
Chapter 7

Working with SAS Data Sets

Contents
Overview . 85
Opening a SAS Data Set . 87
Making a SAS Data Set Current . 88
Displaying SAS Data Set Information . 88
Referring to a SAS Data Set . 89
Listing Observations . 89

Specifying a Range of Observations . 90
Selecting a Set of Variables . 92
Selecting Observations . 93

Reading Observations from a SAS Data Set . 95
Using the READ Statement with the VAR Clause . 96
Using the READ Statement with the VAR and INTO Clauses 96
Using the READ Statement with the WHERE Clause 97

Editing a SAS Data Set . 98
Updating Observations . 98
Deleting Observations . 99

Creating a SAS Data Set from a Matrix . 101
Using the CREATE Statement with the FROM Option 101
Using the CREATE Statement with the VAR Clause 102

Understanding the End-of-File Condition . 103
Producing Summary Statistics . 103
Sorting a SAS Data Set . 104
Indexing a SAS Data Set . 104
Data Set Maintenance Functions . 105
Summary of Commands . 106
Comparison with the SAS DATA Step . 107
Summary . 107

Overview

SAS/IML software has many statements for passing data from SAS data sets to matrices and from matrices
to SAS data sets. You can create matrices from the variables and observations of a SAS data set in several

86 F Chapter 7: Working with SAS Data Sets

ways. You can create a column vector for each data set variable, or you can create a matrix where columns
correspond to data set variables. You can use all the observations in a data set or use a subset of them.

You can also create a SAS data set from a matrix. The columns correspond to data set variables and the rows
correspond to observations. Data management commands enable you to edit, append, rename, or delete SAS
data sets from within the SAS/IML environment.

When reading a SAS data set, you can read any number of observations into a matrix either sequentially,
directly by record number, or conditionally according to conditions in a WHERE clause. You can also index
a SAS data set. The indexing capability facilitates retrievals by the indexed variable.

Operations on SAS data sets are performed with straightforward, consistent, and powerful statements. For
example, the LIST statement can perform the following tasks:

� list the next record

� list a specified record

� list any number of specified records

� list the whole file

� list records satisfying one or more conditions

� list specified variables or all variables

If you want to read values into a matrix, use the READ statement instead of the LIST statement with the
same operands and features as the LIST statement. You can specify operands that control which records and
variables are used indirectly, as matrices, so that you can dynamically program the records, variables, and
conditional values you want.

In this chapter, you use the SAS data set CLASS, which contains the variables NAME, SEX, AGE, HEIGHT,
and WEIGHT, to learn about the following:

� opening a SAS data set

� examining the contents of a SAS data set

� displaying data values with the LIST statement

� reading observations from a SAS data set into matrices

� editing a SAS data set

� creating a SAS data set from a matrix

� displaying matrices with row and column headings

� producing summary statistics

� sorting a SAS data set

� indexing a SAS data set

Opening a SAS Data Set F 87

� similarities and differences between the data set and the SAS DATA step

Throughout this chapter, the right angle brackets (>) indicate statements that you submit; responses from
Interactive Matrix Language follow.

First, invoke the IML procedure by using the following statement:

> proc iml;

IML Ready

Opening a SAS Data Set

Before you can access a SAS data set, you must first submit a command to open it. There are three ways to
open a SAS data set:

� To simply read from an existing data set, submit a USE statement to open it for Read access. The
general form of the USE statement is as follows:

USE SAS-data-set < VAR operand > < WHERE(expression) > ;

With Read access, you can use the FIND, INDEX, LIST, and READ statements with the data set.

� To read and write to an existing data set, use the EDIT statement. The general form of the EDIT
statement is as follows:

EDIT SAS-data-set < VAR operand > < WHERE(expression) > ;

This statement enables you to use both the reading statements (LIST, READ, INDEX, and FIND) and
the writing statements (REPLACE, APPEND, DELETE, and PURGE).

� To create a new data set, use the CREATE statement to open a new data set for both output and input.
The general form of the CREATE statement is as follows:

CREATE SAS-data-set < VAR operand > ;

CREATE SAS-data-set FROM from-name ;

< [COLNAME=column-name ROWNAME=row-name] > ; ;

Use the APPEND statement to place the matrix data into the newly created data set. If you do not use
the APPEND statement, the new data set has no observations.

If you want to list observations and create matrices from the data in the SAS data set named CLASS, you
must first submit a statement to open the CLASS data set. Because CLASS already exists, specify the USE
statement.

88 F Chapter 7: Working with SAS Data Sets

Making a SAS Data Set Current

IML data processing commands work on the current data set. This feature makes it unnecessary for you
to specify the data set as an operand each time. There are two current data sets, one for input and one for
output. IML makes a data set the current one as it is opened. You can also make a data set current by using
two setting statements, SETIN and SETOUT:

� The USE and SETIN statements make a data set current for input.

� The SETOUT statement makes a data set current for output.

� The CREATE and EDIT statements make a data set current for both input and output.

If you issue a USE, EDIT, or CREATE statement for a data set that is already open, the data set is made the
current data set. To find out which data sets are open and which are current input and current output data
sets, use the SHOW DATASETS statement.

The current observation is set by the last operation that performed input/output (I/O). If you want to set the
current observation without doing any I/O, use the SETIN (or SETOUT) statement with the POINT option.
After a data set is opened, the current observation is set to 0. If you attempt to list or read the current
observation, the current observation is converted to 1. You can make the CLASS data set current for input
and position the pointer at the 10th observation with the following statement:

> setin class point 10;

Displaying SAS Data Set Information

You can use SHOW statements to display information about your SAS data sets. The SHOW DATASETS
statement lists all open SAS data sets and their status. The SHOW CONTENTS statement displays the
variable names and types, the size, and the number of observations in the current input data set. For example,
to get information for the CLASS data set, issue the following statements:

> use class;
> show datasets;

LIBNAME MEMNAME OPEN MODE STATUS
------- ------- --------- ------
WORK .CLASS Input Current Input

> show contents;

VAR NAME TYPE SIZE
NAME CHAR 8
SEX CHAR 8

Referring to a SAS Data Set F 89

AGE NUM 8
HEIGHT NUM 8
WEIGHT NUM 8
Number of Variables: 5
Number of Observations: 19

As you can see, CLASS is the only data set open. The USE statement opens it for input, and it is the current
input data set. The full name for CLASS is WORK.CLASS. The libref is the default, WORK. The next
section tells you how to change the libref to another name.

Referring to a SAS Data Set

The USE, EDIT, and CREATE statements take as their first operand the data set name. This name can have
either one or two levels. If it is a two-level name, the first level refers to the name of the SAS data library; the
second name is the data set name. If the libref is WORK, the data set is stored in a directory for temporary
data sets; these are automatically deleted at the end of the session. Other librefs are associated with SAS
data libraries by using the LIBNAME statement.

If you specify only a single name, then IML supplies a default libref. At the beginning of an IML session,
the default libref is SASUSER if SASUSER is defined as a libref or WORK otherwise. You can reset the
default libref by using the RESET DEFLIB statement. If you want to create a permanent SAS data set, you
must specify a two-level name by using the RESET DEFLIB statement (see the chapter on SAS files in SAS
Language Reference: Concepts for more information about permanent SAS data sets):

> reset deflib=name;

Listing Observations

You can list variables and observations in a SAS data set with the LIST statement. The general form of the
LIST statement is as follows:

LIST < range > < VAR operand > < WHERE(expression) > ;

where

range specifies a range of observations.

operand selects a set of variables.

expression is an expression that is evaluated as being true or false.

The next three sections discuss how to use each of these clauses with the CLASS data set.

90 F Chapter 7: Working with SAS Data Sets

Specifying a Range of Observations

You can specify a range of observations with a keyword or by record number by using the POINT option.
You can use the range operand with the data management statements DELETE, FIND, LIST, READ, and
REPLACE.

You can specify range with any of the following keywords:

ALL specifies all observations.

CURRENT specifies the current observation.

NEXT < number > specifies the next observation or next number of observations.

AFTER specifies all observations after the current one.

POINT operand specifies observations by number, where operand can be one of the following:

Operand Example
a single record number point 5

a literal giving several record numbers point {2 5 10}

the name of a matrix that contains record numbers point p

an expression in parentheses point (p+1)

If you want to list all observations in the CLASS data set, use the keyword ALL to indicate that the range is
all observations. The following example demonstrates the use of this keyword:

> list all;

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

1 JOYCE F 11.0000 51.3000 50.5000
2 THOMAS M 11.0000 57.5000 85.0000
3 JAMES M 12.0000 57.3000 83.0000
4 JANE F 12.0000 59.8000 84.5000
5 JOHN M 12.0000 59.0000 99.5000
6 LOUISE F 12.0000 56.3000 77.0000
7 ROBERT M 12.0000 64.8000 128.0000
8 ALICE F 13.0000 56.5000 84.0000
9 BARBARA F 13.0000 65.3000 98.0000

10 JEFFREY M 13.0000 62.5000 84.0000
11 CAROL F 14.0000 62.8000 102.5000
12 HENRY M 14.0000 63.5000 102.5000
13 ALFRED M 14.0000 69.0000 112.5000
14 JUDY F 14.0000 64.3000 90.0000
15 JANET F 15.0000 62.5000 112.5000
16 MARY F 15.0000 66.5000 112.0000
17 RONALD M 15.0000 67.0000 133.0000
18 WILLIAM M 15.0000 66.5000 112.0000
19 PHILIP M 16.0000 72.0000 150.0000

Specifying a Range of Observations F 91

Without a range specification, the LIST statement lists only the current observation, which in this example
is now the last observation because of the previous LIST statement. Here is the result of using the LIST
statement:

> list;

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

19 PHILIP M 16.0000 72.0000 150.0000

Use the POINT keyword with record numbers to list specific observations. You can follow the keyword
POINT with a single record number or with a literal giving several record numbers. Here are two examples:

> list point 5;

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

5 JOHN M 12.0000 59.0000 99.5000

> list point {2 4 9};

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

2 THOMAS M 11.0000 57.5000 85.0000
4 JANE F 12.0000 59.8000 84.5000
9 BARBARA F 13.0000 65.3000 98.0000

You can also indicate the range indirectly by creating a matrix that contains the records you want to list, as
in the following example:

> p={2 4 9};
> list point p;

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

2 THOMAS M 11.0000 57.5000 85.0000
4 JANE F 12.0000 59.8000 84.5000
9 BARBARA F 13.0000 65.3000 98.0000

The range operand is usually listed first when you are using the access statements DELETE, FIND, LIST,
READ, and REPLACE. The following table shows access statements and their default ranges:

Statement Default Range
LIST current
READ current
FIND all
REPLACE current
APPEND always at end
DELETE current

92 F Chapter 7: Working with SAS Data Sets

Selecting a Set of Variables

You can use the VAR clause to select a set of variables. The general form of the VAR clause is as follows:

VAR operand ;

where operand can be specified by using one of the following items:

� a literal that contains variable names

� the name of a matrix that contains variable names

� an expression in parentheses yielding variable names

� one of the following keywords:

ALL for all variables

CHAR for all character variables

NUM for all numeric variables

The following examples show all possible ways you can use the VAR clause:

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix that contains the names */
var('time1':'time9'); /* an expression */
var _all_; /* a keyword */

For example, to list students’ names from the CLASS data set, use the VAR clause with a literal, as in the
following statement:

> list point p var{name};

OBS NAME
------ --------

2 THOMAS
4 JANE
9 BARBARA

To list AGE, HEIGHT, and WEIGHT, you can use the VAR clause with a matrix giving the variables, as in
the following statements:

> v={age height weight};
> list point p var v;

OBS AGE HEIGHT WEIGHT
------ --------- --------- ---------

2 11.0000 57.5000 85.0000
4 12.0000 59.8000 84.5000
9 13.0000 65.3000 98.0000

Selecting Observations F 93

The VAR clause can be used with the following statements for the tasks described:

Statement VAR Clause Function
APPEND specifies which IML variables contain data to append to the data set
CREATE specifies the variables to go in the data set
EDIT limits which variables are accessed
LIST specifies which variables to list
READ specifies which variables to read
REPLACE specifies which data set variable’s data values to replace with corre-

sponding IML variable data values
USE limits which variables are accessed

Selecting Observations

The WHERE clause conditionally selects observations, within the range specification, according to condi-
tions given in the expression. The general form of the WHERE clause is as follows:

WHERE variable comparison-op operand ;

where

variable is a variable in the SAS data set.

comparison-op is one of the following comparison operators:

< less than

<= less than or equal to

= equal to

> greater than

>= greater than or equal to

ˆ = not equal to

? contains a given string

ˆ ? does not contain a given string

=: begins with a given string

=* sounds like or is spelled like a given string

operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the WHERE clause succeeds
if all the elements in the matrix satisfy the condition:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds if any of the elements in the matrix satisfy the
condition:

94 F Chapter 7: Working with SAS Data Sets

= ? =: =*

Logical expressions can be specified within the WHERE clause by using the AND (&) and OR (|) operators.
The general form is as follows:

clause&clause (for an AND clause)
clause | clause (for an OR clause)

where clause can be a comparison, a parenthesized clause, or a logical expression clause that is evaluated
by using operator precedence.

For example, to list the names of all males in the data set CLASS, use the following statement:

> list all var{name} where(sex='M');

OBS NAME
------ ----------------------

2 THOMAS
3 JAMES
5 JOHN
7 ROBERT

10 JEFFREY
12 HENRY
13 ALFRED
17 RONALD
18 WILLIAM
19 PHILIP

The WHERE comparison arguments can be matrices. In the following cases that use the =* operator, the
comparison is made to each name to find a string that sounds like or is spelled like the given string or strings:

> n={name sex age};
> list all var n where(name=*{"ALFRED","CAROL","JUDY"});

OBS NAME SEX AGE
----- ---------------- -------- ---------
11 CAROL F 14.0000
13 ALFRED M 14.0000
14 JUDY F 14.0000

> list all var n where(name=*{"JON","JAN"});

OBS NAME SEX AGE
------ -------- -------- ---------

4 JANE F 12.0000
5 JOHN M 12.0000

To list AGE, HEIGHT, and WEIGHT for all students in their teens, use the following statement:

> list all var v where(age>12);

Reading Observations from a SAS Data Set F 95

OBS AGE HEIGHT WEIGHT
------ --------- --------- ---------

8 13.0000 56.5000 84.0000
9 13.0000 65.3000 98.0000

10 13.0000 62.5000 84.0000
11 14.0000 62.8000 102.5000
12 14.0000 63.5000 102.5000
13 14.0000 69.0000 112.5000
14 14.0000 64.3000 90.0000
15 15.0000 62.5000 112.5000
16 15.0000 66.5000 112.0000
17 15.0000 67.0000 133.0000
18 15.0000 66.5000 112.0000
19 16.0000 72.0000 150.0000

NOTE: In the WHERE clause, the expression on the left side refers to values of the data set variables, and
the expression on the right side refers to matrix values. You cannot use comparisons that involve more than
one data set variable in a single comparison; for example, you cannot use either of the following expressions:

list all where(height>weight);
list all where(weight-height>0);

You could use the first statement if WEIGHT were a matrix name already defined rather than a variable in
the SAS data set.

Reading Observations from a SAS Data Set

Transferring data from a SAS data set to a matrix is done by using the READ statement. The SAS data
set you want to read data from must already be open. You can open a SAS data set with either the USE
or the EDIT statement. If you already have several data sets open, you can point to the one you want with
the SETIN statement, making it the current input data set. The general form of the READ statement is as
follows:

READ < range > < VAR operand > < WHERE(expression) > ;

< INTO name > ;

where

range specifies a range of observations.

operand selects a set of variables.

expression is an expression that is evaluated as being true or false.

name names a target matrix for the data.

96 F Chapter 7: Working with SAS Data Sets

Using the READ Statement with the VAR Clause

Use the READ statement with the VAR clause to read variables from the current SAS data set into column
vectors of the VAR clause. Each variable in the VAR clause becomes a column vector with the same name
as the variable in the SAS data set. The number of rows is equal to the number of observations processed,
depending on the range specification and the WHERE clause. For example, to read the numeric variables
AGE, HEIGHT, and WEIGHT for all observations in the CLASS data set, use the following statements:

> read all var {age height weight};

Now use the SHOW NAMES statement to display all the matrices you have created so far in this chapter:

> show names;

AGE 19 rows 1 col num 8
HEIGHT 19 rows 1 col num 8
N 1 row 3 cols char 4
P 1 row 3 cols num 8
V 1 row 3 cols char 6
WEIGHT 19 rows 1 col num 8
Number of symbols = 8 (includes those without values)

You see that, with the READ statement, you have created the three numeric vectors AGE, HEIGHT, and
WEIGHT. (Notice that the matrices you created earlier, N, P, and V, are also listed.) You can select the
variables that you want to access with a VAR clause in the USE statement. The two previous statements can
also be written as follows:

use class var{age height weight};
read all;

Using the READ Statement with the VAR and INTO Clauses

Sometimes you want to have all of the numeric variables in the same matrix so that you can determine
correlations. Use the READ statement with the INTO clause and the VAR clause to read the variables
listed in the VAR clause into the single matrix named in the INTO clause. Each variable in the VAR clause
becomes a column of the target matrix. If there are p variables in the VAR clause and n observations are
processed, the target matrix in the INTO clause is an n � p matrix.

The following statement creates a matrix X that contains the numeric variables of the CLASS data set.
Notice the use of the keyword _NUM_ in the VAR clause to specify that all numeric variables be read.

Using the READ Statement with the WHERE Clause F 97

> read all var _num_ into x;
> print x;

X
11 51.3 50.5
11 57.5 85
12 57.3 83
12 59.8 84.5
12 59 99.5
12 56.3 77
12 64.8 128
13 56.5 84
13 65.3 98
13 62.5 84
14 62.8 102.5
14 63.5 102.5
14 69 112.5
14 64.3 90
15 62.5 112.5
15 66.5 112
15 67 133
15 66.5 112
16 72 150

Using the READ Statement with the WHERE Clause

Use the WHERE clause as you did with the LIST statement, to conditionally select observations from within
the specified range. If you want to create a matrix FEMALE that contains the variables AGE, HEIGHT,
and WEIGHT for females only, use the following statements:

> read all var _num_ into female where(sex="F");
> print female;

FEMALE
11 51.3 50.5
12 59.8 84.5
12 56.3 77
13 56.5 84
13 65.3 98
14 62.8 102.5
14 64.3 90
15 62.5 112.5
15 66.5 112

Now try some special features of the WHERE clause to find values that begin with certain characters (the
=: operator) or that contain certain strings (the ? operator). To create a matrix J that contains the students
whose names begin with the letter “J,” use the following statements:

> read all var{name} into j where(name=:"J");

98 F Chapter 7: Working with SAS Data Sets

> print j;

J
JOYCE
JAMES
JANE
JOHN
JEFFREY
JUDY
JANET

To create a matrix AL of children with names that contains the string “AL,” use the following statement:

> read all var{name} into al where(name?"AL");
> print al;

AL
ALICE
ALFRED
RONALD

Editing a SAS Data Set

You can edit a SAS data set by using the EDIT statement. You can update values of variables, mark obser-
vations for deletion, delete the marked observations, and save the changes you make. The general form of
the EDIT statement is as follows:

EDIT SAS-data-set < VAR operand > < WHERE(expression) > ;

where

SAS-data-set names an existing SAS data set.

operand selects a set of variables.

expression is an expression that is evaluated as being true or false.

Updating Observations

Suppose you have updated data and want to change some values in the CLASS data set. For instance,
suppose the student named Henry has had a birthday since the data were added to the CLASS data set. You
can do the following:

� make the CLASS data set current for input and output

� read the data

Deleting Observations F 99

� change the appropriate data value

� replace the changed data in the data set

First, submit an EDIT statement to make the CLASS data set current for input and output. Then use the
FIND statement, which finds observation numbers and stores them in a matrix, to find the observation
number of the data for Henry and store it in the matrix d. Here are the statements:

> edit class;
> find all where(name={'HENRY'}) into d;
> print d;

D
12

The following statement lists the observation that contains the data for Henry:

> list point d;

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

12 HENRY M 14.0000 63.5000 102.5000

As you see, the observation number is 12. Now read the value for AGE into a matrix and update its value.
Finally, replace the value in the CLASS data set and list the observation that contains the data for Henry
again. Here are the statements:

> age=15;
> replace;

1 observations replaced.

> list point 12;

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

12 HENRY M 15.0000 63.5000 102.5000

Deleting Observations

Use the DELETE statement to mark an observation to be deleted. The general form of the DELETE state-
ment is as follows:

DELETE < range > < WHERE(expression) > ;

where

range specifies a range of observations.

100 F Chapter 7: Working with SAS Data Sets

expression is an expression that is evaluated as being true or false.

The following are examples of valid uses of the DELETE statement:

Statement Description
delete; deletes the current observation
delete point 10; deletes observation 10
delete all where (age>12); deletes all observations where

AGE is greater than 12

If a file accumulates a number of observations marked as deleted, you can clean out these observations and
renumber the remaining observations by using the PURGE statement.

Suppose the student named John has moved and you want to update the CLASS data set. You can remove
the observation by using the EDIT and DELETE statements. First, find the observation number of the data
for John and store it in the matrix d by using the FIND statement. Then submit a DELETE statement to
mark the record for deletion. A deleted observation is still physically in the file and still has an observation
number, but it is excluded from processing. The deleted observations appear as gaps when you list the file
by observation number, as in the following example:

> find all where(name={'JOHN'}) into d;
> print d;

D
5

> delete point d;

1 observation deleted.
> list all;

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

1 JOYCE F 11.0000 51.3000 50.5000
2 THOMAS M 11.0000 57.5000 85.0000
3 JAMES M 12.0000 57.3000 83.0000
4 JANE F 12.0000 59.8000 84.5000
6 LOUISE F 12.0000 56.3000 77.0000
7 ROBERT M 12.0000 64.8000 128.0000
8 ALICE F 13.0000 56.5000 84.0000
9 BARBARA F 13.0000 65.3000 98.0000

10 JEFFREY M 13.0000 62.5000 84.0000
11 CAROL F 14.0000 62.8000 102.5000
12 HENRY M 15.0000 63.5000 102.5000
13 ALFRED M 14.0000 69.0000 112.5000
14 JUDY F 14.0000 64.3000 90.0000
15 JANET F 15.0000 62.5000 112.5000
16 MARY F 15.0000 66.5000 112.0000
17 RONALD M 15.0000 67.0000 133.0000
18 WILLIAM M 15.0000 66.5000 112.0000
19 PHILIP M 16.0000 72.0000 150.0000

Creating a SAS Data Set from a Matrix F 101

Notice that there is a gap in the data where the deleted observation was (observation 5). To renumber the
observations and close the gaps, submit the PURGE statement. Note that the PURGE statement deletes any
indexes associated with a data set. Here is the statement:

> purge;

Creating a SAS Data Set from a Matrix

SAS/IML software provides the capability to create a new SAS data set from a matrix. You can use the
CREATE and APPEND statements to create a SAS data set from a matrix, where the columns of the matrix
become the data set variables and the rows of the matrix become the observations. Thus, an n � m matrix
produces a SAS data set with m variables and n observations. The CREATE statement opens the new SAS
data set for both input and output, and the APPEND statement writes to (outputs to) the data set.

Using the CREATE Statement with the FROM Option

You can create a SAS data set from a matrix by using the CREATE statement with the FROM option. This
form of the CREATE statement is as follows:

CREATE SAS-data-set FROM matrix ;

< [COLNAME=column-name ROWNAME=row-name] > ;

where

SAS-data-set names the new data set.

matrix names the matrix that contains the data.

column-name names the variables in the data set.

row-name adds a variable that contains row titles to the data set.

Suppose you want to create a SAS data set named RATIO that contains a variable with the height-to-weight
ratios for each student. You first create a matrix that contains the ratios from the matrices HEIGHT and
WEIGHT that you have already defined. Next, use the CREATE and APPEND statements to open a new
SAS data set called RATIO and append the observations, naming the data set variable HTWT instead of
COL1.

htwt=height/weight;
create ratio from htwt[colname='htwt'];
append from htwt;

Now submit the SHOW DATASETS and SHOW CONTENTS statements:

102 F Chapter 7: Working with SAS Data Sets

> show datasets;

LIBNAME MEMNAME OPEN MODE STATUS
------- ------- --------- ------
WORK .CLASS Update
WORK .RATIO Update Current Input Current Output

> show contents;

VAR NAME TYPE SIZE
HTWT NUM 8
Number of Variables: 1
Number of Observations: 18

> close ratio;

As you can see, the new SAS data set RATIO has been created. It has 18 observations and 1 variable (recall
that you deleted 1 observation earlier).

Using the CREATE Statement with the VAR Clause

You can use a VAR clause with the CREATE statement to select the variables you want to include in the
new data set. In the previous example, the new data set RATIO had one variable. If you want to create a
similar data set but include the second variable NAME, you use the VAR clause. You could not do this with
the FROM option because the variable HTWT is numeric and the variable NAME is character. The following
statements create a new data set RATIO2 having the variables NAME and HTWT:

> create ratio2 var{name htwt};
> append;
> show contents;

VAR NAME TYPE SIZE
NAME CHAR 8
HTWT NUM 8
Number of Variables: 2
Number of Observations: 18

> close ratio2;

Notice that now the variable NAME is in the data set.

Understanding the End-of-File Condition F 103

Understanding the End-of-File Condition

If you try to read past the end of a data set or point to an observation greater than the number of observations
in the data set, you create an end-of-file condition. If an end-of-file condition occurs inside a DO DATA
iteration group, IML transfers control to the next statement outside the current DO DATA group.

The following example uses a DO DATA loop while reading the CLASS data set. It reads the variable
WEIGHT in one observation at a time and accumulates the weights of the students in the IML matrix SUM.
When the data are read, the total class weight is stored in the matrix SUM.

setin class point 0;
sum=0;
do data;

read next var{weight};
sum=sum+weight;

end;
print sum;

Producing Summary Statistics

Summary statistics on the numeric variables of a SAS data set can be obtained with the SUMMARY state-
ment. These statistics can be based on subgroups of the data by using the CLASS clause in the SUMMARY
statement. The SAVE option in the OPT clause enables you to save the computed statistics in matrices for
later perusal. For example, consider the following statement.

> summary var {height weight} class {sex} stat{mean std} opt{save};

SEX Nobs Variable MEAN STD
--
F 9 HEIGHT 60.58889 5.01833

WEIGHT 90.11111 19.38391

M 9 HEIGHT 64.45556 4.90742
WEIGHT 110.00000 23.84717

All 18 HEIGHT 62.52222 5.20978
WEIGHT 100.05556 23.43382

--

This summary statement gives the mean and standard deviation of the variables HEIGHT and WEIGHT for
the two subgroups (male and female) of the data set CLASS. Since the SAVE option is set, the statistics of the
variables are stored in matrices under the name of the corresponding variables: each column corresponds to
a statistic and each row corresponds to a subgroup. Two other vectors, SEX and _NOBS_, are created. The

104 F Chapter 7: Working with SAS Data Sets

vector SEX contains the two distinct values of the CLASS variable SEX used in forming the two subgroups.
The vector _NOBS_ has the number of observations in each subgroup.

Note that the combined means and standard deviations of the two subgroups are displayed but not saved.

More than one CLASS variable can be used, in which case a subgroup is defined by the combination of the
values of the CLASS variables.

Sorting a SAS Data Set

The observations in a SAS data set can be ordered (sorted) by specific key variables. To sort a SAS data set,
close the data set if it is currently open, and issue a SORT statement for the variables by which you want the
observations to be ordered. Specify an output data set name if you want to keep the original data set. For
example, the following statement creates a new SAS data set named SORTED:

> sort class out=sorted by name;

The new data set has the observations from the data set CLASS, ordered by the variable NAME.

The following statement sorts in place the data set CLASS by the variable NAME:

> sort class by name;

However, when the SORT statement is finished executing, the original data set is replaced by the sorted data
set.

You can specify as many key variables as needed, and, optionally, each variable can be preceded by the
keyword DESCENDING, which denotes that the variable that follows is to be sorted in descending order.

Indexing a SAS Data Set

Searching through a large data set for information about one or more specific observations can take a long
time because the procedure must read each record. You can reduce this search time by first indexing the data
set by a variable. The INDEX statement builds a special companion file that contains the values and record
numbers of the indexed variables. Once the index is built, IML can use the index for queries with WHERE
clauses if it decides that indexed retrieval is more efficient. Any number of variables can be indexed, but
only one index is in use at a given time. Note that purging a data set with the PURGE statement results in
the loss of all associated indexes.

Once you have indexed a data set, IML can use this index whenever a search is conducted with respect
to the indexed variables. The indexes are updated automatically whenever you change values in indexed
variables. When an index is in use, observations cannot be randomly accessed by their physical location

Data Set Maintenance Functions F 105

numbers. This means that the POINT range cannot be used when an index is in effect. However, if you
purge the observations marked for deletion, or sort the data set in place, the indexes become invalid and
IML automatically deletes them.

For example, if you want a list of all female students in the CLASS data set, you can first index CLASS
by the variable SEX. Then use the LIST statement with a WHERE clause. Of course, the CLASS data set
is small, and indexing does little if anything to speed queries with the WHERE clause. If the data set had
thousands of students, though, indexing could save search time.

To index the data set by the variable SEX, submit the following statement:

> index sex;

NOTE: Variable SEX indexed.
NOTE: Retrieval by SEX.

Now list all students by using the following statement. Notice the ordering of the special file built by
indexing by the variable SEX. Retrievals by SEX will be quick.

> list all;

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

1 JOYCE F 11.0000 51.3000 50.5000
4 JANE F 12.0000 59.8000 84.5000
6 LOUISE F 12.0000 56.3000 77.0000
8 ALICE F 13.0000 56.5000 84.0000
9 BARBARA F 13.0000 65.3000 98.0000
11 CAROL F 14.0000 62.8000 102.5000
14 JUDY F 14.0000 64.3000 90.0000
15 JANET F 15.0000 62.5000 112.5000
16 MARY F 15.0000 66.5000 112.0000
2 THOMAS M 11.0000 57.5000 85.0000
3 JAMES M 12.0000 57.3000 83.0000
7 ROBERT M 12.0000 64.8000 128.0000
10 JEFFREY M 13.0000 62.5000 84.0000
12 HENRY M 15.0000 63.5000 102.5000
13 ALFRED M 14.0000 69.0000 112.5000
17 RONALD M 15.0000 67.0000 133.0000
18 WILLIAM M 15.0000 66.5000 112.0000
19 PHILIP M 16.0000 72.0000 150.0000

Data Set Maintenance Functions

Two functions and two subroutines are provided to perform data set maintenance:

DATASETS function obtains members in a data library. This function returns a character matrix that
contains the names of the SAS data sets in a library.

106 F Chapter 7: Working with SAS Data Sets

CONTENTS function obtains variables in a member. This function returns a character matrix that con-
tains the variable names for the SAS data set specified by libname and memname.
The variable list is returned in alphabetical order.

RENAME subroutine renames a SAS data set member in a specified library.

DELETE subroutine deletes a SAS data set member in a specified library.

See Chapter 23 for details and examples of these functions and routines.

Summary of Commands

You have seen that IML has an extensive set of commands that operate on SAS data sets. Table 7.1 sum-
marizes the data management commands you can use to perform management tasks for which you might
normally use the SAS DATA step.

Table 7.1 Data Management Commands

Command Description
APPEND adds observations to the end of a SAS data set
CLOSE closes a SAS data set
CREATE creates and opens a new SAS data set for input and output
DELETE marks observations for deletion in a SAS data set
EDIT opens an existing SAS data set for input and output
FIND finds observations
INDEX indexes variables in a SAS data set
LIST lists observations
PURGE purges all deleted observations from a SAS data set
READ reads observations into IML variables
REPLACE writes observations back into a SAS data set
RESET DEFLIB names default libname
SAVE saves changes and reopens a SAS data set
SETIN selects an open SAS data set for input
SETOUT selects an open SAS data set for output
SHOW CONTENTS shows contents of the current input SAS data set
SHOW DATASETS shows SAS data sets currently open
SORT sorts a SAS data set
SUMMARY produces summary statistics for numeric variables
USE opens an existing SAS data set for input

Comparison with the SAS DATA Step F 107

Comparison with the SAS DATA Step

If you want to remain in the IML environment and mimic DATA step processing, you need to learn the basic
differences between IML and the SAS DATA step:

� With SAS/IML software, you start with a CREATE statement instead of a DATA statement. You
must explicitly set up all your variables with the correct attributes before you create a data set. This
means that you must define character variables to have the desired string length beforehand. Numeric
variables are the default, so any variable not defined as character is assumed to be numeric. In the
DATA step, the variable attributes are determined from context across the whole step.

� With SAS/IML software, you must use an APPEND statement to output an observation; in the DATA
step, you either use an OUTPUT statement or let the DATA step output it automatically.

� With SAS/IML software, you iterate with a DO DATA loop. In the DATA step, the iterations are
implied.

� With SAS/IML software, you have to close the data set with a CLOSE statement unless you plan to
exit the IML environment with a QUIT statement. The DATA step closes the data set automatically
at the end of the step.

� The DATA step usually executes faster than IML.

In short, the DATA step treats the problem with greater simplicity, allowing shorter programs. However,
IML has more flexibility because it is interactive and has a powerful matrix-handling capability.

Summary

In this chapter, you have learned many ways to interact with SAS data sets from within the IML environment.
You learned how to open and close a SAS data set, how to make it current for input and output, how to list
observations by specifying a range of observations to process, a set of variables to use, and a condition for
subsetting observations. You also learned summary statistics. You also know how to read observations and
variables from a SAS data set into matrices as well as create a SAS data set from a matrix of values.

108

