SEMs for Genetic Analysis

Session 18, Lecture 14

12/13/06

Basic Genetic Analysis of Twin Samples Using SEMs

- SEMs and variance explained
- Motivating example
- Simple correlation test
- The 'heritability' concept
- Structural equation models and genetic analyses
- The equal environments assumption

Motivating Example

- monozygotic twins: 242 male and 272 female
- dizygotic twins: 255 male and 223 female
- dizygotic twins: 271 opposite-sex pairs

Motivating Example

- Characteristics of interest: externalizing and internalizing behaviors
 - externalizing: e.g. fights, hits others, defiant
 - internalizing: e.g. dependent, feelings easily hurt, fearful, sad
- Do these characteristics reflect genetic influences?

The Heritability Concept

- Four hundred years ago, only rich people ate well; consequently most of the phenotypic variation in height was the result of environmental variation. Today almost everyone eats well; consequently most of the variation in height is now due to genes
 - Heritability can change as a result of environmental influences
 - Heritability depends on sample being studied
 - Recent evidence suggests that genes and the environment interact, a factor difficult to account for in standard genetic SEM models

Structural Equation Models and
Genetic AnalysesPhenotype = $\beta_a A + \beta_d D + \beta_c C + \beta_e E$ - Assume uncorrelated latent variables

• $\operatorname{Var}(P) = \beta_a^2 \operatorname{var}(a) + \beta_d^2 \operatorname{var}(d) + \beta_c^2 \operatorname{var}(c) + \beta_e^2 \operatorname{var}(e)$

(Var(a)=var(d)=var(c)=var(e) = 1)

$$Var(P) = \beta_a^2 + \beta_d^2 + \beta_c^2 + \beta_e^2$$

Structural Equation Models and Genetic Analyses

- Monozygotic twins share
 - all additive genetic influence
 - all non-additive genetic influence
 - all shared environmental influence

 $cov(MZ_{1,2}) = \beta_a{}^2 + \beta_d{}^2 + \beta_c{}^2$

Structural Equation Models and Genetic Analyses

- Dizygotic twins share
 - 50% additive genetic influence
 - 25% additional non-additive genetic influence; sibs have 75% chance of inheriting a dominant gene and only a 25% chance of inheriting the same recessive pair of alleles from parents
 - all shared environmental influence
 - $\text{ cov}(Dz) = .5\beta_a{}^2 + .25\beta_d{}^2 + \beta_c{}^2$

- Sex Differences and No Sex Differences
- What parameters were we estimating?

CMIN

Model	NPAR	CMIN	DF	Р	CMIN/DF
Sex Differences	6	12.020	9	.212	1.336
No Sex Differences	3	25.202	12	.014	2.100
Saturated model	15	.000	0		
Independence model	10	482.148	5	.000	96.430

(25.202-12.020)=13.182~ chi2 with 3 d.f. P=.004

Looking at externalizing behaviors in younger children, the degrees To which environment and genetics contribute to phenotype differ Between boys and girls.

Equal Environments Assumption

- Twin models assume that the degree of environmental similarity is about the same for monozygotic and dyzygotic twins
- If the equal environment assumption is not correct

 e.g., if identical twins are treated more similarly
 than fraternal twins then a finding of greater
 phenotypic similarity between identical twins
 might be due partially to greater environmental
 similarity

