

JENNY 4 2 2 3 2
LINDA 3 3 1 2 1
JIM 2 1 0 2 1
SAMUEL 5 4 4 3 4

The MATTRIB Statement

The MATTRIB statement associates printing characteristics with matrices. You can use the MATTRIB
statement to display coffee with row and column headings. In addition, you can format the displayed
numeric output and assign a label to the matrix name. The following example shows how to customize your
displayed output:

mattrib coffee rowname=names
colname=days
label='Weekly Coffee'
format=2.0;

print coffee;

More about Missing Values F 63

Figure 5.33 Result of the MATTRIB Statement

Weekly Coffee
MON TUE WED THU FRI

JENNY 4 2 2 3 2
LINDA 3 3 1 2 1
JIM 2 1 0 2 1
SAMUEL 5 4 4 3 4

More about Missing Values

Missing values in matrices are discussed in Chapter 3, “Understanding the SAS/IML Language.” You should
carefully read that chapter and Chapter 22, “Further Notes,” so that you are aware of the way SAS/IML soft-
ware handles missing values. The following examples show how missing values are handled for elementwise
operations and for subscript reduction operators.

Consider the following two matrices X and Y:

X D

24 1 2 :

: 5 6

7 : 9

35Y D

24 4 : 2

2 1 3

6 : 5

35
The following operations handle missing values in matrices:

Matrix addition: XC Y is

24 5 : :

: 6 9

13 : 14

35

Elementwise multiplication: X#Y is

24 4 : :

: 5 18

42 : 45

35
Subscript reduction: XŒC; � is

�
8 7 15

�

64

