
How to use Proc Tabulate -1-

How to use Proc Tabulate
Tasha Chapman, Oregon Department of Consumer and Business Services

Proc Tabulate can be a very powerful tool for creating professional looking tables. And unlike Proc

Report, Proc Tabulate is compatible with multilabel formats, making it possible to create hierarchical

tables with groups and sub-groups. However, the syntax for Proc Tabulate is not particularly intuitive,

so many programmers tend to shy away from it.

The purpose of this paper is to acquaint the reader with the basics of Proc Tabulate syntax. By the end

of this paper, you should know how to create a basic table, use formats in your table, change headers and

data labels, add row and column totals, and implement basic statistics.

The following examples were created using SAS version 9.1.3. The output was created using ODS

PDF in the SASweb style.

Getting started – the basics of Proc Tabulate
Before delving into the complexities

1
 of Proc Tabulate, let’s break this procedure down to the bare

bones. The simplest Proc Tabulate includes a class statement and a table statement.

The Class statement tells SAS which variables you are going to be using in the table to categorize your

observations. Any variable that will be used for categorization in your table must be in the class

statement.

The Table statement is where you build your table, telling SAS which variables are row expressions,

which are column expressions, and (if applicable) which are page expressions. Rows, columns, and

pages are separated using commas, like so:

page-expression, row-expression, column-expression

Both page and row expressions are optional. Any table with a single dimension will simply show

columns. In the first example, we’ll show a two-dimensional table with rows and columns. “Age” will

be the rows, and “Date” will

be the columns:

proc tabulate;

class age date;

table age, date;

run;

In this table both age and date are class variables, so they both appear in the class statement. This means

that SAS is categorizing the observations according to these variables. In addition, because we didn’t

specify what statistics we wanted to display, Proc Tabulate defaulted to using the N statistic (the number

of observations). In essence, SAS counted how many observations were in each category and displayed

this count in the table.

 SAS is a registered trademark of SAS Institute in the USA and other countries. ® indicates USA registration.

1
 Don’t panic… Complexities is a code word for really cool features!

How to use Proc Tabulate -2-

Using formats with Proc Tabulate
You’ve just created your first table using Proc Tabulate. Congratulations… but wow, that’s ugly…

Let’s figure out how to fix it.

First of all, you’ll notice that the variable “date” looks nothing like a date. That’s because SAS stores

dates as numbers (the number of days since January 1, 1960) and SAS is displaying this internal date

value. Second, there are too many ages and too many dates in our dataset to make the table

understandable. The table would be easier to read if we used groupings. Both of these issues can be

fixed with formats.

For the date variable, we can use a SAS supplied date format. In this case, we’ll use monname, which

will display the name of the month. For the age variable, there is no applicable SAS format, so we’ll

need to create a value format
2
 using Proc Format:

proc format;

value agefmt

low-17 = 'Under 18'

18-65 = '18 - 65'

66-high = 'Over 65';

run;

To apply the formats to the variables, we use a Format statement, similar to that seen in other

procedures. To use the Format statement, simply list the variable (or variables), followed by their

respective format, like so:

proc tabulate;

format age agefmt. date monname.;

class age date;

table age, date;

run;

Congratulations, you can now create a basic table using Proc Tabulate!

Proc Tabulate operators
In the next few examples, we’ll discuss how to apply statistics to your table, add multiple variables to a

single dimension, and apply formatting techniques to your table. But before continuing on, let’s discuss

operators in Proc Tabulate. Operators are the symbols (commas, spaces, asterisks, etc.) that are used to

define the relationships among variables, statistics, and other elements.

The first operator that we’ve already used is the comma, which is used to separate the different

dimensions of our table (page, row, and column).

The next operator we’ll discuss is the blank space. A blank space concatenates – or links together –

different elements within a single dimension. Elements linked in the Table statement by a blank space

will appear side-by-side on the table.

2
 A value format replaces the specified field values or ranges with new data labels or category labels. By using a value

format, all observations that fall within the specified values or ranges are grouped together under the new label.

How to use Proc Tabulate -3-

Another common operator is the asterisk. The asterisk can be used for many purposes, such as

associating statistical keywords and formats with a particular variable, and crossing elements within a

dimension.

The equal sign is an operator most commonly used for formatting and table design. The equal sign can

be used to override default cell formats or assign a label to an element.

Parentheses are another useful operator. Parentheses can be used to group elements and associate a

particular operation with multiple elements.

Appendix A provides a handy reference on the most commonly used operators in Proc Tabulate. You

may want to refer to this as we continue through the next few sections.

Adding total rows and columns
Let’s spice our table up by adding a total row and a total column. Luckily for you, this is really easy to

do. To add a total row or column, we add the keyword ALL to the table statement. (SAS refers to this

as the “Universal Class Variable ALL.”)

ALL
3
 will create a sum total for whichever dimension(s) you choose. In this particular case, we want to

have a total for both our row dimension and our column dimension, so we’ll be adding the ALL

keyword to both dimensions, like so:

proc tabulate;

format age agefmt. date monname.;

class age date;

table age all, date all;

run;

Placing the ALL keyword after the variable in question will create a total column in the last column and

a total row in the last row. We can also place the ALL keyword before the variable to move the total

column to the first column or the total row to the first row, like so:

table all age, all date;

Other class variable statistics
As mentioned earlier, our simple Proc Tabulate defaulted to presenting the N statistic. However, there

are a plethora of other statistics available for use in Proc Tabulate (see Appendix B for a complete list).

To apply a statistic other than N to the table, use an asterisk (*) to associate the desired statistic to the

applicable variable. For example, in our previous example, let’s say we wanted to show the column

percent instead of the number of observations. To do this, we would simply associate the column

percent keyword (COLPCTN) to our column variable (date), like so:

3
 Note: If your input dataset includes a variable named ALL, then enclose the Universal Class Variable ALL in quotation

marks to distinguish it from your dataset variable.

How to use Proc Tabulate -4-

proc tabulate;

format age agefmt. date monname.;

class age date;

table age, date*colpctn;

run;

Much like in other procedures, parentheses can be used to associate more than one statistic with a

variable. For example, if we wanted to show both the column percent and the number of observations,

then both keywords would need to be specified within the parentheses:

proc tabulate;

format age agefmt. date monname.;

class age date;

table age, date*(N colpctn);

run;

Statistical keywords can be applied to total rows and columns as well. You can apply the statistical

keywords to both the variable and the Universal Class Variable ALL using parentheses:

table age, (date all)*(N colpctn);

Or, you can apply the statistical keyword(s) to ALL and not the variable:

table age, date all*(N colpctn);

Or, you can apply the statistical keyword(s) to variable and not ALL:

table age, date*(N colpctn) all;

Or, you can apply different statistical keywords to ALL and the variable:

table age, date*colpctn all*(N colpctn);

The possibilities are endless.

Placing more than one variable on a single dimension
In the above examples we applied multiple statistics to a single variable. You can also apply multiple

variables to a single dimension. There are two ways to do this. You can put the variables next to each

other (known as “concatenation”) or you can cross elements within a single dimension.

For example, in addition to date and age, we have another variable titled weekly wage (wkly_wage).

Let’s say that we’ve applied a value format to weekly wage that groups people into those who make less

than $600 per week and those who make $600 per week or more. We’d like to see the observations

How to use Proc Tabulate -5-

categorized by date and by wage, in the same table, with the columns for wage next to the columns for

date. To place these columns side-by-side, simply list the variables with a space between them:

proc tabulate;

format age agefmt. date monname.

 wkly_wage wagefmt.;

class age date wkly_wage;

table age, date wkly_wage;

run;

Crossing elements within a dimension
In addition to placing columns side-by-side, you can also place columns within each other. For

example, in our table, we’d like to categorize our columns by both date and wage. This is known as

crossing elements within a dimension. Instead of separating the variables using a space, crossing

elements within a dimension is done using an asterisk:

proc tabulate;

format age agefmt. date monname. wkly_wage wagefmt.;

class age date wkly_wage;

table age, date*wkly_wage;

run;

Calculating means, medians, and other related statistics
So far we’ve discussed how to use class variable statistics. These are statistics that rely on categorizing

observations according to class variables, such as counts, percents, and the like. However, Proc

Tabulate also allows the user to apply other statistics that rely on analyzing the value of numeric

variables, such as mean, median, minimum, maximum, and other similar statistics.

For example, let’s say we wanted to analyze the variable age. Age will no longer be a class variable, but

will instead be considered an analysis variable. To declare age as an analysis variable, we must include

a Var statement in our Proc Tabulate.

The Var Statement tells SAS which variables you are going to analyze in your table. Any analysis

variable must be in the Var statement.

How to use Proc Tabulate -6-

If we wanted to analyze age, while keeping date as a class variable, the simplest table might look like

this:

proc tabulate;

format date monname.;

class date;

var age;

table age, date;

run;

Because no statistics were specified for our analysis variable, SAS defaulted to using the SUM statistic

and added the age values of all our observations. A more meaningful statistic might be the MEAN, or

average age. To calculate the mean, we must associate the statistical keyword with the analysis variable:

proc tabulate;

format date monname.;

class date;

var age;

table age*mean, date;

run;

The table can be further enhanced by adding a class variable to the row dimension, such as weekly

wage:
4

proc tabulate;

format date monname. wkly_wage wagefmt.;

class date wkly_wage;

var age;

table wkly_wage*(age*mean), date;

run;

Assigning formats to table cells
Now that we know how to build a table, let’s talk about how to format the table, applying headers, cell

widths, and labels that will make the table easier to read.

The first thing we’ll look at is formatting the values in the table cells. If no format is applied, SAS will

default to using 12.2 in the table cells (although, as you can see from the examples above, the ODS style

that you choose may adjust the default format). This default format can be overridden using the “format

=” option. To assign a format to all the table cells, use the “format=” option in the Proc Tabulate

statement:

proc tabulate format=comma6.;

However, Proc Tabulate gives us a little flexibility with table cell formats. It is possible to apply a

particular format to only a specific statistic. Going back to our previous example showing N and

COLPCTN, we could retain the comma6 format for the N statistics, but show the column percent to

4
 In this example, the parentheses are technically unnecessary, but can be visually helpful to distinguish between the class

variable and the analysis variable.

How to use Proc Tabulate -7-

1/10
th

 of a percent (e.g., 14.6%), using a format with a width of 6.1 for this statistic.
5
 To do this, you use

the asterisk to associate the format modifier “Format=” to the COLPCTN statistic. “F=” can be used

instead of “format=” to save keystrokes:

table age, date*(N colpctn*f=6.1);

The format applied in the table statement will override the format in the Proc Tabulate statement for the

specified instances.

Changing row and column headers
Using the “format=” modifier is only the tip of the iceberg. Proc Tabulate offers a wide variety of

options for modifying and customizing your table.

Let’s use one of our earlier tables as an example:

proc tabulate;

format age agefmt. date monname.;

class age date;

table age, date;

run;

The most informative elements of a table are row and column headers, but the default headers (the

variable names “age” and “date”) are not very descriptive. Let’s put in meaningful titles instead.

Applying data labels in Proc Tabulate is fairly simple. For example, you can change the data label for a

particular variable within the table statement, like so:

table age='Age of claimant', date='Date of acceptance';

Instead of showing “age”, Proc Tabulate will display “Age of claimant,” and instead of “date,” the new

column header will be “Date of acceptance.”

You can also change the label for the Universal Class Variable ALL in the same way. Without a data

label, Proc Tabulate will label the total row or column with the word “all.” To use a different header

instead, simply assign a data label as we did with the other variables:

table age='Age of claimant' all='All claimants',

date='Date of acceptance' all='Three month total';

Changing data labels using Keylabel
You can change the data label for a statistical keyword (such as N) in either the table statement, or in the

optional Keylabel statement. Let’s talk about the Keylabel statement first.

5
 In format widths, the number before the period is the total character width, while the number after the period is the number

of digits after the decimal point. So a format with a width of 6.1 would be six total characters long, with one digit after the

decimal point. (Be aware that the decimal point also counts as a character when calculating the width.) Format widths can

be used by themselves, or with a format type such as “best,” “comma,” or “dollar.”

How to use Proc Tabulate -8-

The Keylabel statement will change the label of a particular keyword for the duration of the Tabulate

procedure. Since we want the new label for N to be applied to each and every instance in which “N”

currently appears, the Keylabel statement is the best option. In the example below, Proc Tabulate will

print “Number of observations” instead of “N” in the resulting table.

proc tabulate;

format age agefmt. date monname.;

class age date;

keylabel N='Number of observations';

table age='Age of claimant', date='Date of acceptance';

run;

However, N is the only statistic that we’re using, so this label is a bit unnecessary. Let’s get rid of it. If

you don’t want any label to be applied to a keyword, you can replace this label with a blank space. For

example:

keylabel N=' ';

Instead of printing the label “N,” Proc Tabulate will print no label. The entire row full of N’s in the

current table will be deleted.

Let’s put these two pieces together and see what it looks like:

proc tabulate;

format age agefmt. date monname.;

class age date;

keylabel N=' ';

table age='Age of claimant',

date='Date of acceptance';

run;

Changing data labels using in the Table statement
As we’ve already seen, by default SAS will use the name of the statistical keyword as the label. As in

the last example, this can be overridden using the Keylabel statement. This method works fine if you

want to replace every instance with the same label. However, this might not always be the case. The

assigned labels in the Keylabel statement can also be overridden for specific instances using the Table

statement. You can change the label for a statistical keyword in the Table statement, in the same way

that labels for variables are changed:

table age, date='Date of acceptance'*colpctn='Percent';

This is particularly useful if you are applying different statistics to a class variable and a total row or

column. For example, let’s say we had a table that showed both N and COLPCTN. This table also has a

total column (created using ALL), which shows only N.
6
 We’ve also used the Keylabel statement to

change “N” and “COLPCTN” to “Total” and “%” instead:

6
 N does not need to be explicitly requested for the total column like it is shown here. Because we are dealing with only class

variables, if no statistics are specified Proc Tabulate will default to displaying N. However, it is explicitly stated here to

prepare for the next example.

How to use Proc Tabulate -9-

proc tabulate;

format age agefmt. date monname.;

class age date;

keylabel N='Total' colpctn='%';

table age, date='Date of acceptance'*(N colpctn) all='Total'*N;

run;

The table looks a little silly because the label

“Total” appears twice in the total column. We can

override the label for the N statistic in the total

column, by defining a new label using the Table

statement. For example, if we wanted the label to

be “Number,” the code would be:

table age, date='Date of acceptance'*(N colpctn) all='Total'*N='Number';

The other option is to get rid of the label entirely for the N statistic of the total column. We do this by

replacing the label with a blank space:

proc tabulate;

format age agefmt. date monname.;

class age date;

keylabel N='Total' colpctn='%';

table age, date='Date of acceptance'*(N colpctn) all='Total'*N=' ';

run;

Controlling the box in the upper left hand corner
So far we’ve spent a lot of time talking about column headers. Let’s discuss the row header. The

current placement for the label for “age” is creating a blank row, which is a bit unsightly. However,

above the label “age” there is a blank box in the upper left hand corner. Let’s get rid of that blank row,

and move the label into the empty box.

The first thing we need to do is get rid of the current label for “age.” We’ll do this by replacing the label

in the Table statement with a blank space, similar to what we did in earlier examples:

table age=' ', date='Date of acceptance';

This will get rid of the label for “age,” as well as the blank row that the label is creating.

How to use Proc Tabulate -10-

In its place, let’s put a new row header in the empty box in the upper left hand corner of the table. This

box is actually controlled by an optional command in the table statement. All options in the Table

statement follow a slash:

table age=' ', date='Date of acceptance' / box='Age of claimant';

Putting the row header in the upper left hand box is only a matter of style. This box can be used for

many things, such as the title of the table, or even a graphic. For a quick reference of the multiple

formatting options for Proc Tabulate discussed in this paper, from using the “format =” option to control

table cells to using the “box=” option, see Appendix C.

Other important features
Now you can build a basic table using Proc Tabulate, and even format it to your liking. Before sending

you off into the world, here are a few more important features that you should know about.

Missing option

As with many SAS procedures, observations with missing data in a class variable, by default, are

excluded from the analysis. In other words, if you had 100 observations, but 5 were missing values for

“date,” only the remaining 95 would be included in the analysis. To include observations with missing

data in the analysis, the missing option must be utilized in the Proc Tabulate statement:

proc tabulate missing;

The missing option considers missing values as valid values when creating the combinations of class

variables. The missing option can also be utilized in the Class statement to apply to only certain class

variables. In the example below, observations with missing weekly wage (wkly_wage) will be

excluded, but observations with missing age will be included:

proc tabulate;

format age agefmt. wkly_wage wagefmt.;

class wkly_wage;

class age /missing;

table age, wkly_wage;

run;

Misstext option
By default, table cells with no observations will display a period (.) to denote the missing value.

However, instead of a period, this can be changed to a dash or a zero or whatever the user chooses (up

to 256 characters) by utilizing the misstext option in the Table statement:

proc tabulate;

format age agefmt. date monname. wkly_wage wagefmt.;

class age date wkly_wage;

table age, date*wkly_wage / misstext='-';

run;

Final thoughts
Hopefully you have found this paper useful. What we’ve covered here should help you through most of

your Proc Tabulate endeavors, but additional tips and tricks are being discovered everyday.

How to use Proc Tabulate -11-

For additional resources, check out SAS Help and Documentation and sasCommunity.org

(www.sascommunity.org/wiki).

For a guide on how to use multilabel formats with Proc Tabulate effectively, check out Making the Most

Out of Multilabel Formats, by Tasha Chapman, presented at the 2008 Pacific Northwest SAS Users

Group conference and available at sasCommunity.org.

Additional questions can also be addressed to the author:

Tasha Chapman – Tasha.L.Chapman@state.or.us

Many thanks to all the people who first taught me how to use Proc Tabulate and helped me along the

way.

http://www.sascommunity.org/wiki
http://www.sascommunity.org/wiki/Using_multi-label_formats_with_proc_tabulate
http://www.sascommunity.org/wiki/Using_multi-label_formats_with_proc_tabulate
http://www.sascommunity.org/wiki/Using_multi-label_formats_with_proc_tabulate
mailto:Tasha.L.Chapman@state.or.us

Information taken in large part from the SAS Help and Documentation

Appendix A: Proc Tabulate operators
Operators are symbols that tell Proc Tabulate what actions to perform on the variables, statistics,

and other elements. The following table lists the common operators in Proc Tabulate:

Operator Action

, comma separates dimensions of the table (page, row, column)

* asterisk crosses elements within a dimension;

associates statistical keywords and formats with variables

Blank space concatenates elements within a dimension

() parentheses groups elements;

associates an operator with each element in the group

= equal overrides default cell format or assigns label to an element

Information taken in large part from the SAS Help and Documentation

Appendix B: Statistics that are available in Proc Tabulate
Use the following keywords to request statistics in the TABLE statement or to specify keywords

in the KEYWORD or KEYLABEL statement. If a variable name (class or analysis) and a

statistic name are the same, then enclose the statistic name in single quotation marks – for

example, 'MAX'.

Descriptive statistic keywords

COLPCTN

COLPCTSUM

CSS

CV

KURTOSIS | KURT

LCLM

MAX

MEAN

MIN

N

NMISS

PAGEPCTN

PCTN

PCTSUM

RANGE

REPPCTSUM

ROWPCTN

ROWPCTSUM

SKEWNESS | SKEW

STDDEV | STD

SUM

SUMWGT

UCLM

USS

VAR

Quantile statistic keywords

MEDIAN | P50

P1

P5

P10

Q1 | P25

Q3 | P75

P90

P95

P99

QRANGE

Hypothesis testing keywords

PROBT T

To compute standard error of the mean (STDERR) or Student’s t-test, you must use the default

value of the VARDEF= option, which is DF. The VARDEF= option is specified in the PROC

TABULATE statement.

Use both LCLM and UCLM to compute a two-sided confidence limit for the mean. Use only

LCLM or UCLM to compute a one-sided confidence limit. Use the ALPHA= option in the

PROC TABULATE statement to specify a confidence level.

To compute weighted quantiles, you must use QMETHOD=OS in the PROC TABULATE

statement.

Appendix C: Putting it all together - Formats
Now that we’ve seen what each piece of formatting code can do, let’s put it all together.

proc tabulate format=comma6.;

format age agefmt. date monname.;

class age date;

keylabel N='Total' colpctn='%';

table age=' ' all='All claimants',

 date='Date of acceptance'*(N colpctn*f=6.1)

all='Three month total'*N=' '

 / box = 'Age of claimant';

run;

1. Using the format = option in the Proc Tabulate statement sets the default format for the table

cells.

2. Using the format = option in the Table statement overrides the default format for the table cells

in the specified instances.

3. Headers for rows, columns, and totals can be changed in the Table statement.

4. When a header is set to blank, no label will be displayed. In this case the row header is set to

blank. No label for the row header is displayed.

5. Using the Keylabel statement will specify labels for statistical keywords.

6. The assigned labels in the Keylabel statement can also be overridden for specific instances using

the Table statement. In this case the label is being set to blank, so no label will be printed.

7. The box in the upper left hand corner is filled with the text “Age of claimant” using the box =

option in the Table statement.

2

2

1

1

3

3

3

3

5

5

6

6

4

4

7

7

