Structural Equations with Latent Variables

Session 12, Lecture 8
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Outline

Examples using AMOS

Identification
. a) review

Three useful types of SEMs

— MIMIC model

— multitrait-multimethod SEM
— causal indicators

e Group comparison models
— two-way interactions across two groups
— two-way interactions across more than two groups
— three-way interactions across two groups
— three-way interactions across more than two groups




Rules for Variances

e Var(A + B)=Var(A)+Var(B)+2Cov(A,B)
* Var(A - B)= Var(A)+Var(B)-2Cov(A,B)

Let ¢ be any constant (like, 5)
— Var(c+A)=0 + Var(A) (constants don’t vary)
— Var(cA) = c*Var(A)

Rules for Covariances

Cov(X,Y)=E(XY)-E(X)E(Y)

Cov(c,X)=0
Cov(cX,Y)=cCov(X,Y)
Cov(X+Y,Z)=Cov(X,2)+Cov(Y,Z)




Equations for path diagram: <72>

Xy =4 & + 9, -
Xy =2y & + 0,
X3 =A3,&; + 03

Writing out equations:
Var(x,)= Cov(A;&, + 0y, A&, + 9,) distribute (FOIL)

=Cov(r; &5 A& + Cov(r,E,,0,) + Cov(d,, ;&) + Cov(d,, 6))

= Var(A,, &,) + 2Cov(A,§;,0,) + Var(3,)
*Var(cX) = ¢3(X), also, assume that o is uncorrelated with X

=7 2Var(§)) + 0 + Var(5,)




Similarly,

Var(x,)= A,,*Var(§,) + Var(3,)

Var(x;)=A;,2Var(,) + Var(3,)

Cov(xy,X))=Cov( A&, + 0, A, & +9,)
=Cov(h;&;, Ay &) + Cov (A&, ,0,) + Cov (8, ,1,,&;) + Cov(d,, d,)
No covariance between E£s,0s and 0s are uncorrelated
=212 Cov(€LE) +0+0+0 = Ay A, Var (&)
Similarly,
Cov(x3,X,)= A3\ Var (&)
Cov(x3,X,)= A3\, Var (&)

Why do all these calculations?

 Facilitates deeper understanding
* Highlights model assumptions

* Aids in determining if model is identified




Is model identified?

* 3 indicator rule?
\ at least one factor
\ at least 3 indicators
\ each x pointed to by only one &
' &s are uncorrelated

Xy X2 X3

* But, on a deeper level, why is a 3 indicator model identified?

How many things are we estimating?

vars of exog. vars: 1
vars of errors for endog: 3
direct effects: 3
double-headed arrows: 0
Total to be Estimated: 7

—+

As: (direct effects) we know:
Cov(x,,X;)= Ay Ay, Var (&)
Cov(X3,X,)= Ay A, Var (&)
Cov(x3,%,)=Ay;h, Var (&)

4 unknowns, 3 equations

ST




Variances of 0s

We know:

3= X;- A & Var(3,) = Var(x,) - A, Var(§,)
3, =X 1§, Var(3,) = Var(x,) - A,,> Var(§,)
05= X5 - A&, Var(8,) = Var(x;) - A;,% Var(§))

Variance of &;:

We knOW: Val’(fl) — Var('xl) _Zvar(él)

Var(x,) = A,,2Var(&,) + Var(3,) : A
Var(x,)—Var(3d,)

Var(x,)= A, 2Var(&,) + Var(s,) Var(g)) = 7

Verdict: as things stand, we don’t have enough information to
Estimate all the parameters. Per t-rule: 3(4)/2 =6

Solution: Fix one of the parameters values to 1

Set Var(§;)to 1,orai e.g., A;;to 1

Unstandardized estimates

Set Var(g,) to 1 Set A, to 1
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standardized estimates

Set Var(&;) to 1 Set A to 1

depression depression

b oo

bbd

It doesn’t matter what you fix (with standardized estimates).

General identification rules for confirmatory factor analysis:
1) t-rule

2) Three indicator rule. Model passes rule if:
a) it has three or more indicators per latent variable
b) each row of A, with one and only one nonzero
element
c) a diagonal Oy

3) Two indicator rule. Model passes rule if:
a) factor complexity of each x is one
b) no zero elements in @
¢) O is diagonal




General identification rules for models that incorporate
both structure equations and measurement models.

a) t-rule

b) two-step rule
1) step 1:

2) step 2:

If both the measurement model and the structural model
are identifiable then the model as a whole is identifiable.

Two-Step Rule examples




Step 1: Measurement Model (has observed variables), doesn’t
assume anything about relationship between latent variables:

OK per
W 2-indicator rule
s B [y
o, J, € &

Step 2: Structural Model consists of the relationships between
latent constructs — think of the latent variables as observed (in
That their variances are known)

OK per

@ < > «— Null B rule

Bollen, pg 326-9

TWO STEP RULE EXAMPLES:

Bollen, pg 324




STEP 1: CFA

OK per
3-indicator rule

STEP 2: Structural Part

Null B-rule:
Recursive Rule:

T-Rule:

vars of exog. vars: 0

vars of errors for endog: 3

direct effects: 4

double-headed arrows: 0 +
7

Sample Moments = (3*4)/2=6
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MIMIC (Multiple Indicators, Multiple Causes)

(from on Gallo, J.J., P. V. Rabins, and J. C. Anthony. 1999. Psychological Medicine 29:341-350)

sadness

appetite criterion

sleep criterion

fatigue criterion

education depression L
psychomotor criterion

cognition anhedonia criterion

worthlessness criterion
married

trouble concentrating

thoughts of death or suicide

Three major components to the model: causes (left) indicators (right)

Latent construct (middle).

Quality of Life Research, 7, pp. 387-397

The proxy problem: child report versus parent
report in health-related quality of life research

N. C. M. Theunissen*, T. G. C. Vogels, H. M. Koopman,
G. H. W. Verrips, K. A. H. Zwinderman, S. P. Verloove-Vanhorick
and J. M. Wit
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Figure 3.
(traits).

(methods)

Child

report

Parent

report

MTMM Pearson correlations between the child and parent reports (methods) for seven HRQoL scales

Child report Parent report
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Identification of multi-trait multi-method SEMs

Must have at least three traits and three methods.

(Alwin, 1973)

) Y 5
X. \\ /}', Y. }\ /z, /\ Zﬂ\
t f 1

Figure 1. Path diagram for the multitrait-multimethod matrix (p = 3, m = 3).
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latent traits measures methods

cbody
ohysical complaints cmotor
cauto a
motor functioning ccognit — child report
csocial E=—Es
autonomy
cemopos
cognitive functioning cemoneg f-—e7
E8
pbody
social functioning pmotor
pauto E1l
positive emotions poognit E1l parent report
. psocial f&—E12
negative emotions

pemopos

E13
pemoneg
E14

Multiple-Group Comparisons (Interaction Effects)
1) Used to study interaction effects
2) SEMs well-suited to study interaction effects because they take
measurement error into account
a) example: suppose you had a four-indicator measure of self-esteem and
you hypothesized that it had a different relationship with depression for
high SES and low SES adults [a dichotomous variable]. How would you
go about testing this hypothesis with regular regression analysis?
1) first, you would have to a priori add the self-esteem indicators
2) second, you would have to use product terms, which compound
problems of reliability.
a) we know that the V,;=p,V ;) and V ,,=p,V 5,
b) so, then, the true variance of V1 times V2 (if they are not
correlated) = p,p,V,)V )
b) recap:
1) first, with an SEM it is possible to measure latent variables
2) second, with an SEM it is possible to perform group comparisons
and avoid the compounding of measurement error that is inherent
in product terms.
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Multiple-Group Comparisons: An Interaction Across Two Groups

1) Does gender modify the relationship between personableness
and the democratic candidate’s success in winning a debate?
a) check to make sure that the measurement models do not
differ between groups.

b) calculate model fit using a multiple group solution with no
constraints across groups (except for measurement model)

c¢) calculate model fit using a multiple group solution with an
across-group constraint imposed to reflect the interaction
effect.

d) calculate the difference in model fit by comparing the fit
index for the constrained solution with the fit index for the
unconstrained solution.

Example: Ratings of a political debate

p1
p2
a
2

Number of parameters to estimate = 17
Straight arrows: 9 variances: 7

Curved arrows: 1
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Multiple group comparison: Men and Women

Group 2: men
Number of parameters to estimate: (17*2 = 34)

Multiple group comparison:
Saturated model: No constraints in parameters

Default model: All model parameters differ across groups
(males and females)

Model #2: Measurement model, in which cfas are
constrained to be equal across groups (males and females)
a) Iplf=lpIm; Ip2f=lp2m;
Iq1f=1q1m; 1q2f=1g2m:;
Is1f=1s1m; 1s2f=Is2m; 1s3f=1s3m

Model #3: Same as Model #2, except that parameter of
interest is constrained to be equal across groups
a) additional constraint: ponsmale=ponsfem
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Question 1: Measurement Model

Before looking to see if the relationship
between “personableness” and “success” is
the same for males and females, we first
need to makes sure that the latent constructs
of “personableness” and ““success” are the
same.

Question 1: Measurement Models

SUCCESS
SUCCESS
pl
7
p2
ql
7
q2
sl
52

53

Females

<--- personable
<--- quality

<--- personable
<--- personable

<---  quality
<--- quality
<--- SICCESS
<---  SUCCess
<--- SICCESS

Estimate
746
391
868
816
744
896
973
970
974

SUCCEss T---
SUCCESS “---
pl <o
p2 EA
gl <o
g2 E
sl o
52 -
s3 o

Males

Estimate
personable 523
quality 548
personable 841
personable 863
quality 845
quality 856
SUCCESS 940
SUCCESS 929
SUCCESS 972
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Question 1: Measurement Models

P value
CMIN Assuming that the Default model model is
correct, the probability of getting a discrepancy as
large as 15.257 is .851.
Model NPAR. CMIN DF P CMINDF
Defanlt model 34 15257 22 851 693
Model Number 2 27 16.792 29 965 579

Likelihood Ratio Test (for nested models):
Default: if AIC = 83.26, and s=34, then —2LLL.=83.26-68=15.26
#2: if AIC=70.79, and s=27, then —2LLL.=70.79-54=16.79

Difference = 1.53~y2 with 7 d.f.
So, constrained model is not a significantly worse fit.
Caveat: this is an asymptotic result which needs a large N.

Question 2: Structural Model

OK, so assuming the measurement model is the same across
Males and females, now we can ask if the relationship between
Personableness and success is the same across gender.

Fit two models (both with equal measurement models)

1) Where ponsfem and ponsmale are both estimated (already
done, this was model # 2

2) Where ponsfem and ponsmale are forced to be equal (model 3)
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Constraining a Weight
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Question 2: Structural Model

Regression Weights: (grpfem - Model Number 2)

Estimate S.E. CR. P Label
success <--- personable 1.581 182 8676 *** ponsfem
success <--- quality 841 149 5663 ***  gonsfem

Regression Weights: (grpmale - Model Number 2)

Estimate SE. CR. P Label
success <--- personable TJ70 0 120 6411 *** ponsmale
success <--- quality 802 122 6549 *** gonsmale




Question 2: Structural Model

CMIN
Model NPAR CMIN DF P CMIN/DF
Defanlt model 34 15257 22 851 693
Model Number 2 27 16792 29 965 579
Model Number 3 26 41.668 0 076 1.389
Saturated model 56 000 0
Independence model 14 1752220 42 000 41.720

Likelihood Ratio Test (for nested models):
#2: if AIC=70.79, and s=27, then —2LLL=70.79-54=16.79
#3: if AIC=93.67, and s=26, then —2L.1.=93.67-52=41.67

Difference = 24.88~y2 with 1 d.f.
So, constrained model is significantly worse fit.
Caveat: this is an asymptotic result which needs a large N.

Multiple group comparison for more than two groups

Compare previous model across African-American, Hispanic, and
white respondents

Default model: compare measurement model to saturated model

Model 2: Constrain parameter of interest to be the same across all
groups

Results:
Model NPAR CMIN DF P CMIN/DF
Default model 37 54.217 47 0.218 1.154
Model Number 2 35 96.085 49 0.000 1.961
Saturated model 84 0.000 0
Independence model 21 1966.186 63 0.000 31.209
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Three-way interaction across two groups:

For example, is difference in parameter different across
male and female democrats in comparison to male and
female republicans?

Procedure: Constrain male/female difference in
parameters to be equal across political groups, and see if
difference is significantly different when this constraint is
not included

Three-way interaction across more than two groups:

For example, is difference in parameter different across
male and females different for republicans, democrats,
and/or independents?

Procedure: Constrain male/female difference in
parameters to be equal across all political groups, and see
if difference is significantly different when this constraint
is not included
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