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General Idea
• Y’s are all measuring the same thing or similar things.
• Want to summarize the association between an X and all of 

the Y’s.
• BUT!  We are not making the STRONG assumption that 

there is latent variable accounting for the correlation 
between the Y’s.  

• First:  Make model that allows each Yi to be associated 
with X

• Next:  Summarize/Marginalize over associations
• Sort of like STA

– But wait!  I thought STA was “bad” relative to SAA!
– Not if you don’t want to make the assumption of a latent variable!
– More later…..



Example: Vision Impairment in the 
Elderly

• Salisbury Eye Evaluation (SEE, West et al. 
1997).
– Community dwelling elderly population
– N = 1643 individuals who drive at night

• Want to examine which aspects of vision
(X’s) (e.g. visual acuity, contrast 
sensitivity) affect performance of activities
that require seeing at a distance (Y’s).



Variables of Interest
• Y’s: Difficulty….

– reading signs at night
– reading signs during day
– seeing steps in dim light
– seeing steps in day light
– watching TV

• X’s: 
“Psychophysical” vision measures

-- visual acuity
-- contrast sensitivity
-- glare sensitivity
-- steropsis (depth perception)
-- central vision field

Potential confounders
-- age
-- sex
-- race
-- education
-- MMSE
-- GHQ
-- # of reported comorbidities



Technically…..

• The Y’s are binary, and we are using 
logistic regression.

• To simplify notation, I refer to the outcomes 
as “Y” but in theory, they are “logit(Y).”



• Assume N individuals, k outcomes (Y’s), p
predictors (X’s).

• For individual i:

• What is the same and what is different across 
equations here?

• We are fitting k regressions and estimating 
k*(p+1) coefficients
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Good or Bad approach?

• Not accounting for correlations between Y’s 
from the same individual: 
– e.g. may see that X Y1, but really X Y2

and Y1 is correlated with Y2.
• Simply:  not summarizing!
• Alternative:  Fit one “grand” model.

– Can decide if same coefficient is appropriate 
across Y’s or not.

– Accounting for correlation among responses 
within individuals.



Analyze THEN Summarize, OR 
Analyze AND Summarize?

• Includes all of the outcomes (Y’s) in the same model
• But, there is not an explicit assumption of a latent variable.
• Includes correlation among outcomes

– Do not assume that Y’s are independent given a latent variable
– Avoid latent variable approach and allows Y’s to be directly 

correlated
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Why Multivariate Approach?

• Latent variable approach makes stronger 
assumptions

• Assumes underlying construct for which 
Y’s are “symptoms”

• Multivariate model is more exploratory
• Based on findings from MV model, we may

adopt latent variable approach.
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Data Setup for Individuals 1 and 2
item (Y) ID Visual Acuity Age
y11 1 x11 x12
y12 1 x11 x12
y13 1 x11 x12
y14 1 x11 x12
y15 1 x11 x12
y21 2 x21 x22
y22 2 x21 x22
y23 2 x21 x22
y24 2 x21 x22
y25 2 x21 x22

We have a “block”
for each individual
instead of a “row”
like we are used
to seeing.
Stack the “blocks”
together to get the 
whole dataset.

What if we entered this in standard logistic regression model?
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Model Interpretation
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Additional Parameters….
item (Y) ID Visual Acuity Age I(item=2) I(item=3) I(item=4) I(item=5)
y11 1 x11 x12 0 0 0 0
y12 1 x11 x12 1 0 0 0
y13 1 x11 x12 0 1 0 0
y14 1 x11 x12 0 0 1 0
y15 1 x11 x12 0 0 0 1
y21 2 x21 x22 0 0 0 0
y22 2 x21 x22 1 0 0 0
y23 2 x21 x22 0 1 0 0
y24 2 x21 x22 0 0 1 0
y25 2 x21 x22 0 0 0 1

Now what does regression model look like?
What are the interpretations of the coefficients?



Model Interpretation
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Parameter Interpretation
• β0 = intercept for item 1
• α2 = difference between intercept for item 1 and 

for item 2.
• β0 + α2 = intercept for item 2
• β1 = expected difference in risk of difficulty  in 

any item for a one unit change in visual acuity.
• Intuitively, how does this model differ than 

previous one (i.e. one without α terms)?
– Each item has its own intercept
– Accounts for differences in prevalences among 

outcome items
– Still assumes that age and visual acuity all have same 

association with outcomes.



Is that enough parameters?

item (Y) Visual Acuity Age I2 I3 I4 I5 va*I2 va*I3 va*I4) va*I5
y11 x11 x12 0 0 0 0 0 0 0 0
y12 x11 x12 1 0 0 0 x11 0 0 0
y13 x11 x12 0 1 0 0 0 x11 0 0
y14 x11 x12 0 0 1 0 0 0 x11 0
y15 x11 x12 0 0 0 1 0 0 0 x11
y21 x21 x22 0 0 0 0 0 0 0 0
y22 x21 x22 1 0 0 0 x21 0 0 0
y23 x21 x22 0 1 0 0 0 x21 0 0
y24 x21 x22 0 0 1 0 0 0 x21 0
y25 x21 x22 0 0 0 1 0 0 0 x21

NOW how are regression parameters interpreted?

Note:  I2 = I(item=2); va = Visual Acuity 

What if the association between visual acuity is NOT the same 
for reading signs at night and for watching TV?



Model Interpretation
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Parameter Interpretation
• β0 = intercept for item 1
• α2 = difference between intercept for item 1 and 

for item 2.
• β1 = expected change in risk in item 1 for a one 

unit change in visual acuity.  
• δ2 = difference between expected change in risk in 

item 2 for a unit change in visual acuity and 
expected change in risk in item 1.

• β1 + δ2 = expected difference in risk in item 2 for a 
one unit change in visual acuity.



Parameter Interpretation

• β1 + δ2 = expected difference in risk in item 
2 for a one unit change in visual acuity.

• The δ terms allow for the association 
between visual acuity and each of the 
outcomes to be different.

• We can test whether or not all the δ terms 
are equal to zero or not.

• If they are equal to zero, that implies……



Logistic Regression: Vision example
Covariate Estimate Robust SE Model SE Robust Z 

Intercept (β0) ---- ----- ---- ----- 
Visual acuity (β1) -4.10 0.28 0.27 -14.7 

Age (β2) -0.03 0.008 0.008 -3.5 
I2 (α2) -1.47 0.06 0.06 -24.5 
I3(α3) 0.74 0.12 0.13 6.0 
I4(α4) -0.21 0.07 0.07 -3.1 
I5(α5) 0.85 0.18 0.17 4.7 

I2*va (δ2) 0.66 0.21 0.27 3.2 
I3*va (δ3) 2.25 0.32 0.29 7.1 
I4*va (δ4) 2.10 0.31 0.27 6.8 
I5*va (δ5) 0.59 0.30 0.28 2.0 

 

 



So far…same logistic and linear regression type stuff.  
The difference:

• We need to deal with the associations!
• Items from the same individual are NOT independent
• Vision example:  Odds Ratio between items is 7.69! We can’t 

ignore that!
• We incorporate an “association” model into the model we 

already have (the “mean” model).
• Consider an adjustment:

– mean model:  used for inference
– association model:  adjustment so that test statistics are 

valid.



Accounting for Correlations 
Within Individuals

• “Marginal Models”
– parameters are the same as if you analyzed 

separately for each item, but measures of 
precision are more appropriate

– describes population average relationship 
between responses and covariates as opposed to 
subject-specific.

– We average (or marginalize) over the items in 
our case.



Fitting Approach #1
Post-hoc adjustment

– Idea: Ignoring violation of independence 
invalidates standard errors, but not the slope 
coefficients.

– So:  We fit the model “näively” and then adjust 
the standard errors to correctly account for the 
association afterwards. 

• Problem with this?  Its outdated!  We have 
better ways of dealing with this presently.



Related Example: drinks per week
• Suppose Yi, i = 1,…,N are independent but each is sample 

mean of ni responses with equal variances, σ2. (e.g. drinks 
per week, averaged over 2 or more weeks).

• Results from “usual” SLR, where y is drinks per week and 
x family support.

• But, it is true (due to the averaging of y) that the actual s.e.
is

• This is a valid analysis: We first fit the SLR and then 
correct  the standard error of the slope.
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Fitting Approach #2
• Marginal Model (GEE or ML)

– approach #1 is okay, but not as good as simultaneously 
estimating the mean model and the association model 
(i.e. we can iterate between the two, and update 
estimates each time).

– We estimate regression coefficients using a procedure 
that accounts for lack of independence, and specifically 
the correlation structure that you specify.

– Correlation structure is estimated as part of the model.
– Take LDA or Mixed Models classes for more info



Related Example Revisited: 
Drinks per week

• If Y1 is based on 2 observations (i.e. 2 weeks), and 
Y2 is based on 20 observations (i.e. 20 weeks), we 
want to account for that.

• We want to “weight” individuals with more 
observations more heavily because they have more 
“precision” in their estimate of Y.

• Results: Weight is proportional to        .
• Resulting regression is better by accounting for 

this in the estimation procedure.

in



Fitting Approach #2 (continued)
• Here we use the within unit correlation to compute 

the weights.
• GEE solution:  “working correlation”
• If specified structure is good, the regression 

coefficients are very good.
• If specified structure is bad, coefficients and 

standard errors are still valid, but not as good.
• ROBUST PROCEDURE



Fitting this for the Vision example

Approach 1:  too complex to be feasible in this example.  Need to 
know all of the associations and adjust many estimates.

Approach 2:  account for correlation in estimation procedure

In STATA:
Logistic model:
xtgee y va age i2 i3 i4 i5 va2 va3 va4 va5, i(id) 

link(logit) corr(exchangeable) robust 

xi: xtgee y i.item*va age, i(id) link(logit) robust 
(default corr is exc)

Linear model:

xtgee y x, i(id) corr(exchangeable) robust



Problem with Approach #1

• Often correlation structure is more complex (our 
example was very simple compared to most 
situations)

• Post-hoc adjustments won’t always work because 
estimating the correlation structure is not as 
simple.

• In general, people don’t use approach #1 
especially because many stats packages can handle 
the adjustments currently (Stata, Splus, R, SAS)



How do I know the correlation 
structure?

• You don’t usually.
• Approaches commonly used for multivariate 

outcome
– Exchangeable:  

• individuals items are all equally correlated with each other.  
• Simple and intuitive, easy to estimate and describe.  
• Could be a bad assumption

– Unstructured:  
• In this case, each pair of items has a different correlation
• uses empirical estimates from data.  
• Less prone to model mis-specification
• less powerful approach.



Summarizing Findings

(1)  Constrain equal slopes across items
(2)  Constrain slopes that should be 

constrained, and allow others to vary
(3)  Detailed summary discussion that covers 

everything 
(4)  Complicated:  joint tests/CI’s for groups 

of items 



West SK, Munoz B, Rubin GS, Schein OD, Bandeen-Roche K, Zeger S, German S, Fried LP. Function 
and visual impairment in a population-based study of older adults. The SEE project. Salisbury Eye 
Evaluation.  Invest Ophthalmol Vis Sci. 1997 Jan;38(1):72-82.

Vision Variable Item Item O.R. 95% CI for OR
Visual acuity 1 0.427 (0.36,0.51)

2 0.515 (0.43,0.62)
3 0.863 (0.71,1.06)
4 0.817 (0.68,0.99)
5 0.514 (0.43,0.62)

Best contrast sensitivity 1-5 1.477 (1.26,1.73)
Diff in contrast sensitivity 1-5 0.696 (0.58,0.84)
Log(steropsis) 1-5 0.904 (0.86,0.95)
Best central vision field 1-5 0.902 (0.83,0.98)

1 = day signs; 2 = night signs; 3 = day steps; 4 = dim steps; 5 = TV

Multiple Regression Results:
Odds Ratio between items estimated to be 8.69



Alternate Approach
• Use Bayesian (hierarchical) approach to model estimation
• Models correlation by assuming that ‘like’ parameters come from a 

common distribution.

• We estimate β and σβ as part of the model.
• If are βj’s not similar, then σβ will be large.
• Like a ‘random effects’ model, but broader.
• In some cases, GEE and mixed models approaches can be used almost 

interchangeably

β β σβj N~ ( , )2



A New Example:  
Hyper-Methylation of Genes and Breast Cancer

• Background:
– Methylation of certain genes is thought to be associated with 

different prognosis for breast cancer
– Goal is to determine what risk factors are associated with 

methylation of genes
– Methylation status of genes is highly correlated.
– We don’t have a very big dataset (N=111 breast cancer tissue 

samples)

Mehrotra, J., Ganpat, M.M., Kanaan, Y., Fackler, M.J., McVeigh, M., Lahti-
Domenici, J.,Polyak, K., Argani, P., Naab, T., Garrett, E.S., Parmigiani, G., 
Broome, C., Sukumar, S.ER/PR-negative breat cancers of young African 
American women have a higher frequency of methylation of multiple genes 
than those of Caucasian women. Clinical Cancer Research, 10(6):2052-2057, 
2004.



Data
• Genes: HIN-1, Twist, Cyclin D2, RAR-beta, and 

RASSF1A
• Risk factors:  

– Af-Am vs. Cau
– Age < 50 versus > 50
– Estrogen Receptor Status (+/-)

• Only 111 patients in the dataset
• Data is somewhat ‘sparse’

– For HIN-1, if we tabulate methylation by race, age, and 
ER, we have empty cells.

– Can’t estimate saturated model (i.e. three-way 
interaction)



Modeling Issues
• By fitting multivariate model, we get good stuff:

– WE ACCOUNT FOR CORRELATION AMONG GENES
– WE BORROW STRENGTH ACROSS GENES
– WE CAN SUMMARIZE ASSOCIATIONS OF RISK FACTORS 

WITH GENES
• Notation:

– yij = 1 if gene j in tumor i is methylated.
– racei = 1 if tumor is from Af-Am patient
– ERi = 1 if tumor i is ER+
– agei = 1 if age of person i <50

• Notation is simplified from previous example.



Started with main effects ‘hierarchical’ model:
logit( )y race age erij j j i j i j i= + + + +β β γ α δ0

With 5 genes and 3 covariates, we have 20 parameters* to 
estimate in this model.

Gene (j) β0+ βj γj (race) αj(age) δj (ER)
1 -0.63 0.84 0.20 2.09
2 -0.74 0.72 0.03 0.15
3 -0.61 0.70 0.04 0.24
4 -1.42 0.60 -0.02 0.68

* Note that β j’s are constrained to sum to 0.

5 -0.13 0.73 0.01 2.13
Keep all? + - - +

Assume that ‘like’ parameters are from common distribution



Next ‘hierarchical’ model: Allow for interactions
logit   ( )y race age er

race age race er age er
race age er

ij j i i j i

j i i j i i j i i

j i i i

= + + + + +

× + × + × +

× ×

β β γ α δ

θ φ σ

ν

0

Gene 
(j)

β0+ βj γj (race) αj(age) δj (ER) θj
Racexage

φj 
racexer

σj 
agexer

νj 
racexagexer

1 or 1-5 -0.45 0.40 -1.12 2.11 2.61 -0.05 1.20 -2.20
2 -0.67 0.56 2.22 -0.21 0.85 -2.41
3 -0.43 0.54 1.72 -0.26 1.21 -2.44
4 -1.42 0.76 1.65 -0.10 1.35 -1.80
5 -0.15 2.23 1.81 -0.31 1.30 -2.30
Keep 
all?

+ - - +



Next ‘hierarchical’ model:
logit   

  
( )y race age er

race age race er age er
race age er

ij j i i j i

j i i i i i i

j i i i

= + + + + +

× + × + × +

× ×

β β γ α δ

θ φ σ

ν

0

Gene 
(j)

β0+ βj γj (race) αj(age) δj (ER) θj
Racexage

φj 
racexer

σj 
agexer

νj 
racexagexer

1 or 1-5 -0.50 0.48 -1.04 2.26 2.51 -0.28 1.04 -2.05
2 -0.73 0.54 2.08 -2.39
3 -0.50 0.60 1.65 -2.30
4 -1.50 0.97 1.61 -1.58
5 0.07 2.33 1.73 -2.19







Closing Remarks
• Model specification is still important here!

– Mean model
– Correlation structure

• GEE, random effects
• Bayesian 

• Get robust estimates if possible (GEE)
• Fitting methods:

– Stata:  xtgee
– WinBugs hierarchical model
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