############################################################ ### R code for Stats Computing 1 lecture on Bioconductor ### ### ### ### Date: 4/4/2013 ### ############################################################ ### Installing bioconductor source("http://bioconductor.org/biocLite.R") biocLite() biocLite("Biobase") library(Biobase) ### Help for bioconductor packages(i.e. vignettes) help(Biobase) library(help=”Biobase”) browseVingettes(package=”Biobase”) ### Example of data and meta-data in bioconductor data(sample.ExpressionSet) sample.ExpressionSet class(sample.ExpressionSet) ### S3 class object x<-rnorm(100); y<-rnorm(100) fit<-lm(y~x) class(fit) #slotNames(fit) names(fit); fit$coefficients class(sample.ExpressionSet) names(sample.ExpressionSet) ###Working with an S4 class object in R slotNames(sample.ExpressionSet) sample.ExpressionSet@experimentData ###Looking at features of the data abstract(sample.ExpressionSet) #Variable names of the data varMetadata(sample.ExpressionSet) #Names of the genes featureNames(sample.ExpressionSet) #Expression values for the genes exprs(sample.ExpressionSet) ### Visulaizing the data dim(sample.ExpressionSet) plot(density(exprs(sample.ExpressionSet)[,1]), xlim=c(0,6000), ylim=c(0, 0.006), main="Sample densities") for (i in 2:25){ lines(density(exprs(sample.ExpressionSet)[,i]), col=i) } ### Subsetting the data sample.ExpressionSet$sex subESet<-sample.ExpressionSet[1:10,] exprs(sample.ExpressionSet)[1:10,] exprs(subESet) ### Subsetting on gender f.ids<-which(sample.ExpressionSet$sex=="Female") femalesESet<-sample.ExpressionSet[,f.ids] ### Subsetting on AFFX genes using the grep command AFFX.ids<-grep("AFFX", featureNames(sample.ExpressionSet)) AFFX.ESet<-sample.ExpressionSet[AFFX.ids,]