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Latent Class Regression (LCR)

• What is it and when do we use it?
• Recall the standard latent class model from last 

term:
– Items measure “diagnoses” rather than underlying 

scores
– Patterns of responses are thought to contain 

information above and beyond “aggregation” of 
responses

– The goal is “clustering” individuals rather than 
response variables

• We add “structural” piece to model where covariates 
“predict” class membership
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When to use LCR
• Multiple discrete outcome variables

– binary examples
• yes/no questions
• present/absent symptoms

– all measuring same latent construct
– We want to construct as outcome variable
– Responses to questions/items measure underlying 

states (i.e. classes) with error
• NOT appropriate for…

– counts or other way of grouping response patterns
– responses measure underlying score with error

• Note: Latent Variable is DISCRETE



Example:  Depression

• Latent trait (IRT) 
assumes it is 
continuous.
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Is depression continuous or categorical?



Recall LC model

• M: number of latent classes
• K: number of symptoms
• pkm: probability of reporting symptom k given 

latent class m
• πm: proportion of individuals in class m
• ηi: the true latent class of individual i, i = 1,…,N
• m = 1,…,M; k = 1,…,K
• yi1, yi2,…,yik:  symptom presence/absence for 

individual i.



ECA wave 3 data (1993)

• N=1126 in Baltimore
• Symptoms:

– weight/appetite change
– sleep problems
– slow/increased movement
– loss of interest/pleasure
– fatigue
– guilt
– concentration problems
– thoughts of death
– dysphoria

• Covariates of interest
– gender
– age
– marital status
– education
– income

• How are the above 
associated with 
depression?



Assumptions
• Conditional Independence:

– given an individual’s depression class, his 
symptoms are independent

– P(yik, yij | ηi) = P(yik | ηi) P(yij | ηi) 

• Non-differential Measurement:
– given an individual’s depression class, 

covariates are not associated with 
symptoms

– P(yik | xi, ηi) = P(yik | ηi) 



Why LCR may be better than another 
analytic method

• LCR versus using counts (e.g. number of symptoms)
– Pros: 

• distinguishes meaningful patterns from trivially 
different ones which may be hard to discern 
empirically

• acknowledges measurement error
• precision and estimates of regression coefficients 

reflect measurement error
– Cons:

• may overdistinguish prevalent patterns and mask 
differences in rare ones

• violation of assumptions make inferences invalid



Why LCR may be better than another 
analytic method (continued)

• Versus factor-type methods
– Pros:

• less severe assumptions (statistically)
• easier to check assumptions

– Cons:
• lose statistical power if construct is actually 

dimensional (i.e. continuous)
• identifiability harder to achieve (need big sample)

• Practically
– Pro:

• Allows for disease/disorder classification which is 
useful in a treatment vs. no treatment setting
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Parameter Interpretation

• Measurement Piece (p’s)
– pkm: probability that an individual from class m 

reports symptom k.

• Same as standard latent class model from 
last term

ηi yik
pkηi



Parameter Interpretation

• How do we relate 
η’s and β’s?

• In “classic” SEM, 
we have linear 
model.

• What about when 
η is categorical?

• What if η is 
binary?
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Parameter Interpretation
• How do we relate ηi to xi’s ?
• Consider simplest case: 2 classes

or equivalently,

• β1 and β2 are  log odds ratios
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Model Results
• p 

– same as last term
– KxM p’s

• πji = P(ηi = j)
– Conditional on x’s
– No longer ‘proportion of individuals in class’
– Now, only can interpret to mean ‘probability of class 

membership given covariates for individual i”
– To get size of class j, can sum of πij for all i

• β
– (M-1)*(H+1) β’s where H = number of covariates
– M-1: one class is reference class so all of its β coefficients 

are technically zero
– H+1: for each class, there is one β for each covariate plus 

another for the intercept.



Solving for πji = P(ηi=j)
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Parameter Interpretation

Example: eβ1 = 2 and x1i =1 if female, 0 if male

“Women have twice the odds of being in class 2 
versus class 1 than men, holding all else constant”
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More than two classes?
Need more than one equation 
Need to choose a reference class
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Solving for πji = P(ηi)
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Depression Example:
LCR coefficients (log ORs) in 3 class model

Class
3 vs 1

Class
2 vs 1

Class
3 vs 2

Log(age) -1.2* -1.5* 0.23

Female 0.85* 0.76* 0.09

Single 0.44 0.38 -0.05

Sep/wid/div 0.86* 0.83* -0.01

HS diploma -0.01 -0.56* 0.51

* indicates significant at the 0.10 level
Note: class 1 is non-depressed, class 2 is mild, class 3 is severe



Depression Example:
ODDS RATIOS in 3 class model

 Class  
3 vs 1 

Class  
2 vs 1 

Class  
3 vs 2 

Log(age) 0.3* 0.22* 1.26 

Female 2.34* 2.13* 1.09 

Single 1.55 1.46 0.95 

Sep/wid/div 2.36* 2.29* 0.99 

HS diploma 0.99 0.57* 1.67 
 

 

* indicates significant at the 0.10 level
Note: class 1 is non-depressed, class 2 is mild, class 3 is severe



Model Building
• Step 1:

– Get the measurement part right!
– Fit standard latent class model first. 
– Use methods we discussed last term to choose 

appropriate model
• Step 2:

– add covariates one at a time
– It is useful to perform “simple” regressions to see 

how each covariate is associated with latent 
variable before adjusting for others.

– Many of same issues in linear and logistic 
regression (e.g. multicollinearity)



Estimation
• Same caveats as last term 
• Maximum likelihood:  

– Iterative fitting procedure.
– Packages

• Mplus
• Splus, R
• SAS

• Bayesian approach
– Computationally intensive

• WinBugs
• Splus, R
• SAS



Properties of Estimates (β, p)

• If N is large, coefficients are approximately 
normal confidence intervals and Z-tests are 
appropriate.

• Nested models can be compared by using chi-
square test.

• But, recall problems of chi-square test when 
sample size is large!

• And problems when the sample size is small!
• Also can use AIC, BIC, etc. to compare nested 

AND non-nested models (e.g. is age as 
continuous better than 3 age categories).



Specifics Statistically 
• Standard LCM Likelihood

• Latent Class Regression Likelihood
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Example: 3 class model
coefficient estimate se 95% confidence interval

b02 -3.11 0.21 -3.52 -2.71
b01 -1.80 0.15 -2.08 -1.52
b2age -1.21 0.74 -2.65 0.27
b3age -1.44 0.53 -2.48 -0.38
b2sex 0.86 0.38 0.15 1.64
b3sex 0.77 0.25 0.32 1.34

p[1,1] 0.83 0.06 0.69 0.93
p[1,2] 0.40 0.05 0.31 0.50
p[1,3] 0.02 0.01 0.01 0.03
p[2,1] 0.84 0.061 0.72 0.94
p[2,2] 0.41 0.05 0.31 0.52
p[2,3] 0.02 0.01 0.01 0.04

………………etc.
.



Some Additional Concepts

(1) η is a NOMINAL variable

(2)  Data Setup:  Centering covariates can help.  
– Due to need to “initialize” algorithm in ML.
– Due to priors on β’s in Bayesian setting
– Will be meaningful in model checking, too.
– Need to choose starting values for model 

estimation for regression coefficients in some ML 
packages.  This is easier if they are centered.

– Not an issue for Mplus: only need starting values 
for measurement part.



Choosing Values for Initialization

A:  Measurement model
1. Use results from standard latent class model

B:  Structural piece
1.  choose all β’s equal to 0 (will work if there is a 
LOT of data and no ID problems)
2. a. Make a “surrogate” latent class (e.g. choose 
cutoffs based on number of symptoms)

b.  Perform “mlogit” on surrogate with   
covariates
c.  Use log ORs as starting values



Choosing Values for Initialization
3. Use ML “pseudo-class” approach

a. Using pseudo-classes from standard LC model, 
treat class assignment as fixed

b. Regress class membership on covariates 
(polytomous logistic regression)

c. Model building strategy -- gives initial idea of 
which covariates are associated.

d. Also, can use this as a model checking strategy 
post hoc

4. Use MCMC class assignment approach:  same as 
3, but with classes assigned using MCMC model



Important Identifiability Issue

Must run model more than once using different 
starting values to check identifiability!



Model Checking

• Very important step in LCR
• LCR can give misleading findings if 

measurement model assumptions are 
violated

• Two types of model checks:
(1) model fit

“do y patterns behave as model would predict?”

(2) violation of assumptions
“do y’s relate to x’s as expected?”



ECA wave 3 data (1993)

• N=1126 in Baltimore
• Symptoms:

– weight/appetite change
– sleep problems
– slow/increased movement
– loss of interest/pleasure
– fatigue
– guilt
– concentration problems
– thoughts of death
– dysphoria

• Covariates of 
interest
– gender
– age
– marital status
– education
– income

• How are the above 
associated with 
depression?



Models

• Model A: log(age), gender, race

• Model B: log(age), gender, race, diploma



Do y patterns behave as model 
predicts?

• Compare observed pattern frequencies 
to expected pattern frequencies

• PFC plot
• How does addition of regression change 

interpretation?
• Evaluating fit of measurement piece

– Will be “same” as in standard LC model 
unless…..



o = 2 class
x = 3 class
▲= 4 class



● = LCA
x = LCR-A
o = LCR-B



Does pattern frequency behave as 
predicted by covariates?

• Idea:  focus on one item at a time
• Recall:

• If interested in item r, ignore (“marginalize 
over”) other items:
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Comparing Fitted to Observed



Categorical Covariates

• Easier than continuous (computationally)
• Example

– Calculate: 
• Predicted males with guilt
• Observed males with guilt
• Predicted females with guilt
• Observed females with guilt
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• Item of interest if guilt.
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Calculate this for each of the classes and sum up:  
Will tell us the expected number of males reporting guilt.



Failure in Fit

• Check Assumptions
– non-differential measurement
– conditional independence

• Non-differential Measurement:
– P(yik | xi, ηi) = P(yik | ηi) 
– In words, within a class, there is no 

association between y’s and x’s.
– Check this using logistic regression approach



Checking Non-differential
Measurement Assumption

• For binary covariates and for each class m and 
item k consider

• If assumption holds, this OR will be 
approximately equal to 1.

• Why may this get tricky?
– We don’t KNOW class assignments.
– Need a strategy for assigning individuals to classes.
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Checking NDM: 
Maximum Likelihood Approach

(a) assign individuals to “pseudo-classes”
based on posterior probability of class 
membership
– recall posterior probability based on observed 

pattern
– e.g. individual with 0.20, 0.05, 0.75

• better chance of being in class 3
• not necessarily in class 3

(b) calculate OR’s within classes.
(c)  repeat (a) and (b) at least a few times
(d) compare OR’s to 1.



Checking NDM: 
Maximum Likelihood Approach

• What about continuous covariates?
• Use same general idea, but estimate the 

logOR within classes by logistic regression
• Example:  age



Checking NDM: 
MCMC (Bayesian) approach

• At each iteration in Gibbs sampler, 
individuals are automatically assigned to 
classes            no need to “manually”
assign.

• At each iteration, simply calculate the 
OR’s of interest.

• Then, “marginalize” or average over all 
iterations.

• Results is posterior distribution of OR







Checking Conditional
Independence Assumption

• In words, within a class, there is no association 
between yk and yj,  j ≠ k.

• Same approach
• Only difference:

• Still use “pseudo-class” assignment (ML) or 
class assignment at each iteration (MCMC)
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Identifiability (briefly)
• General Idea: different parameters can 

lead to the same model fit
• 2 step rule:  If 

(a) polytomous logistic regression is ID’ed
(b) standard LCM is ID’ed
Then model is ID’ed

• t-rule: need more data cells than 
parameters
– complication: continuous covariates, but 

they usually don’t make unID’ed.



Utility of Model Checking

• May modify interpretation to incorporate 
lack of fit/violation of assumption

• May help elucidate a transformation that 
that would be more appropriate (e.g. 
log(age) versus age)

• May lead to believe that LCR is not 
appropriate.
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