
1

Structural Equations with Latent Variables

Session 12, Lecture 8

11/22/06

Outline
• Examples using AMOS

• Identification
• a) review

• Three useful types of SEMs
– MIMIC model
– multitrait-multimethod SEM
– causal indicators

• Group comparison models
– two-way interactions across two groups
– two-way interactions across more than two groups
– three-way interactions across two groups
– three-way interactions across more than two groups
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Rules for Variances

• Var(A + B)=Var(A)+Var(B)+2Cov(A,B)

• Var(A - B)= Var(A)+Var(B)-2Cov(A,B)

Let c be any constant (like, 5)

– Var(c+A)=0 + Var(A)  (constants don’t vary)

– Var(cA) = c2Var(A)

Rules for Covariances

• Cov(X,Y)=E(XY)-E(X)E(Y)

• Cov(c,X)=0

• Cov(cX,Y)=cCov(X,Y)

• Cov(X+Y,Z)=Cov(X,Z)+Cov(Y,Z)
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1 11

ξ1

λ11 λ21 λ31

x1 x2 x3

δ1 δ2 δ3

Equations for path diagram:

x1 = λ11ξ1 + δ1

x2 = λ21ξ1 + δ2

x3 = λ31ξ1 + δ3

Writing out equations: 

Var(x1)= Cov(λ11ξ1 + δ1, λ11ξ1 + δ1)  distribute (FOIL)

= Cov(λ11 ξ1, λ11ξ1) + Cov(λ11ξ1,δ1) + Cov(δ1, λ11ξ1) + Cov(δ1, δ1)

= Var(λ11 ξ1) + 2Cov(λ11ξ1,δ1) + Var(δ1)

* Var(cX) = c2(X),  also, assume that δ is uncorrelated with X

= λ11
2Var(ξ1) + 0 + Var(δ1)
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Similarly,

Var(x2)= λ21
2Var(ξ1) + Var(δ2)

Var(x3)= λ31
2Var(ξ1) + Var(δ3)

Cov(x1,x2)=Cov( λ11ξ1 + δ1, λ21ξ1 + δ2) 

= Cov(λ11ξ1, λ21ξ1) + Cov (λ21ξ1 ,δ2 ) + Cov (δ1 ,λ21ξ1) + Cov(δ1, δ2)

No covariance between ξs,δs and δs are uncorrelated 

= λ11λ21Cov(ξ1,ξ1) + 0 + 0 + 0  =  λ21λ11Var (ξ1)

Similarly, 

Cov(x3,x1)= λ31λ11Var (ξ1)

Cov(x3,x2)= λ31λ21Var (ξ1)

Why do all these calculations?

• Facilitates deeper understanding

• Highlights model assumptions

• Aids in determining if model is identified
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Is model identified?

• 3 indicator rule?

√ at least one factor 

√ at least 3 indicators

√ each x pointed to by only one ξ

√ δs are uncorrelated

• But, on a deeper level, why is a 3 indicator model identified?

How many things are we estimating?

vars of exog. vars:             1
vars of errors for endog:    3
direct effects: 3
double-headed arrows:      0  +
Total to be Estimated:  7

λs: (direct effects) we know:

Cov(x2,x1)= λ21λ11Var (ξ1)

Cov(x3,x1)= λ31λ11Var (ξ1)

Cov(x3,x2)= λ31λ21Var (ξ1)

4 unknowns, 3 equations
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Var(δ1) = Var(x1) - λ11
2 Var(ξ1)

Var(δ2) = Var(x2) - λ21
2 Var(ξ1)

Var(δ3) = Var(x3) - λ31
2 Var(ξ1)

We know:

δ1=  x1- λ11ξ1

δ2 = x2- λ21ξ1

δ3= x3 - λ31ξ1

Variances of δs

Variance of ξ1:

We know:

Var(x1) = λ11
2Var(ξ1) + Var(δ1) : 

Var(x2)=  λ21
2Var(ξ1) + Var(δ2) 
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Verdict:  as things stand, we don’t have enough information to

Estimate all the parameters. Per t-rule:  3(4)/2 = 6

Solution:  Fix one of the parameters values to 1

Set Var(ξ1) to 1, or a λ e.g., λ11 to 1

Unstandardized estimates

Set Var(ξ1) to 1 Set λ11 to 1 
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standardized estimates

Set Var(ξ1) to 1 Set λ11 to 1

It doesn’t matter what you fix (with standardized estimates).
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General identification rules for confirmatory factor analysis:

1) t-rule

2) Three indicator rule.  Model passes rule if:

a) it has three or more indicators per latent variable

b) each row of Λx with one and only one nonzero 

element

c) a diagonal Θδ

3) Two indicator rule.  Model passes rule if:

a) factor complexity of each x is one

b) no zero elements in Φ

c) Θδ is diagonal
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General identification rules for models that incorporate 

both structure equations and measurement models.

a) t-rule

b) two-step rule

1) step 1:

2) step 2:

If both the measurement model and the structural model 

are identifiable then the model as a whole is identifiable.

Two-Step Rule examples
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Step 1:  Measurement Model (has observed variables), doesn’t 

assume anything about relationship between latent variables:

ξ η
ζ

ξ η

x1 y1x2
y2

ε2δ1 ε1δ2

Step 2: Structural Model consists of the relationships between

latent constructs – think of the latent variables as observed (in 

That their variances are known)

Bollen, pg 326-9

OK per

2-indicator rule

OK per

Null B rule
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TWO STEP RULE EXAMPLES:

Bollen, pg 324
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STEP 1:  CFA
OK per

3-indicator rule

11

1

STEP 2:  Structural Part

Null B-rule:

Recursive Rule:

T-Rule: 

vars of exog. vars:             0
vars of errors for endog:    3
direct effects: 4
double-headed arrows:      0  +

7

Sample Moments = (3*4)/2=6
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sex

minority

education

cognition

married

working

age

depression

sadness

appetite criterion

sleep criterion

fatigue criterion

psychomotor criterion

anhedonia criterion

worthlessness criterion

trouble concentrating

thoughts of death or suicide

MIMIC (Multiple Indicators, Multiple Causes)  

(from on Gallo, J.J., P. V. Rabins, and J. C. Anthony.  1999.  Psychological Medicine 29:341-350)

Three major components to the model: causes (left) indicators (right)

Latent construct (middle).  
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Identification of multi-trait multi-method SEMs

Must have at least three traits and three methods.

(Alwin, 1973)
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Multiple-Group Comparisons (Interaction Effects)
1) Used to study interaction effects

2) SEMs well-suited to study interaction effects because they take 

measurement error into account

a) example: suppose you had a four-indicator measure of self-esteem and 

you hypothesized that it had a different relationship with depression for 

high SES and low SES adults [a dichotomous variable].  How would you 

go about testing this hypothesis with regular regression analysis?

1) first, you would have to a priori add the self-esteem indicators 

2) second, you would have to use product terms, which compound 

problems of reliability.

a) we know that the V(t1)=ρ1V(ρ1) and V(t2)=ρ2V(ρ2)

b) so, then, the true variance of V1 times V2 (if they are not 

correlated) = ρ1ρ2V(ρ1)V(ρ2)

b) recap:

1) first, with an SEM it is possible to measure latent variables

2) second, with an SEM it is possible to perform group comparisons 

and avoid the compounding of measurement error that is inherent 

in product terms.
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Multiple-Group Comparisons: An Interaction Across Two Groups

1) Does gender modify the relationship between personableness 

and the democratic candidate’s success in winning a debate?  

a) check to make sure that the measurement models do not 

differ between groups. 

b) calculate model fit using a multiple group solution with no 

constraints across groups (except for measurement model)

c) calculate model fit using a multiple group solution with an 

across-group constraint imposed to reflect the interaction 

effect.

d) calculate the difference in model fit by comparing the fit 

index for the constrained solution with the fit index for the 

unconstrained solution.
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Example: Ratings of a political debate

Number of parameters to estimate = 17

Straight arrows: 9 variances: 7

Curved arrows:  1
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Multiple group comparison: Men and Women

Group 1: women

Group 2: men
Number of parameters to estimate: (17*2 = 34)

Multiple group comparison:

Saturated model: No constraints in parameters

Default model: All model parameters differ across groups 

(males and females)

Model #2: Measurement model, in which cfas are 

constrained to be equal across groups (males and females)

a) lp1f=lp1m; lp2f=lp2m;

lq1f=lq1m; lq2f=lq2m;

ls1f=ls1m; ls2f=ls2m; ls3f=ls3m

Model #3: Same as Model #2, except that parameter of 

interest is constrained to be equal across groups 

a) additional constraint: ponsmale=ponsfem
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Question 1:  Measurement Model

Before looking to see if the relationship 

between “personableness” and “success” is 

the same for males and females, we first 

need to makes sure that the latent constructs 

of “personableness” and “success” are the 

same.

Question 1: Measurement Models

MalesFemales
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Question 1: Measurement Models

Likelihood Ratio Test (for nested models):

Default: if AIC = 83.26, and s=34, then –2LL=83.26-68=15.26

#2: if AIC=70.79, and s=27, then –2LL=70.79-54=16.79

Difference = 1.53~χ2 with 7 d.f. 

So, constrained model is not a significantly worse fit.

Caveat:  this is an asymptotic result which needs a large N.

Question 2: Structural Model

OK, so assuming the measurement model is the same across 

Males and females, now we can ask if the relationship between 

Personableness and success is the same across gender.

Fit two models (both with equal measurement models)

1) Where ponsfem and ponsmale are both estimated (already 

done, this was model # 2 

2) Where ponsfem and ponsmale are forced to be equal (model 3)
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Constraining a Weight

Question 2: Structural Model
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Question 2: Structural Model

Likelihood Ratio Test (for nested models):

#2:    if AIC=70.79, and s=27, then –2LL=70.79-54=16.79

#3:    if AIC=93.67, and s=26, then –2LL=93.67-52=41.67

Difference = 24.88~χ2 with 1 d.f. 

So, constrained model is significantly worse fit.

Caveat:  this is an asymptotic result which needs a large N.

Multiple group comparison for more than two groups

Compare previous model across African-American, Hispanic, and 

white respondents

Default model: compare measurement model to saturated model

Model 2: Constrain parameter of interest to be the same across all 

groups

Results:

Model  NPAR        CMIN    DF           P     CMIN/DF

---------------- ---- --------- -- --------- ---------

Default model    37      54.217    47       0.218       1.154

Model Number 2    35      96.085    49       0.000       1.961

Saturated model    84       0.000     0

Independence model    21    1966.186    63       0.000      31.209
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Three-way interaction across two groups:

For example, is difference in parameter different across 

male and female democrats in comparison to male and 

female republicans?

Procedure: Constrain male/female difference in 

parameters to be equal across political groups, and see if 

difference is significantly different when this constraint is 

not included

Three-way interaction across more than two groups:

For example, is difference in parameter different across 

male and females different for republicans, democrats, 

and/or independents? 

Procedure: Constrain male/female difference in 

parameters to be equal across all political groups, and see 

if difference is significantly different when this constraint 

is not included


