Spring 2013 BMTRY 789-02

Parallel Processing in R

Adrian Michael Nida

April 10, 2013

1 Opening

I use this image to represent how high level of a view this lecture will be
into the field of Parallel Processing. You are strongly encouraged to learn more
about both Carl Sagan’s Pale Blue Dot and Parallel Processing. In addition
this image is good because it conveys how challenging it will be to effectively
communicate these concepts. Even if I'm just slightly off in my projections, it
can totally bypass ”the mote of dust suspended in a sunbeam.”

2 Overview
Outline of Talk

e Introduction

e Cluster

e Parallel Processing

”The time has come,” the Walrus said, ”To talk of many things:...”

— Lewis Carroll Through the Looking-Glass and What Alice Found There

This is a rough outline of the talk. Each Section will begin with an overview
of what that section will cover. Quotes are provided for comic relief.

3 Introduction
Introduction

e UNIX != Windows
e History

e Executable Syntax

e Common Commands
e Editing Files

e Secure Shell (ssh)

e Source Control (optional)

”Sure, Unix is a user-friendly operating system. It’s just picky with whom it chooses to be friends.”

— Ken Thompson

The cluster is built ontop of Linux, which is a clone of UNIX (more later).
Therefore we must spend some time learning UNIX before we can talk about
our Cluster and what you will need to know to use it.

UNIX != Windows

About Ubuntu

Il Ubuntu 10.10

[¥8] Remote Desktop

This is a screenshot of the latest released Ubuntu desktop, 10.10. This is
to show you that even the windowing environment differs from the traditional
Windows-based desktop.

UNIX != Windows (cont.)

atrium.musc.edu - atrium - S5H Secure Shell Q@
Fle Edit View Window Help

HSR 02 e alan s e

£ Quick Connect] Profiles |

558 Secure Shell 3.2.5 (Build 280)
Copyright {c) 2000-2003 SSH Communications Security Corp - http://www.ssh.com/

This copy of 5SH Secure Shell is a non-commercial version.
This version does not include PKI and PKCS #11 functionality.

Last login: Tue Mar 22 01:17:09% 2011 from c-71-204-227-92.hsdl.sc.comcast.net
RHN kickstart on 2009-05-12

-bash-3.2¢ 2

-bash: ?: command not found
-bash-3.2%

Connected to atrium.musc.edu SSH2 -2es128-cbc-hmacmds -reme [80x24 | [| 4

It takes computer cycles to draw all those pretty pictures you saw earlier.
These computing cycles can better be used by other computational intensive
tasks (e.g., httpd, yourDissertation.R, etc.). Many *ix based systems are in-
stalled without an X server to accommodate these tasks. Most of the way you
interact with *ix will be through the Command Line Interpreter (CLI) which is

shown above. In this world, folders are called directories, there is no ”C drive”
because everything are files/directories under root (’/’), "My Documents” is
now ’ ’, there are other differences.

A History of UNIX

The history

UNICS (as it was called) began life as a way for Ken Thompson and Dennis
Ritchie to play ”Space Travel” (a game similar to Star Trek) on a PDP7 back
in 1969. It has fragmented and/or been reimplemented many times over since
then. For example, the cluster we use is based on Rocks, which is based on
CentOS, which is based on RedHat, which is based on Linux, which is based
on minix. Minux was a fork of the BSD improved version of ”true UNIX” (a
phrase which has spawned millions of dollars in lawsuits).

Executable Syntax
‘/path/to/program [options] [files]*
where:

e program is the name of the program you wish to rum
— /path/to is used to specify where on the filesystem program is located

(Hint: If this location is in your $PATH, you won’t need to type it)

bl

(Another Hint: The current directory ’.” is NOT in your path, so to
execute things there you must type ’./program’)

e options are "switches” passed into the program to alter its code flow.
— They can start with ’-’, ’- -’, or nothing at all.

e files are the files your program requires to run. This can be none at all.

http://www.levenez.com/unix/

This is an overview of how to interact with programs while using the CLI.
The items in brackets are optional. These items vary from program to program
and many of the options used in one program differ in other programs.

man [program] Displays help for a command (try ‘man man‘, ‘man hier‘)
d [directory] Change to directory
mkdir [newdir] Make a directory named newdir in the current directory
Is [-lha] [directory] List contents of directory
cp [-ra] SOURCE DEST copy SOURCE to DEST
mv SOURCE DEST copy and then delete SOURCE to DEST
rm [-rf] file(s) REMOVE file(s)
chmod [-R] ugo file Change mode (permissions) of a file (x=1, w=2, r=4)
chown [-R] owner:group file Change Owner (and group)
find [directory] -option PATTERN Search for files matching option’s PATTERN
head | tail [-n lines] [file] print first | last lines of file
grep [-inrv] PATTERN file(s) Search for pattern in file(s)
sed [-i] 's/FIND/REPLACE/[g]’ [file] find & replace in ’stream’
awk '"FS=":"print $1, $6° [file] print 1st & 6th fields of file
exit terminate CLI session
~>>>2&>1 Home, piping, and STD[IO|ERR] redirection

A list of the common UNIX commands and what they do. There are others,
but I have tried to list the ones you will commonly use. You are encouraged to
master these and others.

version 1.1
April 1st, 06

| vi / vim graphical cheat sheet |

Esc
normal
) | P) D e)
Fesll 2 3)4 5 J6 J7 I8 19 Jorer ue=amm
[o |[WetsiH|[E *";:D Rreniacd [T S Y e |[U e T e [O e [P i [i] [e
T e O O s e | (| e
[Avweend|S et ?:‘:;f Feinitl Gl H %" | s || K v (L) - e " |
Anwvend][S ! || leed] [St |2 b = [T IR A1 = | e[\ - oot

visuall
lines

change]
0 col

(R
[s [Eiil| [V st [

[Z: «”|[X sek][C
| 7. extrad

w”N&ml)”M“m"Ik indent| ;||> ““’"“x| I?' =
wnrd”n (ﬁm‘l)”mmark /- fma I

3 |/T/I'/l" * emd

cmds

moves the cursor, or defines Main command line commands (‘ex'): Notes:

the range for an operator 1w (save), 1 (quit), :q! (quit w/o saving) (1) use "x before a yank/paste/del command
direct action command, ief(openile . by ilewid to use that register (‘clipboard) (x=a..z,")

if red. it enters insert mode sesliv/g (vep ace 'x' by 'y’ filewide), (e.§:t "ay$ to copy rest of line to reg 'a’)

7 ! help in vim), :new (néw file in vim),

requires a motion afterwards, (2)type in 2 number before any action
[Sperator] gpirates betweon cursor & m},e jmportant commands: th repeat it that numbar of times

destination CTRL-R: redo (vim), (e.g.: 2p, d2w, 5i,

special functions, CTRL-F/-B: page up/down, (3) duplicate operator to act on current line
o] sospbtenstions, o ARG R R

. commands with a dot need -V block-visual mode (vim only u)zzm save & quit, ZQ to quit w/o saving
a char argument afterwards Visual mode:

bol = beginning of line, <ol = end of line, Move around and type operator o act (5)2t: seroll eursor to top,
‘mk = mark, yank = copy on selected region taim only) ((-)ﬂ“ :mlln‘n;_,lzz(: n_mnerl \

: gEux(Fos] baz]) baz gg: top of file (vim only),
it = &F open tle under curser (vim only)

__ For a graphical vi/vim tutorial & more tips, go to_www.viemu.com - home of ViEmu, vi/vim emulation for Microsoft Visual Studio)

Taken from: [Vlemu

Everything in UNIX is a file, so being able to edit files efficiently is the ”sink-
or-swim” skill. Above is the Cheat Sheet for vi(sual), which is one side in the
famous Editor War (the other side in Emacs, which you are also free to learn).
Both will require a devotion of time to master, and this short term investment

http://www.viemu.com/a_vi_vim_graphical_cheat_sheet_tutorial.html

will yield a very productive long term gain. However, if you feel swamped in
this, you are free to use pico (which is really nano).

Secure Shell (ssh)

e To connect to another computer, you will need to use this program from
the |OpenSSL group.

ssh [-1246 AaCfgkMNnqsTtVvXxY] [-b bind_address] [-c cipher_spec] [-D [bind_address:]port)

[-e escape_char] [-F configfile] [-i identity_file] [-L [bind_address:]port:host:hostport]

[-1login_name] [-m mac_spec] [-O ctl_cmd] [-o option] [-p port] [-R [bind_address:|port:host:hostport]
[-S ctl_path] [-w tunnel:tunnel] [user@]hostname [command]

e There are Windows alternatives

— PuTTY
— SSH Secure Shell (*M)
SSH allows you to login to another computer on the network. It replaces
rsh and telnet which did everything in clear text. You will need this to connect

to the cluster. There are ways to configure "keys” so you don’t have to type a
password each time you login to a machine.

Source Control

e When working between many computers, you will eventually have to or-
ganize your documents so changes get passed correctly.

e Source Control allows one to ”check [inJout]” versions of documents in
ways that allow a revisionist history.

e Subversion is the SCM used by the department formally known as DBBE:

— svn co https://projects.dbbe.musc.edu/nida/School/
— svn status

— svn up

— Make Changes

— svn diff

— svn add [file]

— svn ci -m 'Message’
e http://tortoisesvn.tigris.org/ is a well received Windows client.

e If you want an account, SPEAK UP

Source Control is necessary and far more efficient than mailing yourself copies
of important_2-2011-03-30.doc. This workflow is simplistic, but it’s enough to
get you started.

http://www.openssl.org
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.ssh.com

4 Cluster

Cluster
e Hardware capabilities
e User Accounts

e Environment

”Imagine a Beowulf cluster of these!”

— Anonymous (Coward) Slashdot Troll

This is the part of talk that will concentrate on what the cluster you will be
using is and what you need to know to use it.

Hardware capabilities

=

3

: (1
-
-3

T

The Cluster’s Homepage

The computing resources within the cluster. Each node has 8 Intel(R)
Xeon(R) E5345 @ 2.33GHz processing cores. Each node has 16GB of RAM.
There are a total of 8 computing notes + one head node. There is also a 1.4TB
storage space shared by all nodes.

User Accounts
e Accounts (should) have been created for all of you

e Synched with University’s Lightweight Directory Access Protocol (i.e.,
same NetID/Password combo you already know)

e Very few have the keys to the kingdom (i.e., sudo access)

Not much to say here that isn’t already on the slide.

http://slashdot.org/
http://ccrc.mdc.musc.edu/

Environment
Jexport (this is on the head node. This is mounted as /share/ from all
nodes)

e apps

- R

R-2.1.0

R-2.10.1
R-2.12.2
R-2.13.0
R-2.8.1

— resources

EE R G S

e bio
— hmmer
— ncbi

Things were laid out originally by Matthew Shotwell and Adam Richards.
There has been discussions about changing the way things look. These discus-
sions have also covered upgrades. While there has been much discussions, there
is little, if any, monies being spent towards this. That’s why all there is at the
moment is discussion.

5 Parallel Processing

Parallel Processing

e Advantages
e Problems

e The two types

"There are 3 rules to follow when parallelizing large codes. Unfortunately, no one knows what these rules are.”

—|[W. Somerset Maugham, Gary Montry

http://www.cs.sandia.gov/

Advantages

8 seconds

s aaa

32seconds

Author Unknown

This image shows the major advantage of using Parallel Processing, the time
savings. Achieving this performance improvement isn’t guaranteed as certain
things can make one/more nodes require more time than others.

Problems

e Hard to implement

— Critical Regions

— Race Conditions

e Knowing what you can parallelize.

"With great power comes great responsibility” This stuff isn’t easy, don’t
expect it to be. You will not get it right all the times. Don’t get discouraged,

feel free to ask for help, that’s what friend(s) and consults with Dr. Google are
for.

Two Types

e Batch Programming

e Truly Parallel

TIMTOWTDI

"Tim Toady’

Two Types

e Batch Programming

e Truly Parallel

TIMTOWTDIBSCINABTE

"Tim Toady Bicarbonate’

There are two types of Parallel Processing. What is referred to as ”Batch
Programming” is really just breaking up a large sequential task into many
smaller tasks. True Parallel programs are written from the ground up to al-
low for processing in a parallel environment. *There’s more than one way to do
it, but sometimes consistency is not a bad thing either’

5.1 Batch Programming

Batch Programming

R CMD BATCH [options] ["--args argl ..."] my_script.R [outfile]

where my_script.R is in the form:

args <- commandArgs(TRUE) #Specifies only trailing args
print(args) #Print args character vector

g(status=0) #Any other number signifies error

This is the command you run to tell R to run a specific R.file in batch mode.
'—slave’ is an option that will suppress the startup banner and other extraneous
output. —args are sent to your script and MUST be included in quotes. If outfile
is not specified, my_script.Rout will be used. The example shows how to obtain
the arguments you passed in and how to end your R scripts in such a way to
determine whether an error occurred.

Bash Scripting Commands

’ Command \ Description ‘
qsub [script.sh] Submit batch jobs
gsub -1 Submit an interactive job
gstat -u [userid] Check status of all of userid jobs
ghold [jobID] Put a job on hold (before it starts)
qrls [jobID] Release a job from hold status
qdel [jobID] Delete a job, running or not

These are the commands you will be using to submit jobs to the cluster
through Sun’s (now Oracle’s) Grid Engine.

10

Batch Script
Very simple example:

#!/bin/sh
#$ -N NameOfYourJob
#$ -M EmailAlias@musc.edu

#$ -m beas

#$ -S /bin/bash
#$ -V

#$ -cwd

cd /path/to/where/my_script/is

R CMD BATCH [options] ["--args argl ..."] my_script.R [outfile]

NameOfYourJob is what will appear in the job queue. EmailAlias is different
than your NetID. While NetID@musc.edu will get the mail to you, it is likely
to break in the future and shouldn’t be used. m specifies when you want to
receive mail: beginning, end, abort, suspended. You can also specify no mail.
V specifies that you want to pass all the environment variables. cwd means
current working directory. What this is doing is calling my_script.R through
the cluster. The paradigm here is to code your script in a way where you can
divvy up sections of the problem by changing the arguments. Then, create
one batch file per argument division. If creating one batch file per division is
complicated (i.e., too many to type), feel free to create a program that will do
it for you.

An Intro to Homework

e On the class website, you will find five files.

— Assignment (the PDF of this portion of the talk)

— Genome input file — 50000 ’Chromosome’ file with 3000 'nucleotides’
/ ’Chromosome’ (144MB)

— mineAminos.R (the single threaded version — shown on next slide)
— mineAminos.batch.R (the batch script version of the above file)

— create.batchfile.R (a program that will create the batch files you will
need to process through the Sun Grid Engine)

This homework will expose you to two things, the batch processing system
(Sun Grid Engine) and Rmpi (more on that later). You are to compare the
results and time of the single threaded version to two things — the batch version
(run with different number of ’slaves’) and an Rmpi version. While there is a
program to create the batch files that you will need to run through the Sun Grid
Engine, you are responsible for creating a program that can 'reduce’ the output
of each in a way that makes it comparable to the single-threaded version.

11

mineAminos.R (single-threaded)

ChromosomeLength = 3000
genome <- scan("genome.txt", what=character(ChromosomeLength))
total <- length(genome)
AminoAcids <- 1ist()
for (i in 1:total) {
chromosome <- genome[il]
for(j in seq(1, ChromosomeLength, 3)) {
amino <- substr(chromosome, j, j+2)
if (!is.null(AminoAcids[[amino]])) {
numAminos <- AminoAcids[[amino]]
AminoAcids[[amino]] <- (1 + as.integer (numAminos))
} else {
AminoAcids[[amino]]l <- 1
¥
}
¥
Names <- sort(names(AminoAcids))
for (i in 1:length(Names)) {
cat(Names[i], paste(AminoAcids[[Names[i]ll], "\n", sep="’), sep="\t")
}
print (proc.time() [3])

The single threaded version. ChromosomeLength is defined so we don’t have
to type the same value more than once. scan is used to read in the file in the
correct manner (one chromosome of 3000 nucleotides per line). The total is
computed once so we don’t compute this non-changing value more than once.
A list is created to store our results.

For each line in the file (which equals the number of chromosomes), we first
grab the chromosome of interest. The we go through and break it into three
character chunks using substr. We check to see if we have seen this amino acid
before. If we have, we add one to its value. If not, the amino acid’s value is set
to one.

When the file has been processed, the Amino Acids are first ordered alpha-
betically. Then, we go through all of the amino acids we found and print out,
the amino acid sequence and the number of times it appeared. paste and cat
are used to work around needing both newline and tab characters in the same
line (paste doesn’t like backslash t as a separator and I didn’t want the line to
end in a separator). Finally the amount of time needed to process the file is
printed.

Output

> source("mineAminos.R")
Read 50000 items

aaa 780293
aac 781510
aag 781449
aat 779933
aca 779984
ttc 781373
ttg 780609
ttt 782149
elapsed
2017.413

12

An example of the output. The first line comes from scan() the rest is the
output we have instructed our program to use. Note the amount of time listed.
That is in seconds. How many minutes is it?

mineAminos.batch.R

ChromosomeLength = 3000

genome <- scan("genome.txt", what=character(ChromosomeLength))
total <- length(genome)

AminoAcids <- list()

Args <- commandArgs (TRUE)
Beginning <- as.integer (Args[1])
Ending <- as.integer(Args[2])
for (i in Beginning:Ending) {

chromosome <- genome[il
for(j in seq(1, ChromosomeLength, 3)) {
amino <- substr(chromosome, j, j+2)
if (!is.null(AminoAcids[[amino]])) {
numAminos <- AminoAcids[[amino]]
AminoAcids[[amino]] <- (1 + as.integer(numAminos))
} else {
AminoAcids [[amino]] <- 1
}
}
}
Names <- sort(names(AminoAcids))
for (i in 1:length(Names)) {
cat(Names[i], paste(AminoAcids[[Names[i]1], "\n", sep=’), sep="\t")
}
print (proc.time () [3])

The batch version. The items in red mark the changed lines between this
and the single threaded version.

create.batchfile.R
Feel free to review this file. It is not coded efficiently, but it gets the job
done (or does it?). This is an example of how you should run it:

R CMD BATCH --vanilla --slave ’--args $NumSlaves $Name $EmailAlias’ create.batchfile.R

You will have to run it with at least three different NumSlaves so you can compare the times to the single
threaded version. You will also have to sum the outputs from each run to compare them to the single-threaded
version.

Let’s try it ...

At this point, I will log into the cluster and show you the code examples in

action.

Extra Credit!

5.2 True Parallel Processing
library(” Rmpi”)

Load the R MPI package if it is not already loaded.
if (!is.loaded("mpi_initialize")) {
library ("Rmpi")

Spawn as many slaves as possible
mpi.spawn.Rslaves()
In case R exits unexpectedly, have it automatically clean up

resources taken up by Rmpi (slaves, memory, etc...)
.Last <- function(){

13

http://cran.r-project.org/web/packages/Rmpi/index.html

if (is.loaded("mpi_initialize")){
if (mpi.comm.size(1) > 0){
print("Please use mpi.close.Rslaves() to close slaves.")
mpi.close.Rslaves()

print("Please use mpi.quit() to quit R")
.Call("mpi_finalize")

}
Tell all slaves to return a message identifying themselves
Result <- mpi.remote.exec(paste(mpi.get.processor.name(),"is",mpi.comm.rank(),"of",mpi.comm.size()))
print (Result)
Tell all slaves to close down, and exit the program
mpi.close.Rslaves()
mpi.quit(save="no"
The Rmpi library is housed at http://cran.r-project.org/web/packages/Rmpi/index.html.
However this modified example came from http://math.acadiau.ca/ ACMMaC/Rmpi/index.html.
This is a very simplified example, but it will be stepped through so you know

what each section does.

CLEMSON Example:

Parallelizing Code

Calculating pi by numerical integration:

1+ x2 4

E | T
J’ —— dx = arctan(1) — arctan(0) = arctan(1) = —
0

T . # intervals 4
[1t = a/Gaend Py
|] m R Z T+ / intervals

| b h interval — 0.5

where x = ——
l # intervals
0 L

Start with the serial version:
Pi.R

Galen Collier (galen@clemson.edu)

My thanks for Galen for this idea. We will show how to evaluate pi (3.1415926)
using this library. This slide, in addition to allowing me to give credit, illustrates
the general idea. Thanks to the wonderful world of trigonometry, we know pi
is linked to arctangent because the arctangent of one is pi / 4. We also know

the derivative of arctan is fol 1+%daﬂ. This and the trapezoidal rule allows us to
estimate pi by the formula seen here. We’ll quickly review the single threaded
code:

intervals <- as.integer(readline("Please enter the number of intervals: "))

computeInterval <- function(intervals) {
ysum <- 0.0;
for (i in 1:intervals) {
xi <- (1.0/intervals)*(i+0.5)
ysum <- ysum + 4.0/(1.0+xi*xi)

myarea <- ysumx(1.0/intervals)
return(myarea)

}

Result <- computelnterval(intervals)
print (paste("Area is", Result))

14

Simple enough, right? readline takes input from the user. as.integer does
what you expect. We have a function that does all the math and returns back
what was computed. Then we call our function and print out the results. Let’s
see what we need to change in order to make this an Rmpi version...

if (!is.loaded("mpi_initialize")) { #Added

library("Rmpi") #Added
} #Added
mpi.spavn.Rslaves () #Added

intervals <- as.integer(readline("Please enter the number of intervals: "))

computelnterval <- function(intervals) {

rank <- mpi.comm.rank() #Added

size <- mpi.comm.size() #Added

size <- size - 1 #Added WHY IS THIS NEEDED?
ysum <- 0.0;

for (i in seq(rank, intervals, by=size)) {
xi <- (1.0/intervals)*(i+0.5)
ysum <- ysum + 4.0/(1.0+xi*xi)

}

myarea <- ysum#(1.0/intervals)

return(myarea)
}
mpi.bcast.Robj2slave(intervals) #Added
mpi.bcast.Robj2slave (computeInterval) #Added
#Changed

Result <- mpi.remote.exec(computeInterval(intervals))

area <- apply(Result, 1, sum) #Added
print(paste("Area is", area)) #Changed (slightly)
mpi.close.Rslaves() #Added
mpi.quit(save="no" #Added

This example estimates PI depending on how the number of intervals are
selected. Rmpi makes sure they the question and printouts only happen on the
node with rank 0, why? mpi.bcast.Robj2slave broadcasts that variable to all
the slave nodes in the cluster. mpi.remote.exec tells Rmpi to run that function
on all the slaves. The result comes back as either a matrix/list depending on
the result type. apply has to be used to reduce the Nodes will BLOCK at these
steps. Also note how the for loop is written. Make sure you understand it.

Homework (cont.)

e Now that you’ve seen examples, you have to apply what you have learned
to the homework. You are asked to take the single threaded version of
mineAminos and convert it to an Rmpi version.

e Hints:

— Run a different ’Chromosome’ on a different slave. (Compare i’ to
'rank’)

— The results returned by mpi.remote.exec will be a ’list-of-lists’ use
as.matrix(as.numeric(Results[i])) to convert to matrix columns

— Get started early!
e GOOD LUCK!

Feel free to ask me questions. Email would be best.

15

Final Thoughts
|We're just getting started!|

As mentioned before, this is just the beginning. Hadoop is something we are
working on over at OBIS and uses off-the-shelf commodity hardware to create
clusters. It is backed by Google and others.

6 Questions

Do you have a question(s)?

16

http://cran.r-project.org/web/views/HighPerformanceComputing.html
http://hadoop.apache.org/

	Opening
	Overview
	Introduction
	Cluster
	Parallel Processing
	Batch Programming
	True Parallel Processing

	Questions

