
Chapter 11

Calling Functions in the R Language

Contents
Overview of Calling Functions in the R Language . 189
Installing the R Statistical Software . 190
The RLANG System Option . 190
Submit R Statements . 191
Transferring Data between SAS and R Software . 192

Transfer from a SAS Source to an R Destination . 193
Transfer from an R Source to a SAS Destination . 193

Call an R Analysis from PROC IML . 194
Using R to Analyze Data in SAS/IML Matrices . 194
Using R to Analyze Data in a SAS Data Set . 196

Passing Parameters to R . 196
Call R Packages from PROC IML . 196
Call R Graphics from PROC IML . 199
Handling Errors from R . 200
Details of Data Transfer . 200

Numeric Data Types . 201
Logical Data Types . 201
Unsupported Data Types . 201
Special Numeric Values . 201
Date, Time, and Datetime Values . 202
Time Series Data . 202
Data Structures . 203

Differences from SAS/IML Studio . 203

Overview of Calling Functions in the R Language

R is a freely available language and environment for statistical computing and graphics. Like the SAS/IML
language, the R language has features suitable for developers of statistical algorithms: the ability to ma-
nipulate matrices and vectors, a large number of built-in functions for computing statistical quantities, and
the capability to extend the basic function library by writing user-defined functions. There are also a large
number of user-contributed packages in R that implement specialized computations.

190 F Chapter 11: Calling Functions in the R Language

In 2009, the SAS/IML Studio application introduced a mechanism for calling R functions from programs
written in the IMLPlus language. As of SAS/IML 9.22, this feature is available in PROC IML. This chapter
shows you how to call R functions from PROC IML by using the SUBMIT and ENDSUBMIT statements.

This chapter describes how to configure the SAS system so that you can call functions in the R language.
The chapter also decribes how to do the following:

� transfer data to R

� call R functions from PROC IML

� transfer the results from R to a number of SAS data structures

Installing the R Statistical Software

SAS does not distribute R software. In order to call R software, you must first install R on the same
computer that runs SAS software. If you access a SAS workspace server through client software such as
SAS® Enterprise Guide®, then R must be installed on the SAS server.

You can download R from The Comprehensive R Archive Network Web site: http://cran.
r-project.org. If you experience problems installing R, consult the R FAQ: http://cran.
r-project.org/doc/FAQ/R-FAQ.html. SAS Technical Support does not provide support for in-
stalling or configuring third-party software.

In SAS/IML, the interface to R is supported on computers that run a 32-bit or 64-bit Windows operating
system or Linux operating systems. If you are using SAS software in a 64-bit Linux environment, you must
download a 64-bit binary distribution of R. Otherwise, download a 32-bit binary distribution.

The document “Installing R on Linux Operating Systems” is available on support.sas.comand includes
pointers for installing R on Linux that it works with the SAS interface to R.

The RLANG System Option

The RLANG system option determines whether you have permission to call R from the SAS system. You
can determine the value of the RLANG option by submitting the following SAS statements:

proc options option=RLANG;
run;

The result is one of the following statements in the SAS log:

NORLANG Do not support access to R language interfaces
If the SAS log contains this statement, you do not have permission to call R from the SAS system.

http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org/doc/FAQ/R-FAQ.html
http://cran.r-project.org/doc/FAQ/R-FAQ.html

Submit R Statements F 191

RLANG Support access to R language interfaces
If the SAS log contains this statement, you can call R from the SAS system.

The RLANG option can be changed only at SAS start-up. In order to call R, the SAS system must be
launched with the -RLANG option. (It is often convenient to insert this option in a SASV9.CFG file.) For
security reasons, some system administrators configure the SAS system to start with the -NORLANG op-
tion. The RLANG option is similar to the XCMD option in that both options enable SAS users to potentially
write or delete important data and system files.

If you attempt to submit R statements on a system that was not launched with the -RLANG option, you get
the following error message:

ERROR: The RLANG system option must be specified in the SAS configuration file or on the
SAS invocation command line to enable the submission of R language statements.

Some operating systems do not support the RLANG system option. The RLANG system option is currently
supported for the Windows and Linux operating systems. If you attempt to submit R statements on a host
that does not support the RLANG option, you get the following warning message:

WARNING: SAS option RLANG is not supported on this host.

Submit R Statements

In order to call R from the SAS system, the R statistical software must be installed on the SAS workspace
server and the RLANG system option must be enabled. (See “The RLANG System Option” on page 190.)

Chapter 10, “Submitting SAS Statements,” describes how to submit SAS statements from PROC IML.
Submitting R statements is similar. You use a SUBMIT statement, but add the R option: SUBMIT / R. All
statements in the program between the SUBMIT statement and the next ENDSUBMIT statement are sent
to R for execution. The ENDSUBMIT statement must appear on a line by itself.

The simplest program that calls R is one that does not transfer any data between the two environments. In
the following program, SAS/IML is used to compute the product of a matrix and a vector. The result is
printed. Then the SUBMIT statement with the R option is used to send an equivalent set of statements to R.

proc iml;
/* Comparison of matrix operations in IML and R */
print "---------- SAS/IML Results -----------------";
x = 1:3; /* vector of sequence 1,2,3 */
m = {1 2 3, 4 5 6, 7 8 9}; /* 3 x 3 matrix */
q = m * t(x); /* matrix multiplication */
print q;

192 F Chapter 11: Calling Functions in the R Language

print "------------- R Results --------------------";
submit / R;

rx <- matrix(1:3, nrow=1) # vector of sequence 1,2,3
rm <- matrix(1:9, nrow=3, byrow=TRUE) # 3 x 3 matrix
rq <- rm %*% t(rx) # matrix multiplication
print(rq)

endsubmit;

The printed output from R is automatically routed to the SAS/IML Studio output window, as shown in
Figure 11.1. As expected, the result of the computation is the same in R as in SAS/IML.

Figure 11.1 Output from SAS/IML and R

---------- SAS/IML Results -----------------

q

14
32
50

------------- R Results --------------------

[,1]
[1,] 14
[2,] 32
[3,] 50

Transferring Data between SAS and R Software

Many research statisticians take advantage of special-purpose functions and packages written in the R lan-
guage. When you call an R function, the data must be accessible to R, either in a data frame or in an R
matrix. This section describes how you can transfer data and statistical results (for example, fitted values or
parameter estimates) between SAS and R data structures.

You can transfer data to and from the following SAS data structures:

� a SAS data set in a libref

� a SAS/IML matrix

In addition, you can transfer data to and from the following R data structures:

� an R data frame

� an R matrix

Transfer from an R Source to a SAS Destination F 193

Transfer from a SAS Source to an R Destination

Table 11.1 summarizes the subroutines that copy data from a SAS source to an R destination. For more
information, see the section “Details of Data Transfer” on page 200.

Table 11.1 Transferring from a SAS Source to an R Destination

Subroutine SAS Source R Destination

ExportDataSetToR SAS data set R data frame
ExportMatrixToR SAS/IML matrix R matrix

As a simple example, the following program transfers a data set from the Sashelp libref into an R data
frame named df. The program then submits an R statement that displays the names of the variables in the
data frame.

proc iml;
call ExportDataSetToR("Sashelp.Class", "df");
submit / R;

names(df)
endsubmit;

The R names function produces the output shown in Figure 11.2.

Figure 11.2 Result of Sending Data to R

[1] "Name" "Sex" "Age" "Height" "Weight"

Transfer from an R Source to a SAS Destination

You can transfer data and results from R data frames or matrices to a SAS data set or a SAS/IML matrix.
Table 11.2 summarizes the frequently used methods that copy from an R source to a SAS destination.

Table 11.2 Transferring from an R Source to a SAS Destination

Subroutine R Source SAS Destination

ImportDataSetFromR R expression SAS data set
ImportMatrixFromR R expression SAS/IML matrix

The next section includes an example of calling an R analysis. Some of the results from the analysis are
then transferred into SAS/IML matrices.

The result of an R analysis can be a complicated structure. In order to transfer an R object via the previously

194 F Chapter 11: Calling Functions in the R Language

mentioned methods and modules, the object must be coercible to a data frame. (The R object m can be
coerced to a data frame provided that the function as.data.frame(m) succeeds.) There are many data
structures that cannot be coerced into data frames. As the example in the next section shows, you can use R
statements to extract and transfer simpler objects.

Call an R Analysis from PROC IML

You can use the techniques in Chapter 10, “Submitting SAS Statements,” to perform a linear regression
by calling a regression procedure (such as REG, GLM, or MIXED) in SAS/STAT software. This section
presents examples of submitting statements to R to perform a linear regression. The first example performs
a linear regression on data that are transferred from SAS/IML vectors. The second example performs an
identical analysis on data that are transferred from a SAS data set.

Using R to Analyze Data in SAS/IML Matrices

The program in this section consists of four parts:

1. Read the data into SAS/IML vectors.

2. Transfer the data to R.

3. Call R functions to analyze the data.

4. Transfer the results of the analysis into SAS/IML vectors.

1 Read the data. The following statements read the Weight and Height variables from the Sashelp.Class
data set into SAS/IML vectors with the same names:

proc iml;
use Sashelp.Class;
read all var {Weight Height};
close Sashelp.Class;

2 Transfer the data to R. The following statements run the ExportMatrixToR subroutine in order to transfer
data from a SAS/IML matrix into an R matrix. The names of the corresponding R vectors that contain
the data are w and h.

/* send matrices to R */
call ExportMatrixToR(Weight, "w");
call ExportMatrixToR(Height, "h");

3 Call R functions to perform some analysis. The SUBMIT statement with the R option is used to send
statements to R. Comments in R begin with a hash mark (#, also called a number sign or a pound sign).

Using R to Analyze Data in SAS/IML Matrices F 195

submit / R;
Model <- lm(w ~ h, na.action="na.exclude") # a
ParamEst <- coef(Model) # b
Pred <- fitted(Model)
Resid <- residuals(Model)

endsubmit;

The R program consists of the following steps:

a. The lm function computes a linear model of w as a function of h. The na.action= option speci-
fies how the model handles missing values (which in R are represented by NA). In particular, the
na.exclude option specifies that the lm function should not omit observations with missing values
from residual and predicted values. This option makes it easier to merge the R results with the
original data when the data contain missing values.

b. Various information is retrieved from the linear model and placed into R vectors named ParamEst,
Pred, and Resid.

4 Transfer the data from R. The ImportMatrixFromR subroutine transfers the ParamEst vector from R into
a SAS/IML vector named pe. This vector is printed by the SAS/IML PRINT statement. The predicted
values (Pred) and residual values (Resid) can be transferred similarly. The parameter estimates are used
to compute the predicted values for a series of hypothetical heights, as shown in Figure 11.3.

call ImportMatrixFromR(pe, "ParamEst");
print pe[r={"Intercept" "Height"}];

ht = T(do(55, 70, 5));
A = j(nrow(ht),1,1) || ht;
pred_wt = A * pe;
print ht pred_wt;

Figure 11.3 Results from an R Analysis

pe

Intercept -143.0269
Height 3.8990303

ht pred_wt

55 71.419746
60 90.914898
65 110.41005
70 129.9052

You cannot directly transfer the contents of the Model object. Instead, various R functions are used to extract
portions of the Model object, and those simpler pieces are transferred.

196 F Chapter 11: Calling Functions in the R Language

Using R to Analyze Data in a SAS Data Set

As an alternative to the data transfer statements in the previous section, you can call the ExportDataSetToR
subroutine to transfer the entire SAS data set to an R data frame. For example, you could use the following
statements to create an R data frame named Class and to model the Weight variable:

call ExportDataSetToR("Sashelp.Class", "Class");
submit / R;

Model <- lm(Weight ~ Height, data=Class, na.action="na.exclude")
endsubmit;

The R language is case-sensitive so you must use the correct case to refer to variables in a data frame.
You can use the CONTENTS function in the SAS/IML language to obtain the names and capitalization of
variables in a SAS data set.

Passing Parameters to R

The SUBMIT statement supports parameter substitution from SAS/IML matrices as detailed in “Passing
Parameters from SAS/IML Matrices” on page 182. For example, you can substitute the names of analysis
variables into a SUBMIT block by using the following statements:

YVar = "Weight";
XVar = "Height";
submit XVar YVar / R;

Model <- lm(&YVar ~ &XVar, data=Class, na.action="na.exclude")
print (Model$call)

endsubmit;

Figure 11.4 shows the result of the print(Model$call) statement. The output shows that the values of the
YVar and XVar matrices were substituted into the SUBMIT block.

Figure 11.4 Parameter Substitutions in a SUBMIT Block

lm(formula = Weight ~ Height, data = Class, na.action = "na.exclude")

Call R Packages from PROC IML

You do not need to do anything special to call an R package. Provided that an R package is installed, you can
call library(package) from inside a SUBMIT block to load the package. You can then call the functions
in the package.

Call R Packages from PROC IML F 197

The example in this section calls an R package and imports the results into a SAS data set. This example is
similar to the example in “Creating Graphics in a SUBMIT Block” on page 185, which calls the UNIVARI-
ATE procedure to create a kernel density estimate. The program in this section consists of the following
steps:

1. Define the data and transfer the data to R.

2. Call R functions to analyze the data.

3. Transfer the results of the analysis into SAS/IML vectors.

1 Define the data in the SAS/IML vector q and then transfer the data to R by using the ExportMatrixToR
subroutine. In R, the data are stored in a vector named rq.

proc iml;
q = {3.7, 7.1, 2, 4.2, 5.3, 6.4, 8, 5.7, 3.1, 6.1, 4.4, 5.4, 9.5, 11.2};
RVar = "rq";
call ExportMatrixToR(q, RVar);

2 Load the KernSmooth package. Because the functions in the KernSmooth package do not handle missing
values, the nonmissing values in q must be copied to a matrix p. (There are no missing values in this
example.) The Sheather-Jones plug-in bandwidth is computed by calling the dpik function in the KernS-
mooth package. This bandwidth is used in the bkde function (in the same package) to compute a kernel
density estimate.

submit RVar / R;
library(KernSmooth)
idx <-which(!is.na(&RVar)) # must exclude missing values (NA)
p <- &RVar[idx] # from KernSmooth functions
h = dpik(p) # Sheather-Jones plug-in bandwidth
est <- bkde(p, bandwidth=h) # est has 2 columns

endsubmit;

3 Copy the results into a SAS data set or a SAS/IML matrix, and perform additional computations. For
example, the following statements use the trapezoidal rule to numerically estimate the density that is
contained in the tail of the density estimate of the data:

call ImportMatrixFromR(m, "est");
/* estimate the density for q >= 8 */
x = m[,1]; /* x values for density */
idx = loc(x>=8); /* find values x >= 8 */
y = m[idx, 2]; /* extract corresponding density values */

/* Use the trapezoidal rule to estimate the area under the density curve.
The area of a trapezoid with base w and heights h1 and h2 is
w*(h1+h2)/2. */

w = m[2,1] - m[1,1];
h1 = y[1:nrow(y)-1];
h2 = y[2:nrow(y)];
Area = w * sum(h1+h2) / 2;

198 F Chapter 11: Calling Functions in the R Language

print Area;

The numerical estimate for the conditional density is shown in Figure 11.5. The estimate is shown graph-
ically in Figure 11.6, where the conditional density corresponds to the shaded area in the figure. Fig-
ure 11.6 was created by using the SGPLOT procedure to display the density estimate computed by the R
package.

Figure 11.5 Computation That Combines SAS/IML and R Computations

Area

0.2118117

Figure 11.6 Estimated Density for x � 8

Call R Graphics from PROC IML F 199

Call R Graphics from PROC IML

R can create graphics in a separate window which, by default, appears on the same computer on which R is
running. If you are running PROC IML and R locally on your desktop or laptop computer, you can display
R graphics. However, if you are running client software that connects with a remote SAS server that is
running PROC IML and R, then R graphics might be disabled.

The following statements describe some common scenarios for running a PROC IML program:

� If you run PROC IML through a SAS Display Manager Session (DMS), you can create R graphics
from your PROC IML program. The graph appears in the standard R graphics window.

� If you run PROC IML through SAS Enterprise Guide, the display of R graphics is disabled because, in
general, the SAS server (and therefore R) is running on a different computer than the SAS Enterprise
Guide application.

� If you run PROC IML from interactive line mode or from batch mode, then R graphics are disabled.

You can determine whether R graphics are enabled by calling the interactive function in the R language.

For example, the previous section used R to compute a kernel density estimate for some data. If you are
running PROC IML through SAS DMS, you can create a histogram and overlay the kernel density estimate
by using the following statements:

submit / R;
hist(p, freq=FALSE) # histogram
lines(est) # kde overlay

endsubmit;

The hist function creates a histogram of the data in the p matrix, and the lines function adds the kernel
density estimate contained in the est matrix. The R graphics window contains the histogram, which is
shown in Figure 11.7.

200 F Chapter 11: Calling Functions in the R Language

Figure 11.7 R Graphics

Handling Errors from R

If you submit R code that causes an error, you can attempt to handle the error by using the OK= option in
the SUBMIT statement, as described in “Handling Errors in a SUBMIT Block” on page 187.

Details of Data Transfer

This section describes how data are transferred between SAS and R software. It includes a discussion of
numerical data types, missing values, and data that represent dates and times.

Numeric Data Types F 201

Numeric Data Types

R can store numeric data in either an integer or a double-precision data type. When transferring R data to a
SAS data type, integers types are converted to double precision.

Logical Data Types

R provides a logical data type for storing the values TRUE and FALSE. When logical data are transferred to
a SAS data type, the value TRUE is converted to the number 1 and the value FALSE to the number 0.

Unsupported Data Types

R provides two data types that are not converted to a SAS data type: complex and raw. It is an error to
attempt to transfer data stored in either of these data types to a SAS data type.

Special Numeric Values

The R language has four symbols that are used to represent special numerical values.

� The symbol NA represents a missing value.

� The symbol Inf represents positive infinity.

� The symbol -Inf represents positive infinity.

� The symbol NaN represents a “NaN,” which is a floating-point value that represents an undefined value
such as the result of the division 0=0.

The SAS language has 28 symbols that are used to represent special numerical values.

� The symbol . represents a generic missing value.

� The symbols .A–.Z and ._ are also missing values. Some applications use .I to represent positive
infinity and use .M to represent negative infinity.

The following table shows how special numeric values in R are converted to SAS missing values:

202 F Chapter 11: Calling Functions in the R Language

Value in R SAS Missing Value

Inf .I
–Inf .M
NA .
NaN .

The following table shows how SAS missing values are converted when data are transferred to R:

SAS Missing Value Value in R

.I Inf
.M –Inf

All others NA

Date, Time, and Datetime Values

R supports date and time data differently than does SAS software. In SAS software, variables that represent
dates or times are assigned a format such as DATE9. or TIME5. In R, classes are used to represent dates
and times.

When a variable in a SAS data set is transferred to R software, the variable’s format is examined and the
following occurs:

� If the format is in the family of date formats (for example, DATEw.d), the variable in R is assigned
the “Date” class.

� If the format is in the family of datetime formats (for example, DATETIMEw.d) or time formats (for
example, TIMEw.d), the variable in R is assigned the “POSIXct” and “POSIXt” classes.

� In all other cases, the variable in R is assigned the “numeric” class.

When a variable in an R data frame is transferred to SAS software, the variable’s class is examined and the
following occurs:

� If the variable’s class is “Date,” the corresponding SAS variable is assigned the DATE9. format.

� If the variable’s class is “POSIXt,” the corresponding SAS variable is assigned the DATETIME19.
format.

� In all other cases, the SAS variable is not assigned a format.

Time Series Data

In SAS, the sampling times for time series data are often stored in a separate variable. In R, the sampling
times for a time series object are specified by the tsp attribute. When a time series object in R is transferred
to SAS software, the following occurs:

Data Structures F 203

� The R time function is used to generate a vector of the times at which the time series is sampled.

� A new variable named VarName_ts is created, where VarName is the name of the time series object
in R. The variable contains sampling times for the time series.

No special processing of time series data is performed when data are transferred from SAS to R software.

Data Structures

R provides a wide range of built-in and user-defined data structures. When data are transferred from R to
SAS software, the data are coerced to a data frame prior to the transfer. If the coersion fails, the data are not
transferred.

The section “Using R to Analyze Data in SAS/IML Matrices” on page 194 presents an example of an R
object that cannot be directly imported to SAS software and shows how to use R functions to extract simpler
data structures from the R object.

Differences from SAS/IML Studio

This section lists differences between the R option in the SUBMIT statement as implemented in SAS/IML
Studio and the same option in PROC IML:

� In PROC IML, R must be installed on the computer that runs the SAS server. In SAS/IML Studio, R
must be installed on the computer that runs the SAS/IML Studio application.

� If R is installed on a SAS workspace server and is accessed through SAS Enterprise Guide, everyone
that connects to that server uses the same version of R and the same set of installed packages. In
SAS/IML Studio, R is installed locally on the client computer, so each user can potentially have a
different version of R and different packages.

204

