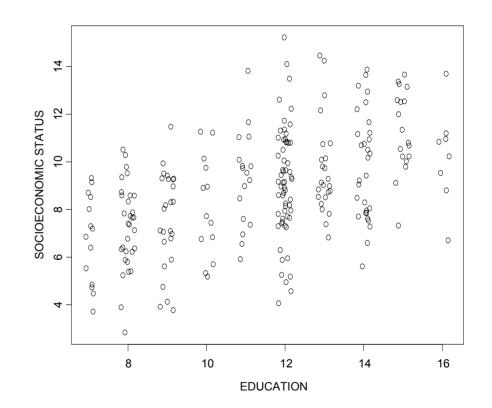
Introduction to Structural Equations


Statistics for Psychosocial Research II Structural Models October 30, 2006

Course Overview

- (1) Structural Regression/Path Analysis
 - (a) "effect mediation" versus "controlling for"
 - (b) causality
- (2) Regression plus measurement structures from last term
 - (a) if we ignore measurement, "item regression"
 - (b) factor analysis: structural equations with latent variables
 - (c) latent class analysis: latent class regression

General Idea

- How does outcome vary with predictors?
- Make inference on hypothesis about how predictors affect outcome
- Predict individual outcomes

Challenge

- How do we measure latent outcomes (and predictors)?
- There are multiple responses
- Approach 1:
 - Y_1, \ldots, Y_n measure the same thing. Treat individually or summarize Y's.
- Approach 2:
 - Call ideal outcome η
 - If we knew η , then $\eta_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots$
 - But we don't know it:
 - infer η from factor analysis or latent class analysis
 - regress η on X's

Three approaches to assessing association between covariates and multiple responses

(1) Summarize then analyze (STA)

(2) Analyze then summarize (ATS)

(3) Summarize AND analyze: (SAA)

- Structural Equations
- 2 parts
 - measurement component
 - structural/regression component

Example: Depression Study Summarize then Analyze (STA)

- Clinical trial of two antidepressants
- Which anti-depressant is more effective for treating depression?
- Depression symptoms were based on the Hamilton Depression Rating Scale (HAM-D).

- 17 Symptoms
 - Depressed mood
 - Guilt feelings
 - suicide
 - Insomnia (x3)
 - Work and activities
 - Psychomotor retardation
 - agitation
 - anxiety
 - Somatic symptoms
 -

For each item, write the correct number on the line next to the item. (Only one response per item)

1. DEPRESSED MOOD (Sadness, hopeless, helpless, worthless)

0= Absent

1= These feeling states indicated only on questioning

2= These feeling states spontaneously reported

3= Communicates feeling states non-verbally—i.e., through facial expression, posture, voice, and tendency to weep

4= Patient reports VIRTUALLY ONLY these feeling states in his spontaneous verbal and non-verbal communication

- _2. FEELINGS OF GUILT
- 0= Absent
- 1= Self reproach, feels he has let people down
- 2= Ideas of guilt or rumination over past errors or sinful deeds
- 3= Present illness is a punishment. Delusions of guilt
- 4= Hears accusatory or denunciatory voices and/or experiences threatening visual hallucinations
 - 3. SUICIDE
- 0= Absent
- 1= Feels life is not worth living
- 2= Wishes he were dead or any thoughts of possible death to self
- 3= Suicidal ideas or gesture
- 4= Attempts at suicide (any serious attempt rates 4)
 - 4. INSOMNIA EARLY
- 0= No difficulty falling asleep
- 1= Complains of occasional difficulty falling asleep—i.e., more than 1/2 hour
- 2= Complains of nightly difficulty falling asleep
 - 5. INSOMNIA MIDDLE
- 0= No difficulty
- 1= patient complains of being restless and disturbed during the night
- 2= Waking during the night—any getting out of bed rates 2 (except for purposes of voiding)
 - 6. INSOMNIA LATE
- 0= No difficulty
- 1= Waking in early hours of the morning but goes back to sleep
- 2= Unable to fall asleep again if he gets out of bed

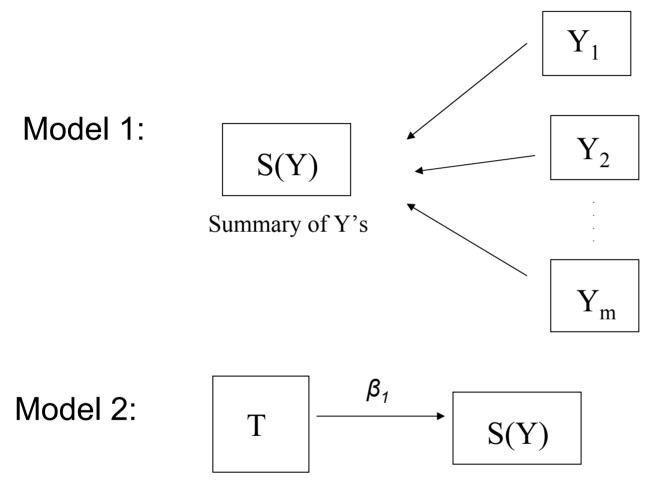
Example: Summarize then Analyze (STA)

- <u>Summarize</u>:
 - Add up the number of symptoms, or "score" the HAM-D.
 - Treat the score as "fixed" or "observed" outcome.
 - But, we know better! It is not measured perfectly.
 - What is the reliability of the HAM-D???
- <u>Analyze</u>: See how the outcome relates to predictor (i.e., treatment)

Summarize Then Analyze

1. Sum up HAM-D score pre and post and take difference:

Pre-treatment score: $Y_{i1} = Y_{i1,1} + Y_{i1,2} + \dots + Y_{i1,21}$ Post-treatment score: $Y_{i2} = Y_{i2,1} + Y_{i2,2} + \dots + Y_{i2,21}$ Difference: $D_i = Y_{i2} - Y_{i1}$


2. Evaluate association with Y_i and treatment

$$D_i = \beta_0 + \beta_1 trt_i$$

where $trt_i = 1$ of treatment A, and 0 if treatment B

3. Make inference about treatment effect based on β_1

STA: Two models estimated separately

"treatment"

STA: so what is the problem???

- We are ignoring that S(Y) is measured with error.
- Note that that S(Y) has reliability less than 1.
- In our example: S(Y) represents an "imperfect measure" of depression with reliability of about 0.88 (depending on population).
- Aren't we then overestimating the variation in our outcome by using S(Y)?
- Recall: $Var(T_x) < Var(X)$
- What effect might that have on the standard error of β_1 ?

Another Approach: Analyze Then Summarize (ATS)

 <u>Analyze</u>: for each of the 21 items in the HAM-D, see if treatment is associated with improvement.

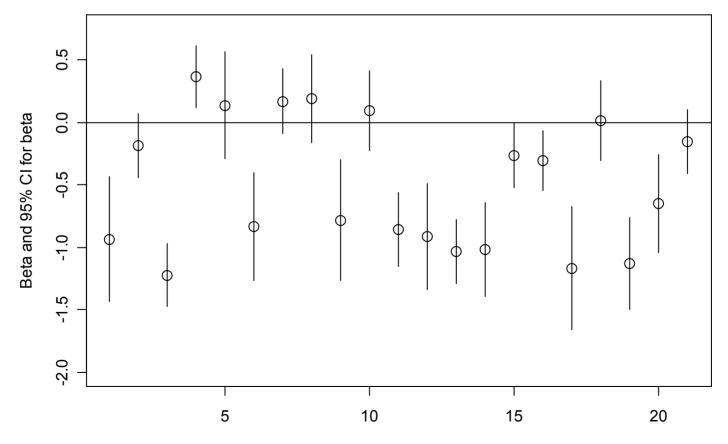
1. Define outcome per item:

$$D_{i,1} = Y_{i2,1} - Y_{i1,1}$$

:
$$D_{i,21} = Y_{i2,21} - Y_{i1,22}$$

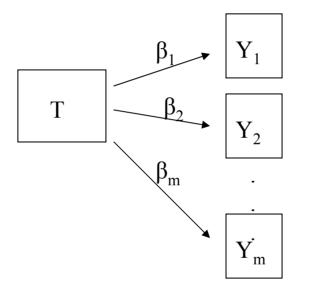
2. Estimate association per item with treatment:

$$D_{i,1} = \beta_{0,1} + \beta_{1,1} trt_i$$


$$D_{i,2} = \beta_{0,2} + \beta_{1,2} trt_i$$

$$\vdots$$

$$D_{i,21} = \beta_{0,21} + \beta_{1,21} trt_i$$

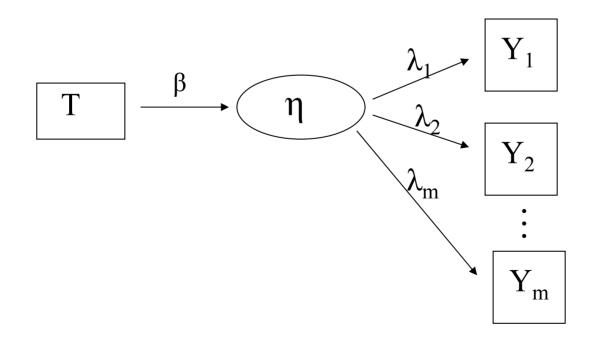

Another Approach: Analyze Then Summarize (ATS)

2. <u>Summarize</u>: Qualitatively or quantitatively evaluate the associations

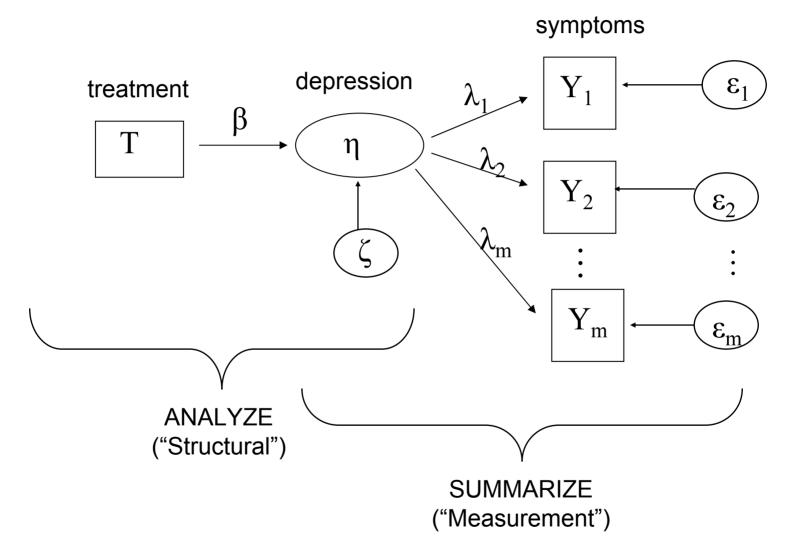
Item Number

Analyze then Summarize

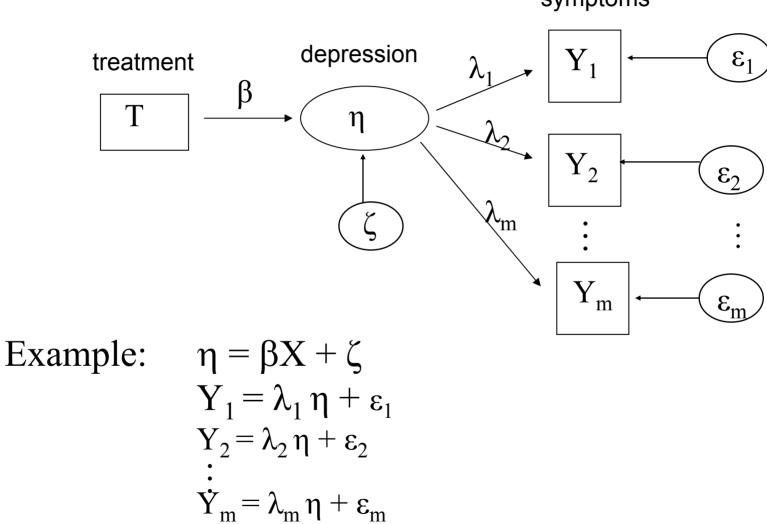
Fit *m* regressions to individually describe association between T and each Y.


Then summarize associations.

So what is wrong with ATS?

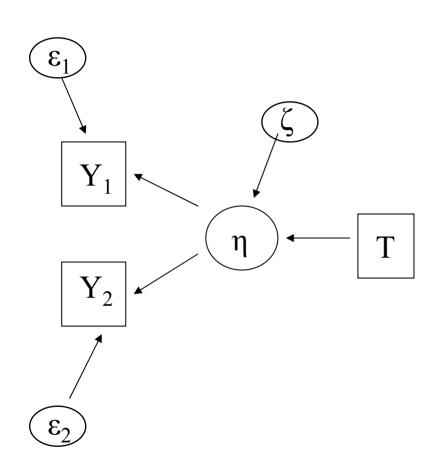

- How do we answer the question: "Which treatment works better?"
- We get individual answers.
- Often hard to summarize after the analysis has been done.
- (More about this in 'Item Regression lecture')

Summarize and Analyze Simultaneously (SAA)


- Fit 'summarize' and 'analyze' components at the same time.
- One big model
- Accounts for measurement error of latent variable

Summarize and Analyze Simultaneously

Summarize and Analyze Simultaneously

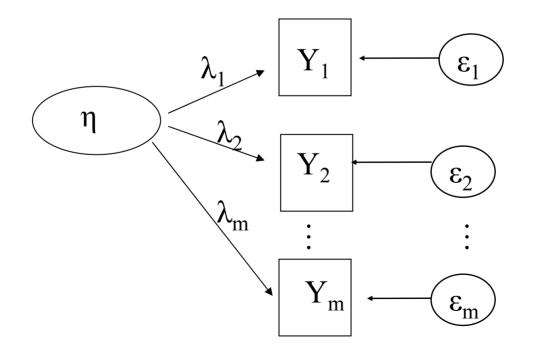


symptoms

Caveat

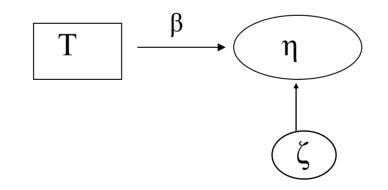
- When is analyze then summarize better?
- What if some treatment affects some of the symptoms but not all of them?
- What does that imply about the measurement?

Path Notation


- Relationships
 - straight arrow (causal)
 - curved arrow (unspecified)

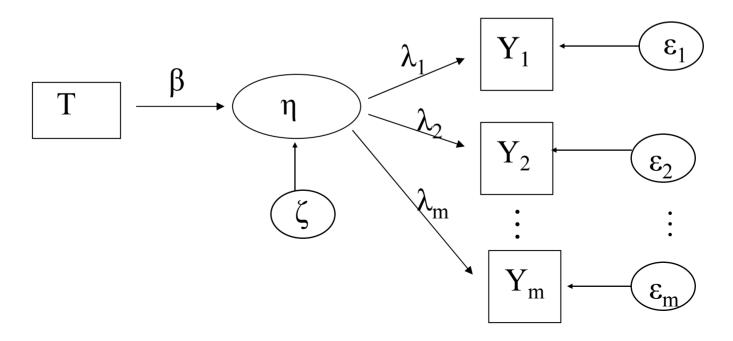
Variables

- circles vs. squares
- exogenous (independent)
- endogenous (dependent)
- Errors
 - one for every endogenous variable
 - unexplained component of predicted variables

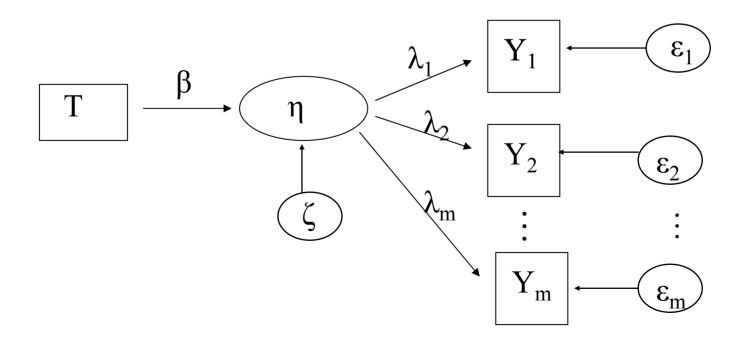

Components of Structural Equation Model

- (A) Measurement Piece
 - how latent variable related to "surrogates"
 - comprised of η 's and Y's

Components of Structural Equation Model


- (B) Structural Piece
 - how latent variable is related to its predictors
 - regression
 - comprised of η 's and T

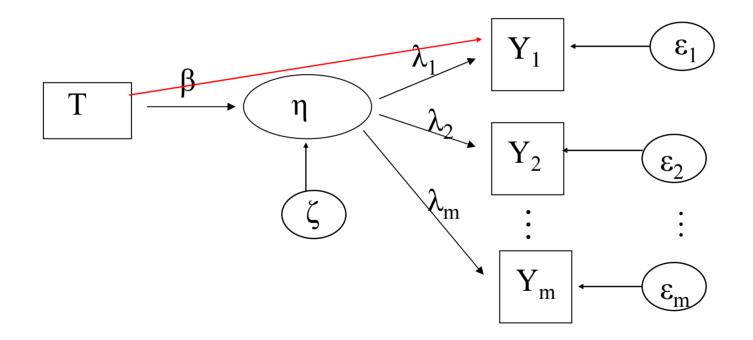
Components of Structural Equation Model


(C) Both components are fit in ONE step

Why better? Does not assume η (i.e., "summary" of Y's) known, which acknowledges measurement error.
Why bad? If model is misspecified, then inference is misleading.

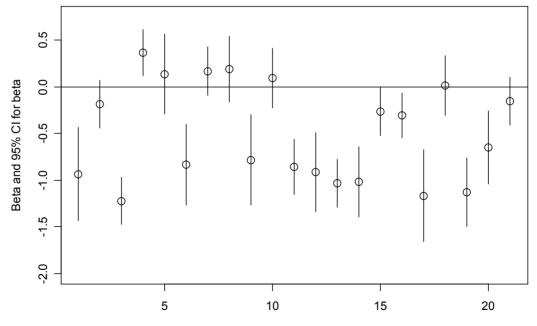
Statistical way of considering relationship between T and Y

$$P(Y = y | T) = \sum_{r=1}^{R} P(Y = y, \eta = r | T)$$
$$= \sum_{r=1}^{R} P(Y = y | \eta = r, T) P(\eta = r)$$



Assumption 1: Non-Differential Measurement

- Equivalent interpretations:
 - covariates do not predict observed responses after controlling for latent status
 - no arrows between T and Y's
 - Y and T independent given η

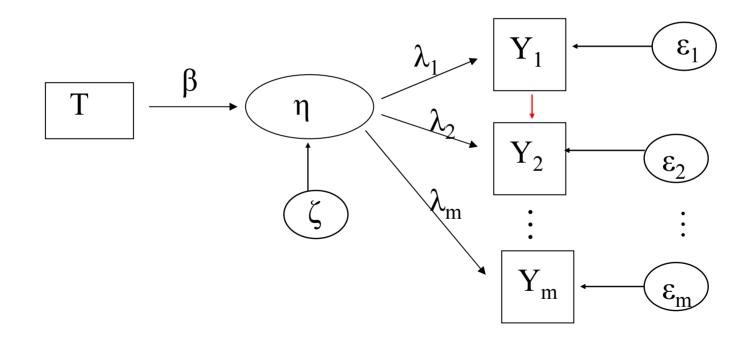

$$P(Y = y \mid \eta, T) = P(Y = y \mid \eta)$$

NOT OK UNDER NON-DIFFERENTIAL MEASUREMENT:

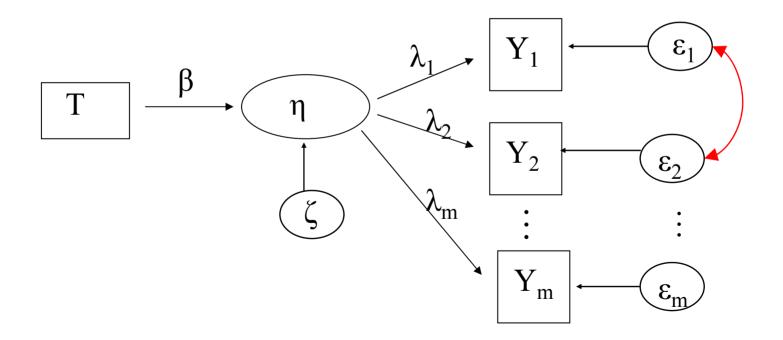
HAM-D Depression Example

- Does treatment affect the "depression" or symptoms?
- Implications for "differential measurement"?

Item Number


Assumption 2: Local/Conditional Independence

Equivalent Interpretations


- latent variable explains all association between observed variables
- no arrows among measurement errors
 observed variables are independent given
 η

$$P(Y_1 = y_1, Y_2 = y_2 \mid \eta) = P(Y_1 = y_1 \mid \eta) P(Y_2 = y_2 \mid \eta)$$

NOT OK UNDER CONDITONAL INDEPENDENCE:

NOT OK UNDER CONDITIONAL INDEPENDENCE:

