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The factor analysis literature includes a range of recommendations regarding the
minimum sample size necessary to obtain factor solutions that are adequately stable
and that correspond closely to population factors. A fundamental misconception
about this issue is that the minimum sample size, or the minimum ratio of sample
size to the number of variables, is invariant across studies. In fact, necessary sample
size is dependent on several aspects of any given study, including the level of
communality of the variables and the level of overdetermination of the factors. The
authors present a theoretical and mathematical framework that provides a basis for
understanding and predicting these effects. The hypothesized effects are verified by
a sampling study using artificial data. Results demonstrate the lack of validity of
common rules of thumb and provide a basis for establishing guidelines for sample
size in factor analysis.

In the factor analysis literature, much attention has
be;;n given to the issue of sample size. It is widely
understood that the use of larger samples in applica-
tions of factor analysis tends to provide results such
that sample factor loadings are more precise estimates
of population loadings and are also more stable, or
les s variable, across repeated sampling. Despite gen-
eral agreement on this matter, there is considerable
di'/ergence of opinion and evidence about the ques-
tion of how large a sample is necessary to adequately
acnieve these objectives. Recommendations and find-
ings about this issue are diverse and often contradic-
tory. The objectives of this article are to provide a
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clear understanding and demonstration of how sample
size influences factor analysis solutions and to offer
useful and well-supported recommendations on desir-
able sample sizes for empirical research. In the pro-
cess, we also hope to account for some inconsistent
findings and recommendations in the literature.

A wide range of recommendations regarding
sample size in factor analysis has been proposed.
These guidelines typically are stated in terms of either
the minimum necessary sample size, N, or the mini-
mum ratio of N to the number of variables being
analyzed, p. Many of these guidelines were reviewed
and discussed by Arrindell and van der Ende (1985)
and more recently by Velicer and Fava (1998). Let us
consider a sampling of recommendations regarding
absolute sample size. Gorsuch (1983) recommended
that N should be at least 100, and Kline (1979) sup-
ported this recommendation. Guilford (1954) argued
that N should be at least 200, and Cattell (1978)
claimed the minimum desirable N to be 250. Comrey
and Lee (1992) offered a rough rating scale for ad-
equate sample sizes in factor analysis: 100 = poor,
200 = fair, 300 = good, 500 = very good, 1,000 or
more = excellent. They urged researchers to obtain
samples of 500 or more observations whenever pos-
sible in factor analytic studies.

Considering recommendations for the N:p ratio,
Cattell (1978) believed this ratio should be in the
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range of 3 to 6. Gorsuch (1983) argued for a minimum
ratio of 5. Everitt (1975) recommended that the N:p
ratio should be at least 10. Clearly the wide range in
these recommendations causes them to be of rather
limited value to empirical researchers. The inconsis-
tency in the recommendations probably can be attrib-
uted, at least in part, to the relatively small amount of
explicit evidence or support that is provided for any of
them. R ather, most of them seem to represent general
guidelines developed from substantial experience on
the part of their supporters. Some authors (e.g., Com-
rey & Lee, 1992) placed the sample size question into
the context of the need to make standard errors of
correlation coefficients adequately small so that en-
suing factor analyses of those correlations would
yield stable solutions. It is interesting that a number of
important references on factor analysis make no ex-
plicit recommendation at all about sample size. These
include books by Harman (1976), Law ley and Max-
well (1971), McDonald (1985), and Mulaik (1972).

There are some research findings that are relevant
to the sample size question. There is considerable lit-
erature, for instance, on the topic of standard errors in
factor loadings. As sample size increases, the variabil-
ity in factor loadings across repeated samples will
decrease (i.e., the loadings will have smaller standard
errors). Formulas for estimating standard errors of
factor loadings have been developed for various types
of unrelated loadings (Girshick, 1939; Jennrich, 1974;
Lawley & Maxwell, 1971) and rotated loadings
(Archer & Jennrich, 1973; Jennrich, 1973, 1974). Cu-
deck and O'Dell (1994) reviewed the literature on this
subject and provided further developments for obtain-
ing standard errors of rotated factor loadings. Appli-
cation of these methods would demonstrate that stan-
dard errors decrease as N increases. In addition.
Archer and Jennrich (1976) showed this effect in a
Monte Carlo study. Although this effect is well-
defined theoretically and has been demonstrated with
simulations, there is no guidance available to indicate
how large N must be to obtain adequately small stan-
dard errors of loadings. A detailed study of this ques-
tion would be difficult because, as emphasized by
Cudeck and O'Dell, these standard errors depend in a
complex way on many things other than sample size,
including method of rotation, number of factors, and
the degree of correlation among the factors. Further-
more, a general method for obtaining standard errors
for rotated loadings has only recently been developed
(Browne & Cudeck, 1997).

Some Monte Carlo studies have demonstrated ef-

fects of sample size on factor solutions. For instance,
Browne (1968) investigated the quality of solutions
produced by different factor analytic methods.
Browne found that solutions obtained from larger
samples showed greater stability (smaller standard de-
viations of loadings across repeated samples) and
more accurate recovery of the population loadings.
Browne also found that better recovery of population
solutions was obtained when the ratio of the number
of variables, p, to the number of factors, r, increased.
This issue is discussed further in the next section and
is of major interest in this article. In another early
study, Pennell (1968) examined effects of sample size
on stability of loadings and found that effect to di-
minish as communalities of the variables increased.
(The communality of a variable is the portion of the
variance of that variable that is accounted for by the
common factors.) In a study comparing factoring
methods, Velicer, Peacock, and Jackson (1982) found
similar effects. They observed that recovery of true
structure improved with larger N and with higher satu-
ration of the factors (i.e., when the nonzero loadings
on the factors were higher). These same trends were
replicated in a recent study by Velicer and Fava
(1998), who also found the influence of sample size to
be reduced when factor loadings, and thus commu-
nalities, were higher. Although these studies demon-
strated clear effects of sample size, as well as some
evidence for an interactive effect of sample size and
level of communality, they did not shed much light on
the issue of establishing a minimum desirable level of
N, nor did they offer an integrated theoretical frame-
work that accounted for these various effects.

Additional relevant information is reported in two
empirical studies of the sample size question. Barrett
and Kline (1981) investigated this issue by using two
large empirical data sets. One set consisted of mea-
sures for 491 participants on the 16 scales of Cattell's
Sixteen Personality Factor Questionnaire (16 PF; Cat-
tell, Eber, & Tatsuoka, 1970). The second set con-
sisted of measures for 1,198 participants on the 90
items of the Eysenck Personality Questionnaire (EPQ;
Eysenck & Eysenck, 1975). From each data set, Bar-
rett and Kline drew subsamples of various sizes and
carried out factor analyses. They compared the sub-
sample solutions with solutions obtained from the cor-
responding full samples and found that good recovery
of the full-sample solutions was obtained with rela-
tively small subsamples. For the 16 PF data, good
recovery was obtained from a subsample of N = 48.
For the EPQ data, good recovery was obtained from a
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subsample of N = 112. These values represent N:p
ratios of 3.0 and 1.2, respectively. These findings rep-
resent much smaller levels of TV and N:p than those
recommended in the literature reviewed above. Bar-
retl and Kline suggested that the level of recovery
they achieved with rather small samples might have
been a function of data sets characterized by strong,
clear factors, a point we consider later in this article.

A similar study was conducted by Arrindell and
van der Ende (1985). These researchers used large
samples of observations on two different fear ques-
tionnaires and followed procedures similar to Barrett
and Kline's (1981) to draw subsamples and compare
their solutions with the full-sample solutions. For a
76- item questionnaire, they found a subsample of A'
= 100 sufficient to achieve an adequate match to the
full-sample solution. For a 20-item questionnaire,
they found a subsample of N = 78 sufficient. These
Ns correspond to N:p ratios of 1.3 and 3.9, respec-
tively. Again, these results suggest that samples
smaller than generally recommended might be ad-
equate in some applied factor analysis studies.

We suggest that previous recommendations regard-
ing the issue of sample size in factor analysis have
been based on a misconception. That misconception is
that the minimum level of N (or the minimum N:p
ratio) to achieve adequate stability and recovery of
population factors is invariant across studies. We
show that such a view is incorrect and that the nec-
essary N is in fact highly dependent on several spe-
cific aspects of a given study. Under some conditions,
relatively small samples may be entirely adequate,
whereas under other conditions, very large samples
may be inadequate. We identify aspects of a study that
influence the necessary sample size. This is first done
in a theoretical framework and is then verified and
investigated further with simulated data. On the basis
of these findings we provide guidelines that can be
used in practice to estimate the necessary sample size
in an empirical study.

Influences of Sample Size on Factor
Analysis Solutions

MacCallum and Tucker (1991) presented a theoret-
ical analysis of sources of error in factor analysis,
focusing in part on how random sampling influences
parameter estimates and model fit. Their framework
provides a basis for understanding and predicting the
influence of sample size in factor analysis. MacCal-
lum and Tucker distinguished between "model error,"

arising from lack of fit of the model in the population,
and "sampling error," arising from lack of exact cor-
respondence between a sample and a population. This
distinction is essentially equivalent to that drawn by
Cudeck and Henly (1991) between "discrepancy of
approximation" and "discrepancy of estimation."
MacCallum and Tucker isolated various effects of
model error and sampling error in the common factor
model. The influence of sampling error is to introduce
inaccuracy and variability in parameter estimates,
whereas the influence of model error is to introduce
lack of fit of the model in the population and the
sample. In any given sample, these two phenomena
act in concert to produce lack of model fit and error in
parameter estimates. In the following developments,
because we are focusing on the sample size question,
we eliminate model error from consideration and
make use of a theoretical framework wherein the
common factor model is assumed to hold exactly in
the population. The following framework is adapted
from MacCallum and Tucker, given that condition.
Readers familiar with factor analytic theory will note
that parts of this framework are nonstandard repre-
sentations of the model. However, this approach pro-
vides a basis for important insights about the effects
of the role of sample size in factor analysis. The fol-
lowing mathematical developments make use of
simple matrix algebra. Resulting hypotheses are sum-
marized in the Summary of Hypotheses section.

Mathematical Framework

Let y be a random row vector of scores on p mea-
sured variables. (In all of the following developments,
it is assumed that all variables, both observed and
latent, have means of zero.) The common factor
model can be expressed as

y = xH', (1)

where x is a row vector of scores on r common and p
unique factors, and fi is a matrix of population factor
loadings for common and unique factors. The vector x
can be partitioned as

x = [xr, xj, (2)

where xc. contains scores on r common factors, and xu

contains scores on p unique factors. Similarly, the
factor loading matrix Q can be partitioned as

a = [A, 6]. (3)

Matrix A is of order p x r and has entries representing
population common factor loadings. Matrix 0 is a
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diagonal matrix of order p x p and has diagonal en-
tries representing unique factor loadings.

Equation 1 expresses measured variables as linear
combinations of common and unique factors. Follow-
ing a well-known expression for variances and covari-
ances of linear combinations of random variables
(e.g., Morrison, 1990, p. 84), we can write an expres-
sion for the population covariance matrix of the mea-
sured variables, 2VV:

2 = (4)

where £,., is the population covariance matrix for the
common and unique factor scores in vector x. Matrix
2W is a square matrix of order (r + /;) and can be
viewed as being partitioned into sections as follows:

2,r = y
^u

(5)

Each submatrix of 2AV corresponds to a population
covariance matrix for certain types of factors. Matrix
2£C is the r x r population covariance matrix for the
common factors. Matrix 1,uu is the p x p population
covariance matrix for the unique factors. Matrices 2,,,.
and Sc.,, contain population covariances of common
factors with unique factors, where 2IK. is the transpose
of Sru. Without loss of generality, we can define all of
the factors as being standardized in the population.
This allows us to view S tx and each of its submatrices
as containing correlations. Given this specification, let
us define a matrix <t> whose entries contain population
correlations among the common factors. That is,

„. = <£. (6)

Furthermore, because unique factors must, by defini-
tion, be uncorrelated with each other and with com-
mon factors in the population, a number of simplifi-
cations of 2^ can be recognized. In particular, matrix
£„„ must be an identity matrix (I), and matrices Sur

and 2C.H must contain all zeros:

2,,,. = 2' = 0.

(7)

(8)

Given these definitions, we can rewrite Equation 5 as
follows:

(9)

Substituting from Equation 9 into Equation 4 and ex-
panding, we obtain the following:

2VV = A4>A' + S2. (10)

This is a fundamental expression of the common fac-
tor model in the population. It defines the population
covariances for the measured variables as a function
of the parameters in A, <t>, and @2. Note that the
entries in CH)2 are squared unique factor loadings, also
called unique variances. These values represent the
variance in each variable that is not accounted for by
the common factors.

Equation 10 represents a standard expression of the
common factor model in the population. If the model
in Equation 1 is true, then the model for the popula-
tion covariance matrix in Equation 10 will hold ex-
actly. Let us now consider the structure of a sample
covariance matrix as implied by the common factor
model. A sample covariance matrix differs from the
population covariance matrix because of sampling er-
ror; as a result, the structure in Equation 10 will not
hold exactly in a sample. To achieve an understanding
of the nature of sampling error in this context, it is
desirable to formally represent the cause of such lack
of fit. To do so, we must consider what aspects of the
model are the same in a sample as they are in a popu-
lation, as well as what aspects are not the same. Let us
first consider factor loadings. According to common
factor theory, the common and unique factor loadings
are weights that are applied to the common and
unique factors in a linear equation to approximate the
observed variables, as in Equation 1. These weights
are the same for each individual. Thus, the true factor
loadings in every sample will be the same as they are
in the population. (This is not to say that the sample
estimates of those loadings will be exact or the same
in every sample. They will not, for reasons to be
explained shortly. Rather, the true loadings are the
same in every sample.) The matrix fl then represents
the true factor loading matrix for the sample as well as
the population.

Next consider the relationships among the factors.
The covariances among the factors will generally not
be the same in a sample as they are in the population.
This point can be understood as follows. Every indi-
vidual in the population has (unknowable) scores on
the common and unique factors. Matrix Sxv is the
covariance matrix of those scores. If we were to draw
a sample from the population, and if we knew the
common and unique factor scores for the individuals
in that sample, we could compute a sample covariance
matrix CA.V for those scores. The elements in Cv v

would differ from those in 2VV simply because of
random sampling fluctuation, in the same manner that
sample variances and covariances of measured vari-



MAcCALLUM, WIDAMAN, ZHANG, AND HONG

ables differ from corresponding population values.
Matrix Cxx can be viewed as being made up of sub-
matrices as follows:

v^rr c cw - ^-
(11)

where the submatrices contain specified sample co-
variances among common and unique factors.

Thus, we see that true factor loadings are the same
in a sample as in the population, but that factor co-
vanances are not the same. This point provides a basis
for understanding the factorial structure of a sample
covariance matrix. Earlier we explained that the popu-
lation form of the common factor model in Equation
4 was based on a general expression for variances and
covariances of random variables (e.g., Morrison,
1990, p. 84). That same general rule applies in a
sample as well. If we were to draw a sample of indi-
viduals for whom the model in Equation 1 holds and
were to compute the sample covariance matrix Cv>. for
the measured variables, that matrix would have the
following structure:

c,,, = nc,/i'. (12)
Substituting from Equations 3 and 11 into Equation
12 yields the following:

Cy>, = AC,,A' ACrB0' + ®CUIA'
(13)

Thi s equation represents a full expression of the struc-
ture of a sample covariance matrix under the assump-
tion that the common factor model in Equation 1
holds exactly. That is, if Equation 1 holds for all
individuals in a population, and consequently for all
individuals in any sample from the population, then
Equation 13 holds in the sample. Alternatively, if the
standard factor analytic model in Equation 10 is ex-
actly true in the population, then the structure in
Equation 13 is exactly true in any sample from that
population. Interestingly, Equation 1 3 shows that the
sample covariances of the measured variables may be
expressed as a function of population common and
unique loadings (in A and ©) and sample covariances
for common and unique factors (in Ccc, Ccu, Cuc, and
CMJ.' As we discuss in the next section, this view
provides insights about the impact of sample size in
factor analysis.

In an ideal world, we could use Equation 13 to
obtain exact values of population factor loadings. If
we knew the factor scores for all individuals in a
sample, we would then know the sample covariance

matrices for the common and unique factors. If we
were to then solve Equation 13 for A and 0, that
solution would exactly correspond to the population
common and unique factor loadings. Of course, this
procedure cannot be followed in practice because we
do not know the factor scores. Thus, the structure
represented in Equation 13 cannot be used to conduct
factor analysis in a sample.

Rather, factor analysis in a sample is conducted
using the population model in Equation 10. That
model is fit to a sample covariance matrix, Cyv, yield-
ing estimates of A, <t>, and ©, along with information
about degree of fit of the model. The current frame-
work provides a basis for understanding one primary
source of such lack of fit. That source involves the
relationships among the common and unique factors.
When the model in Equation 10 is fit to sample data,
it is assumed that unique factors are uncorrelated with
each other and with common factors. Although this is
true in the population, it will generally not be true in
a sample. This phenomenon manifests itself in the
difference between Equations 10 and 13. Specifically,
unique factors will exhibit nonzero covariances with
each other and with common factors in a sample,
simply because of sampling error. This perspective
provides a basis for understanding how sampling error
influences the estimation of factor loadings. Equation
13 is key. Consider first the ideal case where the
variances and covariances in a sample exactly match
the corresponding population values (i.e., Ccc = <!>;
c™ = °; c»< = °; C«w = D- I n that cas£. Equation 13
reduces to

Cvv = 62. (14)

That is, the population model in Equation 10 would
hold exactly in such a sample. In such an ideal case,
a factor analysis of Cyv would yield an exact solution
for the population parameters of the factor model,
regardless of the size of the sample. If unique factors
were truly uncorrelated with each other and with com-
mon factors in a sample, and if sample correlations
among common factors exactly matched correspond-

1 This is a nonstandard representation of the factor struc-
ture of a sample covariance matrix but is not original in the
current work. For example, Cliff and Hamburger (1967)
provided an equation (their Equation 4, p. 432) that is es-
sentially equivalent to our Equation 12, which is the basis
for Equation 13, and pointed out the mixture of population
and sample values in this structure.
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ing population values, then factor analysis of sample
data would yield factor loadings that were exactly
equal to population values. In reality, however, such
conditions would not hold in a sample. Most impor-
tantly, CI(H would not be diagonal, and C(.,( and Cm.
would not be zero. Thus, Equation 14 would not hold.
We would then fit such a model to Cvv, and the re-
sulting solution would not be exact but would yield
estimates of model parameters. Thus, the lack of fit of
the model to Cvv can be seen as being attributable to
random sampling fluctuation in the variances and co-
variances of the factors, with the primary source of
error being the presence of nonzero sample covari-
ances of unique factors with each other and with com-
mon factors. The further these covariances deviate
from zero, the greater the effect on the estimates of
model parameters and on fit of the model.

Implications for Effects of Sample Size

This ramework provides a basis for understanding
some effects of sample size in fitting the common
factor model to sample data. The most obvious sam-
pling effect arises from nonzero sample intercorrela-
tions of unique factors with each other and with
common factors. Note that as N increases, these in-
tercorrelations will tend to approach their population
values cf zero. As this occurs, the structure in Equa-
tion 13 will correspond more closely to that in Equa-
tion 14, and the lack of fit of the model will be re-
duced. Thus, as N increases, the assumption that the
interconelations of unique factors with each other and
with common factors will be zero in the sample will
hold mote closely, thereby reducing the impact of this
type of sampling error and, in turn, improving the
accuracy of parameter estimates.2

A second effect of sampling involves the magni-
tude of Ine unique factor loadings in 0. Note that in
Equation 13 these loadings in effect function as
weights tor the elements in Cn,, Cur, and C,,M. Suppose
the communalities of all measured variables are high,
meaning that unique factor loadings are low. In such
a case, the entries in C,.,,, Cut., and CHI( receive low
weight and in turn contribute little to the structure of
Cvv. Thus, even if unique factors exhibited nontrivial
sample covariances with each other and with common
factors, i he impact of that source of sampling error
would be greatly reduced by the role of the low
unique factor loadings in 0. Under such conditions,
the influence of this source of sampling error would
be minor, regardless of sample size. On the other
hand, if communalities were low, meaning unique

factor loadings in 0 were high, then the elements of
C,.M, C,,(., and CH1, would receive more weight in Equa-
tion 13 and would make a larger contribution to the
structure of Cvv and in turn to lack of fit of the model.
In that case, the role of sample size becomes more
important. In smaller samples, the elements of CrM and
C,,( and the off-diagonals of Cuu would tend to deviate
further from zero. If those matrices receive higher
weight from the diagonals of 0. then the impact of
sample size increases.

These observations can be translated into a state-
ment regarding the expected influence of unique fac-
tor weights on recovery of population factors in analy-
sis of sample data. We expect both a main effect of
unique factor weights and an interactive effect be-
tween those weights and sample size. When unique
factor weights are small (high communalities), the
impact of this source of sampling error will be small
regardless of sample size, and recovery of population
factors should be good. However, as unique factor
weights become larger (low communalities), the im-
pact of this source of sampling error is more strongly
influenced by sample size, causing poorer recovery of
population factors. The effect of communality size on
quality of sample factor solutions (replicability, re-
covery of population factors) has been noted previ-
ously in the literature on Monte Carlo studies (e.g.,
Cliff & Hamburger, 1967; Cliff & Pennell, 1967; Pen-
nell, 1968; Velicer et al., 1982; Velicer & Fava,
1998), but the theoretical basis for this phenomenon,
as presented above, has not been widely recognized.
Gorsuch (1983, p. 331) noted in referring to an equa-
tion similar to our Equation 13, that unique factor
weights are applied to the sample correlations involv-
ing unique factors and will thus impact replicability of
factor solutions. However, Gorsuch did not discuss
the interaction between this effect and sample size.

Finally, we consider an additional aspect of factor
analysis studies and its potential interaction with
sample size. An important issue affecting the quality
of factor analysis solutions is the degree of overde-
termination of the common factors. By overdetermi-
nation we mean the degree to which each factor is
clearly represented by a sufficient number of vari-
ables. An important component of overdetermination

2 Gorsuch (1983, p. 331) mentioned that replicability of
factor solutions will be enhanced when correlations involv-
ing unique factors are low. but he did not explicitly discuss
the role of sample size in this phenomenon.
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is the ratio of the number of variables to the number
of factors, p:r, although overdetermination is not de-
fined purely by this ratio. Highly overdetermined fac-
tors are those that exhibit high loadings on a substan-
tial number of variables (at least three or four) as well
as good simple structure. Weakly overdetermined fac-
tors tend to exhibit poor simple structure without a
substantial number of high loadings. Although over-
determination is a complex concept, the p:r ratio is an
important aspect of it that has received attention in the
literature. For all factors to be highly overdetermined,
it if . desirable that the number of variables be at least
several times the number of factors. Comrey and Lee
(19')2, pp. 206-209) discussed overdetermination and
recommended at least five times as many variables as
faciors. This is not a necessary condition for a suc-
cessful factor analysis and does not assure highly
overdetermined factors, but rather it is an aspect of
design that is desirable to achieve both clear simple
structure and highly overdetermined factors. In a ma-
jor simulation study, Tucker, Koopman, and Linn
(1969) demonstrated that several aspects of factor
analysis solutions are much improved when the ratio
of ihe number of variables to the number of factors
increases. This effect has also been observed by
Browne (1968) and by Velicer and Fava (1987, 1998).

With respect to sample size, it has been speculated
(Arrindell & van der Ende, 1985; Barrett & Kline,
1931) that the impact of sampling error on factor ana-
ly:ic solutions may be reduced when factors are
highly overdetermined. According to these investiga-
tors, there may exist an interactive effect between
sample size and degree of overdetermination of the
factors, such that when factors are highly overdeter-
mined, sample size may have less impact on the qual-
it> of results. Let us consider whether the mathemati-
cal framework presented earlier provides any basis for
anticipating such an interaction. Consider first the
case where p is fixed and r varies. The potential role
o sample size in this context can be seen by consid-
ering the structure in Equation 13 and recalling that a
major source of sampling error is the presence of non-
zero correlations in C(.,(, Cm, and C,,,,. For constant/;,
the matrix being fit, Cvv, remains the same size, but as
r becomes smaller, matrices C,.,, and C,,(. become
smaller and thus yield reduced sampling error. Note
also that as r is reduced, the number of parameters
decreases, and the impact of sampling error is reduced
when fewer parameters are to be estimated. This per-
spective provides an explicit theoretical basis for the
prediction that the effect of sampling error will be

reduced as the number of factors is reduced, holding
the number of variables constant.

Next consider the case where r is fixed and p in-
creases, thus increasing the p:r ratio. Although it has
been argued in the literature that a larger p:r ratio is
always desirable (e.g., Comrey & Lee, 1992; Bern-
stein & Nunnally, 1994), present developments may
call that view into question. Although a larger p:r
ratio implies potentially better overdetermination of
the factors, such an increase also increases the size of
the matrices C(.,,, C,/(, and C,,H and in turn increases
their contribution to overall sampling error. However,
it is also true that as p increases, the matrix Cvv to
which the model is being fit increases in size, thus
possibly attenuating the effects of sampling error. In
general, though, the nature of the interaction between
N and the p:r ratio when r is fixed is not easily an-
ticipated. In their recent Monte Carlo study, Velicer
and Fava (1998) held r constant and varied p. They
found a modest positive effect of increasing p on re-
covery of population factor loadings, but they found
no interaction with N.

Finally, our theoretical framework implies a likely
interaction between levels of overdetermination and
communality. Having highly overdetermined factors
might be especially helpful when communalities are
low, because it is in that circumstance that the impact
of sample size is greatest. Also, when communalities
are high, the contents, and thus the size, of the matri-
ces Ccu, C,,r, and Cuu become almost irrelevant be-
cause they receive very low weight in Equation 13.
Thus, the effect of the p:r ratio on quality of factor
analysis solutions might well be reduced as commu-
nality increases.

Summary of Hypotheses

The theoretical framework presented here provides
a basis for the following hypotheses about effects of
sample size in factor analysis.

1. As N increases, sampling error will be reduced,
and sample factor analysis solutions will be more
stable and will more accurately recover the true popu-
lation structure.

2. Quality of factor analysis solutions will improve
as communalities increase. In addition, as communali-
ties increase, the influence of sample size on quality
of solutions will decline. When communalities are all
high, sample size will have relatively little impact on
quality of solutions, meaning that accurate recovery
of population solutions may be obtained using a fairly
small sample. However, when communalities are low,
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the role of sample size becomes much more important
and will have a greater impact on quality of solutions.

3. Quality of factor analysis solutions will improve
as overdetermination of factors improves. This effect
will be reduced as communalities increase and may
also interact with sample size.

Monte Carlo Study of Sample Size Effects

This section presents the design and results of a
Monte Carlo study that investigated the phenomena
discussed in the previous sections. The general ap-
proach used in this study involved the following steps:
(a) Population correlation matrices were defined as
having specific desired properties and known factor
structures; (b) sample correlation matrices were gen-
erated from those populations, using various levels of
N; (c) the sample correlation matrices were factor
analyze :1; and (d) the sample factor solutions were
evaluated to determine how various aspects of those
solutions were affected by sample size and other prop-
erties of the data. Each of these steps is now discussed
in more detail.

Method

We obtained population correlation matrices that
varied with respect to relevant aspects discussed in the
previou-, section, including level of communality and
degree of overdetermination of common factors.
Some of the desired matrices were available from a
large scale Monte Carlo study conducted by Tucker et
al. (1969). Population correlation matrices used by
Tucker et al. are ideally suited for present purposes.
These population correlation matrices were generated
under the assumption that the common factor model
holds exactly in the population. Number of measured
variable-., number of common factors, and level of
communality were controlled. True factor-loading
patterns underlying these matrices were constructed to
exhibit clear simple structure, with an approximately
equal number of high loadings on each factor; these
patterns were realistic in the sense that high loadings
were noi all equal and low loadings varied around
zero. True common factors were specified as orthogo-
nal. Six population correlation matrices were selected
for use in the present study. All were based on 20
measured variables but varied in number of factors
and level of communality. Number of factors was
either three or seven. The three-factor condition rep-
resents the case of highly overdetermined factors, and
the seven-factor condition represents the case of rela-

tively weakly overdetermined factors. Three levels of
communality were used: high, in which communali-
ties took on values of .6, .7, and .8; wide, in which
communalities varied over the range of .2 to .8 in .1
increments; and low, in which communalities took on
values of .2, .3, and .4. Within each of these condi-
tions, an approximately equal number of variables
was assigned each true communality value. These
three levels can be viewed as representing three levels
of importance of unique factors. High communalities
imply low unique variance and vice versa. One popu-
lation correlation matrix was selected to represent
each condition defined by two levels of number of
factors and three levels of communality. The six ma-
trices themselves were obtained from a technical re-
port by Tucker, Koopman, and Linn (1967). For full
details about the procedure for generating the matri-
ces, the reader is referred to Tucker et al. (1969). The
matrices, along with population factor patterns and
communalities, can be found at the worldwide web
site of Robert C. MacCallum (http://quantrm2.psy.
ohio-state .edu/maccall um).

To investigate the effect of overdetermination as
discussed in the previous section, it was necessary to
construct some additional population correlation ma-
trices. That is. because Tucker et al. (1969) held /?
constant at 20 and constructed matrices based on dif-
ferent levels of r (three or seven), it was necessary for
us to construct additional matrices to investigate the
effect of varying p with r held constant. To accom-
plish this, we used the procedure developed by Tucker
et al. (1969) to generate three population correlation
matrices characterized by 10 variables and 3 factors.
The three matrices varied in level of communality
(high, wide, low), as described above. Inclusion of
these three new matrices allowed us to study the ef-
fects of varying p with r held constant, by comparing
results based on 10 variables and 3 factors with those
based on 20 variables and 3 factors. In summary, a
total of nine population correlation matrices were
used—six borrowed from Tucker et al. (1967) and
three more constructed by using identical procedures.
These nine matrices represented three conditions of
overdetermination (as defined by p and r), with three
levels of communality.

Sample correlation matrices were generated from
each of these nine population correlation matrices,
using a procedure suggested by Wijsman (1959).
Population distributions were defined as multivariate
normal. Sample size varied over four levels: 60, 100,
200, and 400. These values were chosen on the basis
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of pilot studies that indicated that important phenom-
ena were revealed using this range of Ns. For data sets
based on p = 20 variables, these Ns correspond to
N:J;> ratios of 3.0, 5.0, 10.0, and 20.0, respectively; for
data sets based on p = 10 variables, the correspond-
ing ratios are 6.0, 10.0, 20.0, and 40.0. According to
the recommendations discussed in the first section of
thi- article, these Ns and N:p ratios represent values
thar range from those generally considered insuffi-
cient to those considered more than acceptable. For
each level of N and each population correlation ma-
trix, 100 sample correlation matrices were generated.
Thus, with 100 samples drawn from each condition
defined by 3 levels of communality, 3 levels of over-
delermination, and 4 levels of sample size, a total of
3,600 sample correlation matrices were generated.

Bach of these sample matrices was then analyzed
using maximum likelihood factor analysis and speci-
fying the number of factors retained as equal to the
known number of factors in the population (i.e., either
thn:e or seven).3 No attempt was made to determine
the degree to which the decision about the number of
factors would be affected by the issues under inves-
tigation. Although this is an interesting question, it
was considered beyond the scope of the present study.

An issue of concern in the Monte Carlo study in-
vo.ved how to deal with samples wherein the maxi-
mim likelihood factor analysis did not converge or
yie Ided negative estimates of one or more unique vari-
ances (Heywood cases). Such solutions were expected
under some of the conditions in our design. Several
studies of confirmatory factor analysis and structural
equation modeling (Anderson & Gerbing, 1984;
Boomsma, 1985; Gerbing & Anderson, 1987; Velicer
& Fava, 1998) have found nonconvergence and im-
proper solutions to be more frequent with small N and
poorly defined latent variables. McDonald (1985, pp.
78-81) suggested that Heywood cases arise more fre-
quently when overdetermination is poor. Marsh and
Hau (in press) discussed strategies for avoiding such
problems in practice. In the present study, we man-
aged this issue by running the entire Monte Carlo
study twice. In the first approach, the screened-
samples approach, sample solutions that did not con-
verge by 50 iterations or that yielded Heywood cases
were removed from further analysis. The sampling
procedure was repeated until 100 matrices were ob-
tained for each cell of the design, such that subsequent
analyses yielded convergent solutions and no Hey-
wood cases. In the second approach, the unscreened-
samples approach, the first 100 samples generated in

each cell were used regardless of convergence prob-
lems or Heywood cases.

One objective of our study was to compare the
solution obtained from each sample correlation matrix
with the solution obtained from the corresponding
population correlation matrix. To carry out such a
comparison, it was necessary to consider the issue of
rotation, because all sample and population solutions
could be freely rotated. Each population correlation
matrix was analyzed by maximum likelihood factor
analysis, and the r-factor solution was rotated using
direct quartimin rotation (Jennrich & Sampson, 1966).
This oblique analytical rotation was used to simulate
good practice in empirical studies. Although popula-
tion factors were orthogonal in Tucker et al.'s (1969)
design, the relationships among the factors would be
unknown in practice, thus making a less restrictive
oblique rotation more appropriate. Next, population
solutions were used as target matrices, and each
sample solution was subjected to oblique target rota-
tion. The computer program TARROT (Browne,
1991) was used to carry out the target rotations.

For each of these rotated sample solutions, a mea-
sure was calculated to assess the correspondence be-
tween the sample solution and the corresponding
population solution. This measure was obtained by
first calculating a coefficient of congruence between
each factor from the sample solution and the corre-
sponding factor from the population solution. If we
define fjk(l) as the true population factor loading for
variable j on factor k and /^(v) as the corresponding
sample loading, the coefficient of congruence be-
tween factor k in the sample and the population is
given by

3 We chose the maximum likelihood method of factoring
because the principles underlying that method are most con-
sistent with the focus of our study. Maximum likelihood
estimation is based on the assumption that the common
factor model holds exactly in the population and that the
measured variables follow a multivariate normal distribu-
tion in the population, conditions that are inherent in the
simulation design and that imply that all lack of fit and error
of estimation are due to sampling error, which is our focus.
However, even given this perspective, we know of no rea-
son to believe that the pattern of our results would differ if
we had used a different factoring method, such as principal
factors. To our knowledge, there is nothing in the theoretical
framework underlying our hypotheses that would be depen-
dent on the method of factoring.
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<!>*= (15)

In geometric terms, this coefficient is the cosine of the
angle between the sample and population factors
when plotted in the same space. To assess degree of
congruence across r factors in a given solution, we
computed the mean value of $k across the factors.
This value will be designated K:

K = -
2**
k=l

(16)

Higher values of K are indicative of closer correspon-
dence between sample and population factors or, in
other words, more accurate recovery of the population
factors in the sample solution. Several authors (e.g.,
Gorsuch, 1983; Mulaik, 1972) have suggested a rule
of thumb whereby good matching of factors is indi-
cated by a congruence coefficient of .90 or greater.
However, on the basis of results obtained by Korth
and Tucker (1975), as well as accumulated experience
and information about this coefficient, we believe that
a more fine-grained and conservative view of this
scale is appropriate. We follow guidelines suggested
by Ledyard Tucker (personal communication, 1987)
to interpret the value of K: .98 to 1.00 = excellent,
.92 to .98 = good, .82 to .92 = borderline, .68 to .82
= poor, and below .68 = terrible.

The second aim of our study was to assess variabil-
ity of factor solutions over repeated sampling within
each condition. Within each cell of the design, a mean
rotated solution was obtained for the 100 samples. Let
this solution be designated B. For a given sample, a
matrix of differences was calculated between the
loadingsjn the sample solution B and the mean load-
ings in B. The root mean square of these loadings was
then computed. We designate this index as V and
define it as follows:

V =
[ Trace [(B - B)'(B - B)]

(17)

As the sample solutions in a given condition become
more unstable, the values of V will increase for those
samples.

To summarize the design of the Monte Carlo study,
100 data sets were generated under each of 36 con-

ditions defined by (a) three levels of population com-
munality (high, wide, low), (b) three levels of over-
determination of the factors (p:r = 10:3, 20:3, 20:7),
and (c) four levels of sample size (60, 100, 200, 400).
The resulting 3,600 samples were then each analyzed
by maximum likelihood factor analysis with the
known correct number of factors specified. Each of
the resulting 3,600 solutions was then rotated to the
corresponding direct-quartimin population solution,
using oblique target rotation. For each of the rotated
sample solutions, measures K and V were obtained to
assess recovery of population factors and stability of
sample solutions, respectively. The entire study was
run twice, once screening for nonconvergence and
Heywood cases and again without screening.

Results

For the screened-samples approach to the Monte
Carlo study, Table 1 shows the percentage of factor
analyses that yielded convergent solutions and no
Heywood cases for each cell of the design. Under the
most detrimental conditions (N = 60, p:r = 20:7,
low communality) only 4.1 % of samples yielded con-
vergent solutions with no Heywood cases. The per-
centages increase more or less as N increases, as com-
munalities increase, and as the p:r ratio increases.
These results are consistent with findings by Velicer
and Fava (1998) and others. The primary exception to
these trends is that percentages under the 20:7 p:r
ratio are much lower than under the 10:3 p:r ratio,
even though these ratios are approximately equal. The
important point here is that nonconvergence and Hey-
wood cases can occur with high frequency as a result

Table 1
Percentages of Convergent and Admissible Solutions in
Our Monte Carlo Study

Ratio of variables
to factors and

communality level

10:3 ratio
Low communality
Wide communality
High communality

20:3 ratio
Low communality
Wide communality
High communality

20:7 ratio
Low communality
Wide communality
High communality

60

74.6
99.0
100

87.0
100
100

4.1
16.5
39.7

Sample

100

78.7
98.0
100

97.1
100
100

15.8
42.9
74.6

size

200

95.2
99.0
100

100
100
100

45.9
72.5
91.7

400

99.0
98.0
100

100
100
100

80.7
81.3
97.1
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of only sampling error, especially when communali-
ties are low and p and r are high. In addition, the
frequency of Hey wood cases and nonconvergence is
exacerbated when poor overdetermination of factors
is accompanied by small N.

We turn now to results for the two outcomes of
interest, the congruence measure K and the variability
measure V. We found that all trends in results were
almost completely unaffected by screening in the
sampling procedure (i.e., by elimination of samples
thai yielded nonconvergent solutions or Heywood
cases). Mean trends and within-cell variances were
highly similar for both screened and unscreened ap-
proaches. For example, in the 36 cells of the design,
the difference between the mean value of K under the
two methods was never greater than .02 and was less
than .01 in 31 cells. Only under conditions of low
communality and poor overdetermination, where the
proportion of nonconvergent solutions and Heywood
cases was highest, did this difference exceed .01, with
recovery being slightly better under screening of
samples. The same pattern of results was obtained for
V, as well as for measures of within-cell variability of
both K and V. In addition, effect-size measures in
analyses of variance (ANOVAs) of these two indexes
ne'-er differed by more than 1% for any effect. Thus,
results were only trivially affected by screening for
nonconvergent solutions and Heywood cases. We
choose to present results for the screened-samples
Monte Carlo study.

To evaluate the effects discussed in the Implica-
tions for Effects of Sample Size section, the measures
K and V were treated as dependent variables in
ANOVAs. Independent variables in each analysis
were (a) level of communality, (b) overdetermination
condition, and (c) sample size. Table 2 presents re-
sulis of the three-way ANOVA for K, including ef-
fec t-size estimates using to2 values. This measure pro-

vides an estimate of the proportion of variance
accounted for in the population by each effect (Max-
well & Delaney, 1990). Note that all main effects and
interactions were highly significant. The largest effect
was the main effect of level of communality (o>2 =
.41), and substantial effect-size estimates also were
obtained for the other two main effects—. 1 1 for the
overdetermination condition and .15 for sample size.
For the interactions, some of the effect sizes were also
substantial—.05 for the Overdetermination x Com-
munality interaction and .08 for the Communality x
Sample Size interaction. The effect sizes for the in-
teraction between overdetermination and sample size
and for the three-way interaction were small, but they
were statistically significant.

Cell means for K are presented in Figure 1. The
error bars around each point represent 95% confi-
dence intervals for each cell mean. The narrowness of
these intervals indicates high stability of mean trends
represented by these results. Although substantial in-
teractions were found, it is useful to consider the na-
ture of the main effects because they are consistent
with our hypotheses and with earlier findings dis-
cussed above. Congruence improved with larger
sample size (w2 = .15) and higher level of commu-
nality (w2 = .41). In addition, for any given levels of
A' and communality, congruence declined as the p:r
ratio moved from 20:3 to 10:3 to 20:7. This confirms
our hypothesis that for constant p (here 20), solutions
will be better for smaller r (here 3 vs. 7). Also, for
fixed r (here 3), better recovery was found for larger
p (here 20 vs. 10), although this effect was negligible
unless communalities were low. This pattern of re-
sults regarding the influence of the p:r ratio cannot be
explained simply in terms of the number of param-
eters, where poorer estimates are obtained as more
parameters are estimated. Although poorest results are
obtained in the condition where the largest number of

Table 2
An.:ilysis of Variance Results for the Measure of Congruence (K) in Our Monte Carlo Study

Source

Saiiple size (N)
Communality (h)
Overdetermination (d)
N :-: h
NX d
hxd
N x h x d
Error

df
3
2
2

6
6
4

12
3,564

MS

0.72
2.86
0.75
0.18
0.03
0.19
0.01
0.001

F

971.25
3,862.69
1,009.29

247. 1 2
34. 1 1

260.77
8.04

Prob.

<.0001
<.OOOI
<.()001
<.0001
<.0001
<.0001
<.001

U)

.15

.41

.1 1

.08

.01

.05

.00

Prob. = probability; or = estimated proportion of variance accounted for in the population by each effect.
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Figure I Three-way interaction effect on measure of con-
gruence (K) in our Monte Carlo study. Each panel repre-
sents a different p:r ratio. The vertical axis shows mean
coefficient of congruence (K) between sample and popula-
tion factors. Error bars show 95% confidence intervals for
each cel: mean (not visible when width of error bar is
smaller than symbol representing mean), p = the number of
variables; r = the number of factors.

parameters is estimated (when p:r = 20:7), better
results were obtained whenp/r = 20:3 than when/?:r
= 10:3 even though more parameters are estimated in
the former condition.

For the interactive effects, the results in Table 1 and
Figure 1 confirm the hypothesized two-way interac-
tion of sample size and level of communality (w2 =
.08). At each p:r ratio, the effect of N was negligible
for the high communality level, increased somewhat
as the communality level became wide, and increased
dramatically when the communality level became
low. A substantial interaction of levels of communal-
ity and overdetermination was also found (w2 = .05).
Figure 1 shows that the impact of communality level
on recovery increased as factors became more poorly

determined (i.e., as p:r moved from 20:3 to 10:3 to
20:7). The interaction of sample size and level of
overdetermination was small (w2 = .01), and the
three-way interaction explained less than 0.5% of the
variance in K.

Overall, Figure 1 shows the critical role of com-
munality level. Sample size and level of overdetermi-
nation had little effect on recovery of population fac-
tors when communalities were high. Recovery of
population factors was always good to excellent as
long as communalities were high. Only when some or
all of the communalities became low did sample size
and overdetermination become important determi-
nants of recovery of population factors. On the basis
of these findings, it is clear that the optimal condition
for obtaining sample factors that are highly congruent
with population factors is to have high communalities
and strongly determined factors (here, p:r — 10:3 or
20:3). Under those conditions, sample size has rela-
tively little impact on the solutions and good recovery
of population factors can be achieved even with fairly
small samples. However, even when the degree of
overdetermination is strong, sample size has a much
greater impact as communalities enter the wide or low
range.

To examine this issue further, recall the guidelines
for interpreting coefficients of congruence suggested
earlier (L. Tucker, personal communication, 1987).
Values of .92 or greater are considered to reflect good
to excellent matching. Using this guideline and exam-
ining Figure 1, one can see that good recovery of
population factors was achieved with a sample size of
60 only when certain conditions were satisfied; spe-
cifically, a.p:r ratio of 10:3 or 20:3 and a high or wide
range of communalities were needed. A sample size
of 100 was adequate at all levels of the overdetermi-
nation condition when the level of communalities was
either high or wide. However, if the information given
in Table 1 is considered, a sample size of 100 may not
be large enough to avoid nonconvergent solutions or
Heywood cases under a p:r ratio of 20:7 and a low or
wide range of communalities. Finally, a sample size
of 200 or 400 was adequate under all conditions ex-
cept a p:r ratio of 20:7 and low communalities. These
results suggest conditions under which various levels
of N may be adequate to achieve good recovery of
population factors in the sample.

Results for the analysis of the other dependent vari-
able, the index of variability, followed the same pat-
tern as results for the analysis of the index of congru-
ence. The most notable difference was that sample
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size had a larger main effect on V than on K, but the
nature of the main effects and interactions was essen-
tial! y the same for both indexes, with solutions becom-
ing more stable as congruence between sample and
population factors improved. Given this strong con-
sistency, we do not present detailed results of the
analysis of V.

Discussion

Our theoretical framework and results show clearly
thav: common rules of thumb regarding sample size in
fac:or analysis arc not valid or useful. The minimum
level of N, or the minimum N:p ratio, needed to assure
good recovery of population factors is not constant
acr:>ss studies but rather is dependent on some aspects
of the variables and design in a given study. Most
importantly, level of communality plays a critical
roh:. When communalit ies are consistently high
(pr.)bably all greater than .6), then that aspect of sam-
pling that has a detrimental effect on model fit and
precision of parameter estimates receives a low
weight (see Equation 13), thus greatly reducing the
imnact of sample size and other aspects of design.
Under such conditions, recovery of population factors
can be very good under a range of levels of overde-
termination and sample size. Good recovery of popu-
lation factors can be achieved with samples that
wculd traditionally be considered too small for factor
analytic studies, even when N is well below 100.
Note, however, that with such small samples, the like-
lihood of nonconvergent or improper solutions may
increase greatly, depending on levels of communality
and overdetermination (see Table 1). Investigators
must not take our findings to imply that high-quality
factor analysis solutions can be obtained routinely us-
ing small samples. Rather, communalities must be
high, factors must be well determined, and computa-
tions must converge to a proper solution.

As communalities become lower, the roles of
sample size and overdetermination become more im-
portant. With communalities in the range of .5, it is
still not difficult to achieve good recovery of popula-
tion factors, but one must have well-determined fac-
tors (not a large number of factors with only a few
indicators each) and possibly a somewhat larger
sample, in the range of 100 to 200. When commu-
nalities are consistently low, with many or all under
.5. but there is high overdetermination of factors (e.g.,
six or seven indicators per factor and a rather small
number of factors), one can still achieve good recov-

ery of population factors, but larger samples are re-
quired—probably well over 100. With low commu-
nalities, a small number of factors, and just three or
four indicators for each factor, a much larger sample
is needed—probably at least 300. Finally, under the
worst conditions of low communalities and a larger
number of weakly determined factors, any possibility
of good recovery of population factors probably re-
quires very large samples, well over 500.

This last observation may seem discouraging to
some practitioners of exploratory factor analysis. It
serves as a clear caution against factor analytic studies
of large batteries of variables, possibly with low com-
munalities. and the retention of large numbers of fac-
tors, unless an extremely large sample is available.
One general example of such a study is the analysis of
large and diverse batteries of test items, which tend to
have relatively low communalities. Under such con-
ditions, the researcher can have very little confidence
in the quality of a factor analytic solution unless N is
very large. Such designs and conditions should be
avoided in practice. Rather, researchers should make
efforts to reduce the number of variables and number
of factors and to assure moderate to high levels of
communality.

The general implication of our theoretical frame-
work and results is that researchers should carefully
consider these aspects during the design of a study
and should use them to help determine the size of a
sample. In many factor analysis studies, the investi-
gator has some prior knowledge, based on previous
research, about the level of communality of the vari-
ables and the number of factors existing in the domain
of study. This knowledge can be used to guide the
selection of variables to obtain a battery characterized
by as high a level of communality as possible and a
desirable level of overdetermination of the factors. On
the basis of our findings, it is desirable for the mean
level of communality to be at least .7, preferably
higher, and for communalities not to vary over a wide
range. For overdetermination, it appears best to avoid
situations where both the number of variables and the
number of factors are large, especially if communali-
ties are not uniformly high. Rather, it is preferable to
analyze smaller batteries of variables with moderate
numbers of factors, each represented by a number of
valid and reliable indicators. Within the range of in-
dicators studied (three to seven per factor), it is better
to have more indicators than fewer. This principle is
consistent with the concept of content validity, where-
in it is desirable to have larger numbers of variables
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(or items) to adequately represent the domain of each
latent variable. The critical point, however, is that
these indicators must be reasonably valid and reliable.
Just as content validity may be harmed by introducing
additional items that are not representative of the do-
main of interest, so recovery of population factors will
be harmed by the addition of new indicators with low
communalities. Thus, increasing the number of indi-
cators per factor is beneficial only to the extent that
those new indicators are good measures of the factors.

Of course, in the early stages of factor analytic
research in a given domain, an investigator may not
be able to even guess at the level of communality of
the variables or the number of factors present in a
given battery, thus making it impossible to use any of
the information developed in this or future similar
studies on an a priori basis. In such a case, we rec-
ommend that the researcher obtain as large a sample
as possible and carry out the factor analysis. Re-
searchers should avoid arbitrary expansion of the
number of variables. On the basis of the level of com-
munalities and overdetermination represented by the
solution, one could then make a post hoc judgment of
the adequacy of the sample size that was used. This
information would be useful in the evaluation of the
solution and the design of future studies. If results
show a relatively small number of factors and mod-
erate to high communalities, then the investigator can
be confident that obtained factors represent a close
match ti i population factors, even with moderate to
small sample sizes. However, if results show a large
number of factors and low communalities of vari-
ables, then the investigator can have little confidence
that the resulting factors correspond closely to popu-
lation factors unless sample size is extremely large.
Efforts must then be made to reduce the battery of
variables, retaining those that show evidence of being
the most valid and reliable indicators of underlying
factors.

We believe that our theoretical framework and
Monte Carlo results help to explain the widely dis-
crepant findings and rules of thumb about sample
size, which we discussed early in this article. Earlier
researchers considering results obtained from factor
analysis of data characterized by different levels of
communality, p, and r could arrive at highly discrep-
ant views about minimum levels of N. For example, it
seems apparent that the findings of Barrett and Kline
(1981) and Arrindell and van der Ende (1985) of high-
quality solutions in small samples must have been
based on the analysis of data with relatively high com-

munalities and a desirable level of overdetermination
of the factors. Had they used data in which commu-
nalities were low and the factors were poorly deter-
mined, they undoubtedly would have reached quite
different conclusions.

Finally, our theoretical framework and the results
of our Monte Carlo study provide validation, as well
as a clear explanation, for results obtained previously
by other investigators. Most importantly, our frame-
work accounts for influences of communality on qual-
ity of factor analysis solutions observed by Browne
(1968), Cliff and Pennell (1967), Velicer and Fava
(1987, 1998), and others, as well as the interactive
effect of sample size and communality level observed
by Velicer and Fava (1987, 1998). Although the va-
lidity of such findings had not been questioned, a
clear theoretical explanation for them had not been
available. In addition, some authors had previously
associated improved recovery of factors with higher
loadings (Velicer & Fava, 1987, 1998). Cliff and Pen-
nell had showed experimentally that improvement
was due to communality size rather than loading size
per se, and our approach verifies their argument. Our
approach also provides a somewhat more complete
picture of the influence of overdetermination on re-
covery of factors. Such effects had been observed
previously (Browne, 1968; Tucker et al.. 1969;
Velicer & Fava, 1987, 1998). We have replicated
these effects and have also shown interactive effects
of overdetermination with communality level and
sample size.

Limitations and Other Issues

The theoretical framework on which this study is
based focuses only on influences of sampling error,
assuming no model error. The assumption of no
model error is unrealistic in practice, because no par-
simonious model will hold exactly in real populations.
The present study should be followed by an investi-
gation of the impact of model error on the effects
described herein. Such a study could involve analysis
of empirical data as well as artificial data constructed
to include controlled amounts of model error. We
have conducted a sampling study with empirical data
that has yielded essentially the same pattern of effects
of sample size and communality found in our Monte
Carlo study. Results are not included in this article.

Further study could also be directed toward the
interplay between the issues studied here and the
number-of-factors question. In our Monte Carlo
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study, we retained the known correct number of fac-
tors in the analysis of each sample. With this ap-
proach, it was found that excellent recovery of popu-
lation factors could be achieved with small samples
under conditions of high communality and optimal
ove ['determination of factors. However, it is an open
que stion whether analysis of sample data under such
conditions would consistently yield a correct decision
about the number of factors. We expect that this
would, in fact, be the case simply because it would
seem contradictory to find the number of factors to be
highly ambiguous but recovery of population factors
to he very good if the correct number were retained.
Nevertheless, if this were not the case, our results
regarding recovery of population factors under such
conditions might be overly optimistic because of po-
teniial difficulty in identifying the proper number of
faclors to retain.

One other limitation of our Monte Carlo design
involves the limited range of levels of N. p, and r that
were investigated. Strictly speaking, one must be cau-
tious in extrapolating our results beyond the ranges
stu;lied. However, it must be recognized that our find-
ings were supported by a formal theoretical frame-
work that was not subject to a restricted range of these
aspects of design, thus lending credence to the notion
thai the observed trends are probably valid beyond the
conditions investigated in the Monte Carlo study.

Our approach to studying the sample size question
in ractor analysis has focused on the particular objec-
tive of obtaining solutions that are adequately stable
and congruent with population factors. A sample size
thai is sufficient to achieve that objective might be
somewhat different from one that is sufficient to
achieve some other objective, such as a specified level
of nower for a test of model fit (MacCallum, Browne,
& Sugawara, 1996) or standard errors of factor load-
ing -. that are adequately small by some definition. An
interesting topic for future study would be the consis-
tency of sample sizes required to meet these various
objectives.

We end with some comments about exploratory
versus confirmatory factor analysis. Although the fac-
tor analysis methods used in our simulation study
were exploratory, the issues and phenomena studied
in this article are also relevant to confirmatory factor
analysis. Both approaches use the same factor analy-
sis model considered in our theoretical framework,
and we expect that sampling error should influence
solutions in confirmatory factor analysis in much the
same fashion as observed in the exploratory factor

analysis setting. One relevant distinction between
typical exploratory and confirmatory studies is that
the latter might often be characterized by indicators
with higher communalities, because indicators in such
studies are often selected on the basis of established
quality as measures of constructs of interest. As a
result, influences of sampling error described in this
article might be attenuated in confirmatory studies.
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