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Latent Class Regression (LCR)

What is it and when do we use it?

Recall the standard latent class model from last
term:

— Items measure “diagnoses” rather than underlying
scores

— Patterns of responses are thought to contain
Information above and beyond “aggregation” of
responses

— The goal is “clustering” individuals rather than
response variables

We add “structural” piece to model where covariates
“predict” class membership
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When to use LCR

« Multiple discrete outcome variables

— binary examples
 yes/no questions
* present/absent symptoms

— all measuring same latent construct
— We want to construct as outcome variable

— Responses to questions/items measure underlying
states (i.e. classes) with error

 NOT appropriate for...
— counts or other way of grouping response patterns
— responses measure underlying score with error
 Note: Latent Variable is DISCRETE




Example: Depression

Is depression continuous or categorical?

o Latent trait (IRT) e Latent class model
assumes it is assumes it is
continuous. discrete

%
class1l 80
class2 15
class3 5

Depression



Recall LC model

M: number of latent classes

K: number of symptoms

0. Probability of reporting symptom k given
atent class m

n.,. proportion of individuals in class m

n;: the true latent class of individual 1,1 =1,...,N
m=1,..,Mk=1,...K

Vi1, Yio, -, Yi: Symptom presence/absence for
individual 1.




ECA wave 3 data (1993)

e N=1126 in Baltimore  Covariates of interest
¢ Symptoms: — gender
— weight/appetite change — age

— sleep problems — marital status
— slow/increased movement

— loss of interest/pleasure — education
— fatigue — Income
— auil
utt— « How are the above
— concentration problems _ ]
_ thoughts of death associated with

~ dysphoria depression?



Assumptions

e Conditional Independence:

— given an individual’s depression class, his
symptoms are independent

— P Yij | m) = P(yic | mi) PCy; [ )

 Non-differential Measurement:

— given an individual’s depression class,
covariates are not associated with
symptoms

— P(Yic | i mi) = P(Yix [ m)



Why LCR may be better than another
analytic method

 LCR versus using counts (e.g. number of symptoms)
— Pros:

o distinguishes meaningful patterns from trivially
different ones which may be hard to discern
empirically

» acknowledges measurement error

 precision and estimates of regression coefficients
reflect measurement error

— Cons:

e may overdistinguish prevalent patterns and mask
differences in rare ones

« violation of assumptions make inferences invalid



Why LCR may be better than another
analytic method (continued)

* Versus factor-type methods
— Pros:
* less severe assumptions (statistically)
e easier to check assumptions
— Cons:

* |lose statistical power If construct is actually
dimensional (i.e. continuous)

o identifiability harder to achieve (need big sample)

* Practically
— Pro:

* Allows for disease/disorder classification which is
useful in a treatment vs. no treatment setting



Structural Equation-type Depiction
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the parameters
that the arrows
represent?

In other words,
what are 3 and
p in the LCR
model?



Parameter Interpretation

 Measurement Piece (p’s)

— Pym: Probability that an individual from class m
reports symptom K.

p .
( > Yik

e Same as standard latent class model from
last term




Parameter Interpretation

How do we relate

n’s and B’s?

In “classic” SEM, X B\
we have linear

model. x, |—
What about when

n Is categorical?

What Iif n Is o
binary?



Parameter Interpretation

 How do we relate #; to x's ?
o Consider simplest case: 2 classes

log[ P(1, = 2)

—P(y, = 2)] = [, + bixy; + Brx,

or equivalently,

log(?j = 10g[ ];((77771 Z?))j = [y + bixy; + fox,,

* B, and B, are log odds ratios



Model Results

*Pp
— same as last term
— KxM p’s
* T = P(n; =j)
— Conditional on x’s
— No longer ‘proportion of individuals in class’
— Now, only can interpret to mean ‘probability of class
membership given covariates for individual 1”
— To get size of class ], can sum of z; for all i

— (M-1)*(H+1) B’'s where H = number of covariates

— M-1: one class is reference class so all of its B coefficients
are technically zero

— H+1.: for each class, there is one 3 for each covariate plus
another for the intercept.



Solving for z, = P(17,=)

. P(n, =2|x,,x,,
log Za |2 log 7 B LML )] = [y + Bix,; + frxy,
aF P(n, =1|x,;,x,,)

eﬁo+ﬁ1x1i+ﬂzx2i
72-21' - P(771 - 2|x1i9x2i) = 1‘|‘ eﬂ0+ﬂ1xli+ﬂ2x2i
1

72-11' - P(Uz - 1|x1i"x2i) = 1_|_ eﬂo+ﬂlx1i+ﬂzx2i



Parameter Interpretation

Example: e/t = 2 and x,; =1 if female, O if male

“Women have twice the odds of being in class 2
versus class 1 than men, holding all else constant”

B _ P(Ui — 2|x1i ~ 19x2i = C) P(77i = 2|x1,- = Oale' = C)
P(Ui = 1|x1i = 19x2i = ¢) P(Ui = 1|x1i = lale- =)




More than two classes?

Need more than one equation
Need to choose a reference class

10g[f’<’7f =2 x,, %)
P(n, =1]x,,x,,)

10g[P<77f =3]x,,%,)

] = By + PuXy; + PrnXy,;

= + DX, + Xn.
P(ni:1|xliax2i)j Pos + Py + P

e’ = OR for class 2 versus class 1 for females versus males
e”s = OR for class 3 versus class 1 for females versus males

s [ efr = PPz = OR for class 3 versus class 2 for

females versus males



Solving for z; = P(,)

. P(n. =2
logl = | =log Y ) = Loy + PiuXy; + By,
7, P, = 1)

eﬁoz+ﬂ12x1i+ﬂ22x2i
72-21' = P(nl = 2) . 1+ eﬂ02+ﬂ12x1i+ﬂ22x2i + eﬂ03+1813x1i+:823x2i

eﬁoz +B12%1;+ Ban Xy,

3
Z eﬁ0r+ﬁlrxli+ﬂ2rx2i

r=1

Where we assume that 1801 = 1811 = 1821 =0



Depression Example:
LCR coefficients (log ORs) in 3 class model

Class Class Class
3vsl 2vsl 3vs2

Log(age) -1.2*  -1.5%  0.23
Female 0.85* 0.76%* 0.09
Single 0.44 0.38 -0.05

Sep/wid/div  0.86* 0.83*  -0.01
HS diploma -0.01 -0.56* 0.51

* indicates significant at the 0.10 level

Note: class 1 is non-depressed, class 2 is mild, class 3 is severe



Depression Example:
ODDS RATIOS in 3 class model

Class Class Class

3vsl 2vsl 3vs2
Log(age) 0.3*  0.22* 1.26
Female 2.34*  2.13% 1.09
Single 1.55 1.46 0.95
Sep/wid/div ~ 2.36* 2.29*  (0.99
HS diploma 0.99  0.57* 1.67

* indicates significant at the 0.10 level

Note: class 1 is non-depressed, class 2 is mild, class 3 is severe



Model Building

e Step 1:
— Get the measurement part right!
— Fit standard latent class model first.

— Use methods we discussed last term to choose
appropriate model

o Step 2:
— add covariates one at a time

— It is useful to perform “simple” regressions to see
how each covariate is associated with latent
variable before adjusting for others.

— Many of same issues in linear and logistic
regression (e.g. multicollinearity)



Estimation

e Same caveats as last term
 Maximum likelihood:
— Iterative fitting procedure.
— Packages
* Mplus
e Splus, R
« SAS
« Bayesian approach
— Computationally intensive
 WinBugs
e Splus, R
« SAS



Properties of Estimates (B, p)

If N Is large, coefficients are approximately
normal = confidence intervals and Z-tests are

appropriate.

Nested models can be compared by using chi-
square test.

But, recall problems of chi-square test when
sample size is large!

And problems when the sample size is small!

Also can use AIC, BIC, etc. to compare nested
AND non-nested models (e.g. Is age as
continuous better than 3 age categories).



Specifics Statistically
e Standard LCM Likelihood

P(Y—yz) P(Yll Yil-Yip = 12’Yi3:yi3’Yi4:yi4’YiSZyiS)

(1=yi)
T @ pkm pkm) "
k=1

« Latent Class Regression Likelihood

P(y, = 3,) = P(¥y = %y = vin ¥ = 3.5 = 900 Yis = v5 | x)

M K ( :
_ Vi 1=y,
DI G

m=1 k=1

eﬁmxi

i s
e’

m=

where 7z (x,)=

p—



Example: 3 class model

coefficient estimate se 95% confidence interval
b02 -3.11 0.21 -3.52 -2.71
b0l -1.80 0.15 -2.08 -1.52
b2age -1.21 0.74 -2.65 0.27
b3age -1.44 0.53 -2.48 -0.38
b2sex 0.86 0.38 0.15 1.64
b3sex 0.77 0.25 0.32 1.34
p[1,1] 0.83 0.06 0.69 0.93
p[1,2] 0.40 0.05 0.31 0.50
p[1,3] 0.02 0.01 0.01 0.03
p[2,1] 0.84 0.061 0.72 0.94
p[2,2] 0.41 0.05 0.31 0.52
p[2,3] 0.02 0.01 0.01 0.04



Some Additional Concepts

(1) n is a NOMINAL variable

(2) Data Setup: Centering covariates can help.
— Due to need to “initialize” algorithm in ML.
— Due to priors on ’s in Bayesian setting
— Will be meaningful in model checking, too.

— Need to choose starting values for model
estimation for regression coefficients in some ML
packages. This is easier if they are centered.

— Not an issue for Mplus: only need starting values
for measurement part.



Choosing Values for Initialization

A: Measurement model
1. Use results from standard latent class model

B: Structural piece
1. choose all B’'s equal to O (will work if there is a
LOT of data and no ID problems)

2. a. Make a “surrogate” latent class (e.g. choose
cutoffs based on number of symptoms)

b. Perform “mlogit” on surrogate with
covariates

c. Use log ORs as starting values



Choosing Values for Initialization

3. Use ML “pseudo-class” approach

a. Using pseudo-classes from standard LC model,
treat class assignment as fixed

b. Regress class membership on covariates
(polytomous logistic regression)

c. Model building strategy -- gives initial idea of
which covariates are associated.

d. Also, can use this as a model checking strategy
post hoc

4. Use MCMC class assignment approach: same as
3, but with classes assigned using MCMC model



Important ldentifiability Issue

Must run model more than once using different
starting values to check identifiability!



Model Checking

* Very important step in LCR

 LCR can give misleading findings Iif
measurement model assumptions are
violated

* Two types of model checks:

(1) model fit
“do y patterns behave as model would predict?”

(2) violation of assumptions
“do y’s relate to x's as expected?”



ECA wave 3 data (1993)

« N=1126 in Baltimore
e Symptoms:

— weight/appetite change
— sleep problems
— slow/increased movement
— loss of interest/pleasure
— fatigue
— qguilt
— concentration problems
— thoughts of death
— dysphoria

Covariates of
Interest

— gender

— age

— marital status
— education

— Income

How are the above
associated with
depression?



Models

 Model A: log(age), gender, race

 Model B: log(age), gender, race, diploma



Do v patterns behave as model
predicts?

Compare observed pattern frequencies
to expected pattern frequencies

PFC plot

How does addition of regression change
Interpretation?
Evaluating fit of measurement piece

— Wil be “same” as in standard LC model
unless.....
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e =[LCA

x = LCR-A
o=LCR-B

Figuie 7: PFC for Standard 3 Class Modal, Modsl A and Modsl B
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Does pattern frequency behave as
predicted by covariates?

e |dea: focus on one item at a time
e Recall:

M K
P(Yy; = Vi Yo = Vi | X)) = Zﬂi(xi)H pii (1= py,,) "
m=1 k=1

 If Interested in item r, ignore (“marginalize
over”) other items:

M
PY,=y,|x)=> m(x)pld-p, )"
m=1



Comparing Fitted to Observed
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Categorical Covariates

e Easier than continuous (computationally)

 Example

— Calculate:
* Predicted males with guilt
e Observed males with guilt
* Predicted females with guilt
e Observed females with guilt



» Assume LC regression model with only gender

e Gender = 0 1f male, 1 1f female

e [tem of interest if guilt.

« Want find how many class 2 men we would
expect to report guilt based on the model

P(guilt and male and class = 2) = P(guilt and class = 2|male) P(male)
= P(guilt|male and class = 2) P(class = 2|male) P(male)
= P(guilt|class = 2) P(class = 2|male) P(male)
eﬂo

= Py X ok x P(male)

e

::> Expected(guilt and male and class=2)= N x p, X x P(male)

1+ ™

Calculate this for each of the classes and sum up:
Will tell us the expected number of males reporting guilt.



Failure In Fit

 Check Assumptions
— non-differential measurement
— conditional independence

 Non-differential Measurement:

= P(Yi | X mi) = P(Yi | M)
— In words, within a class, there is no
association between y’s and x’s.

— Check this using logistic regression approach



Checking Non-differential
Measurement Assumption

* For binary covariates and for each class m and
item k consider

Py, =llx=Ln=m)/P(y,=0|x=1,n=m)
kmx —
P(y,=1|x=0,p=m)/P(y, =0|x=0,n=m)

OR

 |f assumption holds, this OR will be
approximately equal to 1.

 Why may this get tricky?
— We don’t KNOW class assignments.
— Need a strategy for assigning individuals to classes.



Checking NDM:
Maximum Likelihood Approach

(a) assign individuals to “pseudo-classes”
based on posterior probabllity of class
membership

— recall posterior probability based on observed
pattern

— e.g. individual with 0.20, 0.05, 0.75
 better chance of being in class 3
* not necessarily in class 3

(b) calculate OR’s within classes.
(c) repeat (a) and (b) at least a few times
(d) compare OR’s to 1.



Checking NDM:
Maximum Likelihood Approach

 \What about continuous covariates?

 Use same general idea, but estimate the
logOR within classes by logistic regression

« Example: age



Checking NDM:
MCMC (Bayesian) approach

At each iteration in Gibbs sampler,
Individuals are automatically assigned to
classes == no need to “manually”
assign.

At each iteration, simply calculate the
OR'’s of interest.

hen, “marginalize” or average over all
Iterations.

Results Is posterior distribution of OR
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Checking Conditional
Independence Assumption

In words, within a class, there IS N0 association
betweeny, andy;, |#Kk.

Same approach
Only difference:

Py, =Ly, =lin=m)/P(y, =0,y, =1l[n=m)

OR. =
" P(y, =1y, =0|n=m)/P(y,=0,y, =0|n=m)

JKm

Still use “pseudo-class” assignment (ML) or
class assignment at each iteration (MCMC)



[T T r———— Np— [N r—
n ’ L o x n

e
z d

il Tk Pl
-] z d

F i fnlf N ;.f 7 fmf : ”F
K r:f T ;.r 7 gmf i
FF;‘:FEW FFi vy



i L|
r.

B I N A
3 ﬁ'! éF

11-L|+l
FFFié

]

|
;

I.I.Hjltlll.l
i F T idiay

1

: l:ﬁ-f::ﬁ._::.. B B

i

S

L ] T = -]

)
¥

i

L ] T = =]




dentifiability (briefly)

 General Idea: different parameters can
lead to the same model fit

o 2steprule: If

(a) polytomous logistic regression is ID’ed
(b) standard LCM is ID’ed
Then model is ID’ed

e t-rule: need more data cells than
parameters

— complication: continuous covariates, but
they usually don’t make uniD’ed.



Utility of Model Checking

 May modify interpretation to incorporate
lack of fit/violation of assumption

 May help elucidate a transformation that
that would be more appropriate (e.g.
log(age) versus age)

 May lead to believe that LCR Is not
appropriate.
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