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Outline

• Potential Outcomes / Counterfactual
– Judea Pearl

• Statistics and Causal Inference
– Aalen and Frigessi

• Causal Inference in Epidemiology
– Parascandola and Weed
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Some history
• 1910’s & 1920’s:  Sewall Wright

– Introduced path analysis in biology and agricultural sciences
– Path analysis conceptualized as a method using a sequence of 

regression models to make inferences about correlations and 
effects

• 1930’s & 1950’s:  Economists (e.g., Haavelmo) and 
Bollen
– SEMs evolve which generalize path models to allow correlated 

errors.
• 1950’s:  Turner and Stevens

– Introduce path analysis and SEMs to statistics literature
• 1960’s:  Duncan

– Introduces path analysis to psychological literature
– Path analysis and SEM used interchangeably

• 1970’s:  Rubin
– Introduces concept of potential outcomes.  Opens a whole new 

can of worms….
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The setting

• Bland Statistical Interpretation:  A one unit 
change in X is associated with an expected 
change in Y of τ units.

• We would really LIKE to say:  If I am nature, and 
I change an X in the population from 0 to 1, then 
Y will change by τ units on average.

11 ετγ ++= XY
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Causal Inference

• Relatively new field
• Uses statistics to make causal inference
• Interplay between science and statistics

– Science dictates model
– Statistics measures magnitude of effect

• Hypothesis:

X Y



6

Example:  pregnancy smoking and 
childhood conduct problems

• X = pregnancy smoking (binary)
• Y = childhood conduct (continuous)

• Data Structure:
– Yi(0) = childhood conduct for child i if mom does not 

smoke.
– Yi(1) = childhood conduct for child i if mom does 

smoke.
• Each child has the “potential” to have an 

outcome under either scenario.
• But, we only observe the outcome under the 

observed smoking status
Maughan et al, J. Child Psychol. Psychiat. Vol. 42, No. 8, pp. 1021-1028, 2001
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Causal Estimation

Observed data:

Observed effect:  β0

“Full” data:

Causal effect:  βC

Y X= + +α β ε0

E Y E Y C[ ( )] [ ( )]1 0− = β
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Causal Estimation

• When does β0 = βC ? 
• Main problem: Counterfactual

– E[Y(1) | X = 1] is observed
– E[Y(1) | X = 0] is “counterfactual”

• How do we identify counterfactual 
outcomes?
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Randomization

• Under randomization, Yi(0) and Yi(1) are 
INDEPENDENT of Xi

• That is, E[Yi(0) | Xi = 1] = E[Yi(0) | Xi = 0]

• In words, counterfactual and observed 
outcomes are exchangeable
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Observational Study

• In an observational study, we cannot 
assume exchangeability

• But, if we can control for confounders, we 
can regain exchangeability
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Mediation Model

Pregnancy 
Smoking (X)

Parenting (Z)

Childhood 
Conduct (Y)

α

τ’

β

Y X
Z X
Y X Z

= +
= +
= + +

τ ε
α ε
τ β ε

1

2

3'

Total effect of X on Y is τ
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Mediation Model

• The indirect effect is the effect of X on Y 
that is mediated by Z

• One measure of the mediated effect is αβ.
• Under the potential outcomes framework, 

a mediated effect might be
E[ Y(X = 1,Z = z1) – Y(X = 1,Z = z2)]

• Identification of the potential outcomes is 
tricky
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Mediation Model

• Intuition when Y is binary:
E[Y(X = 1, Z = z1)] = P[Y(X = 1, Z = z1)]

• We can talk about odds and odds ratios:

OR
oddsP Y X Z
oddsP Y X ZC =

= =
= =

[ ( , )]
[ ( , )]

1 1
1 0
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Mediation Model

Complete Mediation

Pregnancy 
Smoking (X)

Parenting (Z)

Childhood 
Conduct (Y)

α
β

P[Y(Z = 1 | X = 1)] = P[Y(Z = 1 | X = 0)]
P[Y(X = 1 | Z = 1)] ≠ P[Y(X = 1 | Z = 0)]
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Mediation Model

• Under complete mediation,
– P[Y(X = 1,Z = 1)] = P[Y(X = 0, Z = 1)]
– P[Y(X = 1,Z = 1)] ≠ P[Y(X = 1, Z = 0)]

• In words,
– For kids with “good” parenting, pregnancy 

smoking IS NOT associated with conduct 
disorder

– For kids whose mom’s smoked during 
pregnancy, their conduct is still associated 
with parenting.
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Effect Modification?

Pregnancy 
Smoking (X)

Parenting (Z)

Childhood 
Conduct (Y)

Pregnancy
Smoking | Z =1

Pregnancy 
Smoking | Z =0

τ1

τ0

Childhood 
Conduct (Y)

Childhood 
Conduct (Y)
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Historical Problem: 
Path Analysis

• Traditional statistical formulation of direct 
and indirect effects

• Weakness:  absence of time
• Models of variables versus stochastic 

processes
• In our mind, we have “time” in mind, but 

not necessarily in our data
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Historical Problem: 
Path Analysis

• Associational versus causal relationships
• Distinction has not been made clear
• Statisticians tend to caution people about 

interpretation
• But, there has tended to be no formal 

distinction in modeling 
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Causal Notation
• “do”:  forcing a change
• Judea Pearl et al.
• P[Y(X = 1)|do(Z=1)]
• “do” indicates changing the state of nature
• CAUSAL versus OBSERVED conditioning
• Difference is P[Y|X] and P[Y|do(X)]

– P[Y|do(X)]:  what is the change in the expected value of Y if we 
were to intervene and change the value of X from x to x+1?

– P[Y|X]:  what would be the difference in the expected value of Y
is we were to FIND X at level x+1 instead of x?

• Recent work in causal inference “forces” us to explicitly 
state assumptions

• Failing to do so may lead to incorrect inferences
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Causal Notation

• Directed Acyclic Graphs (DAGS)
• Important concepts in understanding 

causality
– D-separation
– Blocking
– Colliders
– Non-colliders
– Descendants
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So far….

• “Potential Outcomes” (i.e., counterfactual) 
framework

• Changes the way statisticians think about 
structural modeling

• Application?  Used appropriately in 
medicine and clinical trials.

• What about observational studies?  Does 
it still fit?
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What can statistics contribute to 
causal understanding?

• Many problems in statistics applied to 
causal inference

• Pearl, in response to avoidance of 
causality in statistics literature :  “This 
position of caution and avoidance has 
paralyzed many fields that look to statistics 
for guidance, especially economics and 
social science.”
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What can statistics contribute to 
causal understanding?

• Various types of causal thinking
• Experience based

– Statistics specializes in this
– If you take the medicine, you will be cured
– Why?  Doesn’t necessarily matter
– Analysis of randomized clinical trial does not need to understand 

mechanism for treatment effect
– “black box” causality

• Mechanistic based
– Looks into the “black box” to understand mechanism
– Validity of mechanism varies substantially in medical research 

(e.g., heart function versus cancer versus psychiatric disorders)
• Can think of a “hierarchy” between these (more later).  



24

New Developments in Statistics (Pearl, 2000)

• Precise definitions are given of what one should 
mean by a causal effect (e.g., counterfactual)

• This has clarified causal “thinking”
• New methods for approximating counterfactual 

comparison (e.g. marginal structural model 
(Robins, 1986))

• Sensitivity studies can be made to see whether 
confounders or other factors can explain 
differences
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Mechanistic Causality
• These developments apply to experience based 

causality
• Mechanistic insights driving science play little 

role in analysis
• Randomized trial ignores mechanism
• Counterfactual causality typically related to 

action being taken (e.g. pregnancy smoking)
• Mechanistic causality aims at understanding 

mechanisms or processes.
• May be 2ndary to understand whether or not 

mechanisms can be influenced
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Mechanistic Causality

• Statistics is generally most helpful when 
mechanism is very poorly understood

• Mechanisms unfold over time.
• Need sequence of events
• “Granger causality”

– Measurements taken over time
– How they influence each other
– Present and past influencing future
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Levels of Mechanistic Understanding

• Can be studied at many levels
• Example:  genetic studies

– Can derive genetic versus environment component
– Can say “genetic cause”
– But, wouldn’t it be more detailed to know which genes were the 

cause?
• Statistics:  causality tends to be thought of absolute

– Better to think in less definite terms
– A study can make a step towards mechanistic understanding
– But, understanding may still be superficial

• These concepts depend on the level of detail
• A direct effect may become an indirect effect if new 

intermediate variables are observable
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Causation in Epidemiology

• Essential in epidemiology
• But, no agreed upon definition
• Five categories can be delineated

– Production
– Necessary and sufficient
– Sufficient-component
– Counterfactual
– Probabilistic
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“Production”

• A cause is something that produces or 
creates an effect

• Definition of production and creation are 
not well-defined

• Rejected due to this ambiguity
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“Necessary & Sufficient Causes”

• Necessary:  must be present for effect to occur
• Sufficient: in its presence effect must occur
• 4 combinations
• Few epidemiologists believe that “cause” should 

be limited to necessary conditions
• Support is based on scientific determinism and 

“one cause” model
• Requires one-to-one correspondence.  
• No role for chance.
• Too many “neither necessary nor sufficient” to 

make this practical.
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Sufficient-Component

• Rothman:  widely cited.
• Causes can be neither sufficient nor necessary
• Made up of a number of components, no one of 

which is sufficient on its own.
• Still assumes determinism:  no variation or 

chance allowed.
• Must assume existence of countless hidden 

effects:  big assumption
• Rejected because unwieldy.
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Probabilistic Causation
• A cause increases the probability that an effect will occur
• Offers alternative to determinism
• Makes fewer biological assumptions
• Little discussion of their strengths and weaknesses in epi

literature
• Fails to explain, for example, why some smokers 

develop cancer and others do not.
• Unclear about what it means to “increase” the probability
• Cox and Holland object to this idea:  how can causal and 

non-causal associations be differentiated?
• On its own, probabilistic causation is not enough
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Counterfactuals

• Compares outcomes under different conditions
• Can be either deterministic or probabilistic
• Counterfactuals are not inconsistent with 4 

previous definitions
• They articulate additional attribute by 

strengthening distinction between cause and 
correlation

• Counterfactual alone is not sufficient for 
causation
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Probabilistic + Counterfactual
• This combination is suggested as the best option for 

epidemiology
• Consistent with both deterministic and probabilistic 

models.
• Makes few assumptions about unobservables
• Probabilistic is implicit in practical reasoning:

– What does physician mean when she tells her patient that he 
can reduce risk of lung cancer by giving up smoking?

– Does she mean he MIGHT be an individual for whom smoking 
‘tips the balance’?

– Implication: if other “component causes” are known, he might not 
need to give up smoking.

– Trivializes the nature of public health advice
– By quitting smoking, the probability of lung cancer is lowered. 
– Deterministic account does not allow this approach.
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