
1

Changing the Shape of Your Data:  PROC TRANSPOSE vs. Arrays

Bob Virgile
Robert Virgile Associates, Inc.

Overview

To transpose your data (turning variables into
observations or turning observations into
variables), you can use either PROC TRANSPOSE
or array processing within a DATA step.  This
tutorial examines basic variations on both
methods, comparing features and advantages
of each.

A Simple Transposition

Let's begin the analysis by examining a simple
situation, where the program should transpose
observations into variables.  In the original data,
each person has 3 observations.  In the final
version, each person should have just one
observation.  In the "before" picture, the data
are already sorted BY NAME DATE:

NAME DATE
Amy Date #A1
Amy Date #A2
Amy Date #A3
Bob Date #B1
Bob Date #B2
Bob Date #B3

In the "after" picture, the data will still be sorted
by NAME:

NAME DATE1 DATE2 DATE3
 Amy Date #A1 Date #A2 Date #A3
Bob Date #B1 Date #B2 Date #B3

The PROC TRANSPOSE program is short and
sweet:

  PROC TRANSPOSE DATA=OLD OUT=NEW
       PREFIX=DATE;
       VAR DATE;
       BY NAME;

The PREFIX= option controls the names for the
transposed variables (DATE1, DATE2, etc.)

Without it, the names of the new variables
would be COL1, COL2, etc.
Actually, PROC TRANSPOSE creates an extra
variable, _NAME_, indicating the name of the
transposed variable.  _NAME_ has a value of
DATE on both observations.  To eliminate the

extra variable, modify a portion of the PROC
statement:

  OUT=NEW (DROP=_NAME_)

The equivalent DATA step code using arrays
could be:

  DATA NEW (KEEP=NAME DATE1-DATE3);
  SET OLD;
  BY NAME;
  ARRAY DATES {3} DATE1-DATE3;
  RETAIN DATE1-DATE3;
  IF FIRST.NAME THEN I=1;
  ELSE I + 1;
  DATES{I} = DATE;
  IF LAST.NAME;

This program assumes that each NAME has
exactly three observations.  If a NAME had
more, the program would generate an error
message when hitting the fourth observation for
that NAME.  When I=4, this statement
encounters an array subscript out of range:

  DATES{I} = DATE;

On the other hand, if a NAME had only two
incoming observations, the transposed
observation for that NAME would also include
the retained value of DATE3 from the previous
NAME.  The following section, How Many
Variables Are Needed?, will examine this issue in
more detail.

Certainly the DATA step code is longer and
more complex than PROC TRANSPOSE.  A
slightly shorter version would be:

  DATA NEW (KEEP=NAME DATE1-DATE3);
  ARRAY DATES {3} DATE1-DATE3;
  DO I=1 TO 3;
     SET OLD;
     DATES{I} = DATE;
  END;

While unusual, it is perfectly legal to place the
SET statement inside a DO loop.  In that way, the
program eliminates the need to retain variables,
since the program never reinitializes DATE1
through DATE3 to missing until it returns to the
DATA statement.  For each NAME, the DO loop
reads all incoming observations, assigning



2

values to DATE1 through DATE3.  Then the DATA
step outputs the transposed observation, returns
to the DATA statement, and resets DATE1
through DATE3 to missing.

The advantages of each method at this point:

      PROC TRANSPOSE uses a simpler
program.

      The DATA step has more flexibility.  For
example, it can perform calculations at
the same time it transposes the data.  If
the incoming data set contains
additional variables, the DATA step can
calculate the lowest, highest, or mean
value of those variables for each NAME,
and include them in the transposed
data set.

How Many Variables Are Needed?

So far, the DATA step has relied on two major
assumptions:

      Each NAME has the same number of
observations, and

      We know what that number is.

Often, neither assumption is true.  For example,
consider a slight change to the incoming data:

NAME DATE
Amy Date #A1
Amy Date #A2
Bob Date #B1
Bob Date #B2
Bob Date #B3

Since Amy now has just two observations, the
"after" picture will contain a missing value for
DATE3:

NAME DATE1 DATE2 DATE3
Amy Date #A1 Date #A2 .
Bob Date #B1 Date #B2 Date #B3

In that case, PROC TRANSPOSE has a major
advantage:  the program does not have to
change!  Automatically, PROC TRANSPOSE
creates as many variables as are needed.

The DATA step, on the other hand, requires
significant changes.  First, an initial step must
calculate and capture as a macro variable the
largest number of observations for any NAME.

Here is one approach:

  PROC FREQ DATA=OLD ORDER=FREQ;
  TABLES NAME / NOPRINT OUT=TEMP;

  DATA _NULL_;
  SET TEMP;
  CALL SYMPUT('N',
       COMPRESS(PUT(COUNT,3.)));
  STOP;

The output data set TEMP contains one
observation per NAME, with the variable COUNT
holding the number of observations for that
NAME.  Because of the ORDER=FREQ option on
the PROC statement, the first observation
contains the largest value of COUNT.  So the
DATA step can read that observation, capture
COUNT as a macro variable, and then stop
executing.

In some cases, the programmer will know this
largest number, so the program won't need to
calculate it.  Most of the time, however, the
program will need the extra steps; either the
programmer doesn't know the largest number
of observations per NAME, or "knowing" is
unreliable and the program should double-
check.  Offsetting this disadvantage of the
DATA step is the fact that PROC TRANSPOSE
doesn't reveal how many variables it created
(except for notes in the SAS log about the
number of variables in the output data set).  The
programmer may need to run a PROC
CONTENTS later to discover the structure of the
output data set.

Once the program has calculated the largest
number of observations per NAME, the
subsequent DATA step must still utilize the
information.  The DATA step's complexity varies
depending on which programming style it uses.

By continuing to place the SET statement inside
a DO loop, the DATA step remains short:

  DATA NEW (KEEP=NAME DATE1-DATE&N);
  ARRAY DATES {&N} DATE1-DATE&N;
  DO I=1 TO &N UNTIL (LAST.NAME);
     SET OLD;
     BY NAME;
     DATES{I} = DATE;
  END;

Because of the DO UNTIL condition, the loop
ends after two iterations when AMY has only
two incoming observations.

Instead of this DATA step, the program could try
to stick with the original, longer DATA step.  In
that case, allowing for different numbers of



3

observations per NAME leads to more involved
programming:

  DATA NEW (KEEP=NAME DATE1-DATE&N);
  SET OLD;
  BY NAME;
  ARRAY DATES {&N} DATE1-DATE&N;
  RETAIN DATE1-DATE&N;
  IF FIRST.NAME THEN I=1;
  ELSE I + 1;
  DATES{I} = DATE;
  IF LAST.NAME;
  IF I < &N THEN DO I=I+1 TO &N;
     DATES{I}=.;
  END;

The DO group in the last three lines handles
NAMEs which don't need all &N variables.  It
resets to missing retained date variables which
were needed by the previous NAME.

What's In a Name?

Sometimes, the number of incoming
observations varies dramatically from one
NAME to the next.  For example, one NAME
might contain 100 observations, while the other
NAMEs contain just three.  In that case,
transposing the data would create 100
variables (DATE1 through DATE100), most of
which are missing on most observations.   In
these types of cases, compressing the
transposed data will help save storage space.
When Version 7 of the software becomes
available, it will supply better compression
algorithms for compressing numeric data.  (In
practice, the vast majority of transpositions
involve numeric variables.)

PROC TRANSPOSE cannot change its methods:
the result will always be 100 new variables.  A
DATA step, however, can produce many
different forms to the transposed data.  One
possibility is to create just 20 new variables
(DATE1 through DATE20), but create multiple
observations per NAME as needed.  In the
transposed data, then, NAMEs with up to 20
incoming observations would need just 1
transposed observation, NAMEs with 21 to 40
incoming observations would need 2
transposed observations, etc.  The variables in
the transposed data set would be:

    NAME
    DATE1 - DATE20
    OBSNO

OBSNO numbers the observations (1, 2, 3, 4, 5)
for the current value of NAME.

To create this new form to the transposed data,
the DATA step requires very little change:

  DATA NEW (KEEP=NAME DATE1-DATE20);
  ARRAY DATES {20} DATE1-DATE20;
  OBSNO + 1;
  DO I=1 TO 20 UNTIL (LAST.NAME);
     SET OLD;
     BY NAME;
     IF FIRST.NAME THEN OBSNO=1;
     DATES{I} = DATE;
  END;

This DATA step has two ways it can exit the DO
loop and output an observation.  Either it fills in
values for all 20 array elements, or it encounters
the last observation for a NAME.

Transposing Two Variables

As the situations become more complex, a
necessary skill for the programmer is the ability
to visualize the data before and after
transposing.
Consider the case where the program
transposes multiple variables.  Here is the
incoming data set:

NAME DATE RESULT
Amy Date #A1 Res #A1
Amy Date #A2 Res #A2
Amy Date #A3 Res #A3
Bob Date #B1 Res #B1
Bob Date #B2 Res #B2
Bob Date #B3 Res #B3

PROC TRANSPOSE requires little change.  This
would be the program:

  PROC TRANSPOSE DATA=OLD OUT=NEW;
       VAR DATE RESULT;
       BY NAME;

The output data set would contain two
observations per NAME, one for each
transposed variable:

NAME _NAME_ COL1 COL2 COL3
Amy DATE Date#A1 Date#A2 Date#A3
Amy RESULT Res#A1 Res#A2 Res#A3
Bob DATE Date#B1 Date#B2 Date#B3
Bob RESULT Res#B1 Res#B2 Res#B3

For practical purposes, this structure is a
drawback.  Most analyses require one
observation per NAME, with all seven variables:

   NAME
   DATE1-DATE3
   RESULT1-RESULT3



4

The DATA step can easily create the more
desirable structure:

  DATA ALL7VARS
         (DROP=I DATE RESULT);
  ARRAY DATES   {3} DATE1-DATE3;
  ARRAY RESULTS {3} RESULT1-RESULT3;
  DO I=1 TO 3 UNTIL (LAST.NAME);
     SET OLD;
     BY NAME;
     DATES  {I} = DATE;
     RESULTS{I} = RESULT;
  END;

 While PROC TRANSPOSE can also create the
more desirable form, it cannot do so in one
step.  The possibilities include:

     Run PROC TRANSPOSE just once (as
above), and use a more complex DATA
step to recombine the results, or

      Run PROC TRANSPOSE twice, and merge
the results.

The first method might continue (ater PROC
TRANSPOSE) with:

  DATA ALL7VARS (DROP=_NAME_);
  MERGE NEW (WHERE=(_NAME_='DATE')
             RENAME=(COL1=DATE1
                     COL2=DATE2
                     COL3=DATE3))
        NEW (WHERE=(_NAME_='RESULT')
             RENAME=(COL1=RESULT1
                     COL2=RESULT2
                     COL3=RESULT3));
  BY NAME;

There is no shortcut for renaming variables
individually.  The software does not support
renaming a list of variables in this fashion:

  RENAME=(COL1-COL3=DATE1-DATE3)

However, the original PROC TRANSPOSE could
have reduced the renaming load by adding
PREFIX=DATE.  If the number of variables being
renamed is sufficiently large, it would pay to
write a macro to generate sets of renames,
based on a prefix coming in (such as COL), a
prefix on the way out (such as DATE), and a
numeric range (such as from 1 to 3).

The alternate approach using PROC TRANSPOSE
would transpose the data twice, transposing a
different variable each time.  Afterwards,
MERGE the results.  Here is an example:

  PROC TRANSPOSE DATA=OLD OUT=TEMP1
       PREFIX=DATE;
       VAR DATE;
       BY NAME;

  PROC TRANSPOSE DATA=OLD OUT=TEMP2
       PREFIX=RESULT;
       VAR RESULT;
       BY NAME;

  DATA ALL7VARS (DROP=_NAME_);
  MERGE TEMP1 TEMP2;
  BY NAME;

This program may be simpler; that judgment is in
the eye of the beholder.  However, processing
large data sets three times instead of once can
take a while.

Transposing Back Again

Occasionally a program must transpose data in
the other direction, creating multiple
observations from each existing observation.
Here is the "before" picture:

NAME DATE1 DATE2 DATE3
Amy Date #A1 Date #A2 .
Bob Date #B1 . Date #B3

The "after" picture should look like this:

NAME DATE
Amy Date #A1
Amy Date #A2
Bob Date #B1
Bob .
Bob Date #B3

Notice how the program must handle missing
values.  Missing values at the end of the stream
of dates (as in Amy's data) should be ignored.
However, missing values with a valid DATE
following (as in Bob's data) should be included
in the transposed data.

Under these conditions, PROC TRANSPOSE
cannot do the job!  It can come close:

  PROC TRANSPOSE DATA=BEFORE
       OUT=AFTER (DROP=_NAME_
           RENAME=(COL1=DATE));
       VAR DATE1-DATE3;
       BY NAME;

However, this program creates three
observations for Amy, not two.  Without the
DROP= and RENAME= data set options, the
output data set would have contained:



5

NAME COL1 _NAME_
Amy Date #A1 DATE1
Amy Date #A2 DATE2
Amy . DATE3
Bob Date #B1 DATE1
Bob . DATE2
Bob Date #B3 DATE3

A subsequent DATA step could process this
output, eliminating the third observation for
Amy.  However, if the program is going to
introduce a DATA step, it can use the same
DATA step to transpose the data.  For the
simplified case where no missing values belong
in the output data set, this program would
suffice:

  DATA AFTER (KEEP=NAME DATE);
  SET BEFORE;
  ARRAY DATES {3} DATE1-DATE3;
  DO I=1 TO 3;
     IF DATES{I} > . THEN DO;
        DATE = DATES{I};
        OUTPUT;
     END;
  END;

In this situation, however, Bob requires three
observations, not two.  The embedded missing
value (DATE2, falling between nonmissing values
in DATE1 and DATE3) must also appear in the
output data set.  In that case, a slightly more
complex DATA step would do the trick:

  DATA AFTER (KEEP=NAME DATE);
  SET BEFORE;
  NONMISS = N(OF DATE1-DATE3);
  NFOUND=0;
  ARRAY DATES {3} DATE1-DATE3;
  IF NONMISS > 0 THEN DO I=1 TO 3;
     IF DATES{I} > . THEN NFOUND + 1;
     OUTPUT;
     IF NFOUND=NONMISS THEN LEAVE;
  END;

The N function counts how many of the
variables (DATE1 through DATE3) have
nonmissing values.  As the DO loop outputs
observations, it counts the nonmissing values
that it outputs.  Once the DO loop has output all
the nonmissing values (as well as any missing
values found before that point), the LEAVE
statement exits the loop.

Transpose Abuse

Some programs transpose data because the
programmer finds it easier to work with variables
than with observations.  In many cases, this
constitutes an abuse of PROC TRANSPOSE, and
indicates that the programmer should become

more familiar with processing groups of
observations in a DATA step.

Let's take an example of a program that
transposes unnecessarily.  Using our NAME and
DATE data set, the program should calculate for
each NAME the average number of days
between DATE values.  In every case, the
program has prepared the data first using:

  PROC SORT DATA=OLD;
  BY NAME DATE;

With the observations in the proper order, a
DATA step could easily compute the differences
between DATEs:

  DATA DIFFER;
  SET OLD;
  BY NAME;
  DIFFER = DIF(DATE);
  IF FIRST.NAME=0;

Computing the average of the DIFFER values is
simple.  PROC MEANS could do it:

  PROC MEANS DATA=DIFFER;
  VAR DIFFER;
  BY NAME;

Or, the same DATA step could continue with
additional calculations:

  IF DIFFER > . THEN DO;
     N + 1;
     TOTAL + DIFFER;
  END;
  IF LAST.NAME;
  IF N > 0 THEN MEAN = TOTAL / N;
  OUTPUT;
  N = 0;
  TOTAL = 0;

However, if you really wanted to (or didn't have
the programming skills to choose one of the
methods above), you could transpose the data
to work with variables instead of observations:

  PROC TRANSPOSE DATA=OLD OUT=NEW
       PREFIX=DATE;
  VAR DATE;
  BY NAME;

Assuming you know the maximum number of
transposed variables per NAME is 20, calculate
the differences in a DATA step:



6

  DATA DIFFER;
  SET NEW;
  ARRAY DATES {20} DATE1-DATE20;
  ARRAY DIFFS {19} DIFF1-DIFF19;
  DO I=1 TO 19;
     DIFFS{I} = DATES{I+1} - DATES{I};
  END;

At this point, computing the means is easy.  Just
add to the same DATA step:

  MEAN = MEAN(OF DIFF1-DIFF19);

However, if you enjoy a really long program,
you could always transpose these differences
back the other way:

  PROC TRANSPOSE DATA=DIFFER OUT=FINAL
       (KEEP=NAME COL1
        RENAME=(COL1=DIFFER));
  VAR DIFF1-DIFF19;
  BY NAME;

Finally, the data are ready for the same PROC
MEANS as in the original example:

  PROC MEANS DATA=FINAL;
  VAR DIFFER;
  BY NAME;

Of course, you wouldn't write such an involved
program.  On the other hand, I didn't make up
this example out of thin air!  For some
individuals, the lesson is clear:  learn to process
groups of observations in a DATA step and you
won't have to transpose your data so much.

The author welcomes questions, comments,
and bright ideas on interesting programming
techniques.  Feel free to call or write:

Bob Virgile
Robert Virgile Associates, Inc.
3 Rock Street
Woburn, MA  01801
(781) 938-0307


	Return to TOC

