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Latent Class Analysis
Definitions:

– method for describing associations in a 
multidimensional contingency table

– method for describing the patterns in which 
multiple categorical variables co-occur

– views populations as comprising several 
subpopulations, and responses as 
surrogates that imperfectly measure to 
which subpopulation an individual belongs



Motivating Example:
Functional Disability

• Functional disability in elderly women (over age 65) 
• Women’s Health and Aging Study (WHAS), 1991
• “Screener” data subsample (755 of 3500 women 

interviewed)
• For each woman in the sample we have answers to 

questions about difficulty with mobility tasks:
– Do you have difficulty…..?
– 0=no, 1=yes: yi = (yi1, yi2, yi3, yi4, yi5, )

• Random community sample reflects true prevalence



WHAS Example

• Five indicators of 
mobility disability
– do you have difficulty 

walking 1/2 mile?
– do you have difficulty 

walking up 10 steps?
– do you have difficulty 

getting in and out of a 
bed or chair?

– do you have difficulty 
with heavy 
housework?

– do you have difficulty 
lifting 10 lbs.?

% with difficulty

Walk 0.39

Steps 0.25

Chair 0.16

Hhw 0.42

Lift 0.30



Multidimensional Contingency Table

• WHAS example: 2x2x2x2x2 table
• With five items

– 00000
– 10000
– 01000
– ….
– 01111
– 11111

• 25 = 32 possible patterns
2x2x2 table(?)



Latent Class Model: Main Ideas
• There are M classes of disability (e.g. none, mild, 

severe).  πm represents the proportion of individuals 
in the population in class m (m=1,…,M)

• Each person is a member of one of the M classes, 
but we do not know which. The latent class of 
individual i is denoted by ηi.

• Symptom prevalences vary by class.  The 
prevalence for difficulty with task k in class m is 
denoted by pkm.

☼Conditional Independence:  Given class 
membership, the tasks are independent.  BIG 
assumption!



How do we use the latent class model?

• Classification:  Individuals can be clinically diagnosed 
into disability categories.  Identification can help allocate 
resources more efficiently.

• Description:  By describing the prevalence of disability in 
populations, we can better understand the resources 
necessary for treatment and early interventions

• Prediction:  Prediction of prevalence of disability can aid 
in allocation of services



Latent Class Model
• M: number of latent 

classes
• K: number of tasks
• pkm: probability of 

having difficulty with 
item k given latent class 
m. 

• πm: probability of being 
in class m

• ηi: the true latent class 
of individual i, i = 1,…,N

• m = 1,…,M; k = 1,…,K

π

p5ηi

p4ηi

p3ηi

p2ηi

p1ηi yi1

yi2

yi3

yi4

yi5

ηi

One 
depiction

Note: this notation
is different than
McCutcheon

~



The latent class model is useful 
when….

• Items measure “diagnoses” rather than 
underlying scores

• Patterns of responses are thought to contain 
information above and beyond “aggregation” of 
responses

• The goal is “clustering” individuals rather than 
response variables



Choosing Items

• Descriptive Analysis
– pattern frequencies:  look at prevalences and 2x2 tables
– multi-dimensional tables 
– recall hierarchy from association lecture.

• Want items that have variability
– not useful to include p(difficulty eating) if prevalence is close to 0
– not useful to include p(difficulty running 8 minute mile) if 

prevalence is close to 1.
• Do all items behave in same “direction”?

– ”do you have difficulty walking up 10 steps?”
– “is it easy for you to walk up 10 steps?”

• Taken together, items should “define” construct 
(issue of validity!)



Example:  2 Classes of 
Disability

 Class 1 Class 2 
Lift 0.07 0.73 

Walk 0.15 0.89 
Step 0.04 0.66 

Chair 0.02 0.46 
Hhw 0.15 0.91 

Class Size 0.67 0.33 
 

 

p32

π1



2, 3, and 4 class models

 2 Class 
Model 

3 Class 
Model 

4 Class 
Model 

 Class 
1 

Class 
2 

Class 
1 

Class 
2 

Class 
3 

Class 
1 

Class 
2 

Class 
3 

Class 
4 

Lift 0.07 0.73 0.04 0.42 0.85 0.06 0.48 0.29 0.85

Walk 0.15 0.89 0.10 0.58 0.96 0.09 0.58 0.72 0.96

Step 0.04 0.66 0.03 0.23 0.91 0.02 0.22 0.28 0.89

Chair 0.02 0.46 0.02 0.13 0.60 0.02 0.12 0.00 0.62

Hhw 0.15 0.91 0.06 0.78 0.93 0.06 0.78 0.71 0.94

Class 
size 

 
0.67 

 
0.33 

 
0.56 

 
0.25 

 
0.19 

 
0.53 

 
0.19 

 
0.03 

 
0.20

 

 



Recall Binomial Distribution….
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Using class specific-probabilities and K items, the probability
of a woman reporting a specific response pattern given she
is in class m is defined by:

If we know the probability of difficulty with items 1 and 2 for a woman 
AND we can assume that they are independent:
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Deriving the Likelihood Function
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Deriving the Likelihood Function
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Take the product over all individuals in the dataset to
get the likelihood function:



Issues r.e. Likelihood Function

• Local/Conditional Independence 
assumption allows us to take product over 
items

• Describes observed patterns (2K possible 
patterns)

• Intuitively:  sum up probability of observed 
pattern given membership in each of 
classes and weight by class prevalence.



item probabilities
(conditional probabilities)

• prevalence of symptom in class
• degree of “measurement error”
• heterogeneity within a class
• If all p’s in class  0 or 1:  “no error” (one 

possible pattern in class
• If all p’s in class 0.5:  “noise” (every 

possible pattern has equal probability)



P A P A B P A B

P A B
P A B

P B
P A B P B P A B

P A B
P B A P A

P B
P B A P A

P B

C

i
i

( ) ( ) ( )

( | )
( )

( )
( | ) ( ) ( )

( | )
( | ) ( )

( )
( | ) ( )

( )

= ∩ + ∩

=
∩

⇔ =

=

= ∑

I

Aside:  Probability Concepts

A
B

Bayes Rule:



Clinically Relevant:
Posterior Probabilities of Class Membership
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Example:  What are the posterior probabilities of class 
membership for a woman who reports difficulty with only 

heavy housework and walking 1/2 mile?

2 class model

P(Yi = 01001| ηi = 1) = (1-0.07)(0.15)(1-0.04)(1-0.02)(0.15)
= 0.02

P(Yi = 01001| ηi = 2) = (1-0.73)(0.89)(1-0.66)(1-0.46)(0.91)
= 0.04

P(ηi = 1 |Yi = 01001) = (0.02*0.67) / (0.02*0.67 + 0.04*0.33)
= 0.50

P(ηi = 2 |Yi = 01001) = (0.04*0.33) / (0.02*0.67 + 0.04*0.33)
= 0.50



2, 3, and 4 class models

 2 Class 
Model 

3 Class 
Model 

4 Class 
Model 

 Class 
1 

Class 
2 

Class 
1 

Class 
2 

Class 
3 

Class 
1 

Class 
2 

Class 
3 

Class 
4 

Lift 0.07 0.73 0.04 0.42 0.85 0.06 0.48 0.29 0.85

Walk 0.15 0.89 0.10 0.58 0.96 0.09 0.58 0.72 0.96

Step 0.04 0.66 0.03 0.23 0.91 0.02 0.22 0.28 0.89

Chair 0.02 0.46 0.02 0.13 0.60 0.02 0.12 0.00 0.62

Hhw 0.15 0.91 0.06 0.78 0.93 0.06 0.78 0.71 0.94

Class 
size 

 
0.67 

 
0.33 

 
0.56 

 
0.25 

 
0.19 

 
0.53 

 
0.19 

 
0.03 

 
0.20

 

 



3 class model
P(Yi = 01001| ηi = 1) = (1-0.04)(0.10)(1-0.03)(1-0.02)(0.06)

= 0.0055
P(Yi = 01001| ηi = 2) = (1-0.42)(0.58)(1-0.23)(1-0.13)(0.78)

= 0.176
P(Yi = 01001| ηi = 3) = (1-0.85)(0.96)(1-0.91)(1-0.60)(0.93)

= 0.0048

P(ηi = 1 |Yi = 01001) = (0.0055*0.56) / (0.0055*0.56 + 0.176*0.25 + 
0.0048*0.19)

= 0.06
P(ηi = 2 |Yi = 01001) = (0.176*0.25) / (0.0055*0.56 + 0.176*0.25 + 0.0048*0.19)

=0.92
P(ηi = 3 |Yi = 01001) = (0.0048*0.19) / (0.0055*0.56 + 0.176*0.25 + 

0.0048*0.19) 
= 0.02



Estimation Approaches
Maximum Likelihood Approach:

Find estimates of p, π, and η that are most consistent 
with the data that we observe conditional on number 
of classes, M.  

Often used:  EM algorithm (iterative fitting procedure)

Bayesian Approach:
Quantify beliefs about p, π, and η before and after 

observing data.
Often used:  Gibbs sampler, MCMC algorithm



Bayesian Terminology

• Prior Probability:  What we believe about unknown 
parameters before observing data.

• Posterior Probability:  What we believe about the 
parameters after observing data.



Bayesian Estimation Approach
• Specify prior probability distribution: 

• Combine prior with likelihood to obtain posterior distribution: 

• Estimate posterior distribution for each parameter using iterative 
procedure.

P p( , , )π η

P p Y P p L Y p( , , | ) ( , , ) ( | , , )π η π η π η∝ ×

P Y P p Y( | ) ( , , | )π π η1 = ∫



Bayesian Estimation Approach
The Gibbs Sampler is an iterative process used to estimate 

posterior distributions of parameters.
– we sample parameters from conditional distributions 

e.g. P(π1|Y,p, η, π2, π3)
– At each iteration, we get ‘sampled’ values of p, π, and η.
– We use the samples from the iterations to estimate posterior 

distributions by averaging over other parameter values.

 

 

0.10 0.12 0.14 0.16 0.18

)|( 1 yP π

1π



Estimation Issues
• ML estimation:  Initial values needed

– some programs provide them
– some require you to provide them

• Bayesian:  Choosing parameter estimates
– mean, median, or mode of posterior?

• Convergence:  both ML and Bayes
– may be more than one “optimal” solution
– different starting values can give different solutions

• Time consuming



Caveat with ML estimation

• Once pkm reaches an estimate of 0 or 1, it 
will never move

• Recall iterative fitting procedure.
• If results give 0 or 1, rerun with different 

starting/initial values
• NEVER give 0 or 1 as starting value for pkm

unless you want to “force” it (more later).



Software for LC analysis
• Maximum Likelihood Estimators:

– Latent variable specific:
• Mplus
• LEM
• LatentGOLD
• MLLSA
• LISREL

– SAS, Splus, Mathematica, etc
• Bayesian Estimators:

– WinBugs

• http://ourworld.compuserve.com/homepages/jsuebersax/soft.htm



Choosing Estimation 
Procedure

• Inference should NOT depend on estimation 
procedure!

• “Philosophical”: Bayesian versus Frequentist.
• Pros:

– ML: intuitive, canned packages
– Bayesian: can assess identifiability, more certainty 

in “convergence to truth”
• Cons: 

– ML: solution can depend on starting values
– Bayesian: estimation procedure more complicated



Latent Class Output
• Not always do we get pkm

and πm
• Very common to see the 

‘logit’ transformation used.
• On logit scale, γkm ranges 

from -∞ to ∞.
– If γkm = 4, pkm = 0.98
– If γkm = 2, pkm = 0.88
– If γkm = 1, pkm = 0.73
– If γkm = 0.5, pkm = 0.62
– If γkm = 0, pkm = 0.5

p
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e
p

p

km

km
km

km

km

km
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What if γkm = -4?  



Latent Class Output
• How do we tell if our estimates ‘got stuck’ in Mplus?
• Technically, for p = 0, then  

• And for p = 1, then 

• But, Mplus doesn’t give you these:  If you see logit
values of -15 or +15, then you “GOT STUCK”!!!!!!!!!

logit( ) log( ) log( )0 00
1= = = −∞

logit( ) log( ) log( )1 1
0= = ∞ = ∞



Identifiability of Models
• Are there several solutions?  That is, are 

there two sets of parameters?
– Necessary condition for “theoretical identifiability”:

• Number parameters is smaller than the number of 
possible patterns (minus 1)

• M-1+M*K < 2K - 1
– Caveat:  Not sufficient condition. 

• 3 class model not identifiable with 4 items.
• “Empirical identifiability”:  Is there enough 

evidence in the data to estimate all of the 
parameters in the model?  Is the data set big 
enough?



Ways to improve identifiability

• Put constraints on item probabilities, p’s.
– e.g. set pkm to 0 or 1
– Or, for example, pkm>0.90
– must have good scientific rationale

• More data!



Investigating Identifiability via 
Bayesian Approach

• Look at how much reliance is placed on prior 
distribution

• Compare posterior distribution of parameter 
to prior distribution of parameter

• If prior and posterior are similar, then we say 
model is only “weakly identifiable” or “weakly 
estimable”

• Latent Class Estimability Display (LCED)



 

Class 1 Class 2  Class 1 Class 2 Class 3  Class 1 Class 2 Class 3 Class 4

Class Size

Lift

Walk

Steps

Chair

Hhw

0.07 0.73 0.04 0.42 0.85 0.04 0.48 0.29 0.85

0.15 0.89 0.1 0.58 0.96 0.09 0.58 0.72 0.96

0.04 0.66 0.03 0.23 0.91 0.02 0.22 0.28 0.89

0.02 0.46 0.02 0.13 0.6 0.02 0.12 0 0.62

0.15 0.91 0.06 0.78 0.93 0.06 0.78 0.71 0.93

0.67 0.33 0.56 0.25 0.19 0.53 0.19 0.03 0.2

2 Class Model 3 Class Model 4 Class Model
LCED for 2, 3, and 4 class models



“Estimability”

• Is there enough data to estimate all of the 
parameters

• How can we tell if we should “believe” the 
symptoms probabilities in a class?

• Consider precision of estimates
– ML:  confidence interval
– Bayesian: posterior interval



Assessing Estimability:  3 class model
95% confidence interval

estimate se 2.5% 97.5%   width of 95%CI 
pi[1] 0.25 0.036 0.18 0.32 0.14
pi[2] 0.55 0.033 0.48 0.61 0.13
pi[3] 0.20 0.028 0.15 0.26 0.11

p[1,1] 0.42 0.06 0.31 0.54 0.23
p[1,2] 0.04 0.01 0.01 0.07 0.06
p[1,3] 0.84 0.04 0.76 0.93 0.17
p[2,1] 0.59 0.07 0.45 0.73 0.28
p[2,2] 0.09 0.02 0.05 0.14 0.09
p[2,3] 0.96 0.02 0.91 0.99 0.08
p[3,1] 0.22 0.06 0.11 0.35 0.24
p[3,2] 0.03 0.01 0.01 0.06 0.05
p[3,3] 0.89 0.04 0.80 0.97 0.17
p[4,1] 0.13 0.04 0.06 0.21 0.15
p[4,2] 0.02 0.01 0.01 0.04 0.03
p[4,3] 0.61 0.06 0.51 0.73 0.22
p[5,1] 0.76 0.06 0.63 0.88 0.25
p[5,2] 0.06 0.02 0.02 0.11 0.09
p[5,3] 0.93 0.03 0.87 0.98 0.11



95% confidence interval
estimate se 2.5% 97.5%   width of 95%CI 

pi[1] 0.08 0.07 0.01 0.28 0.27
pi[2] 0.20 0.02 0.16 0.25 0.09
pi[3] 0.18 0.07 0.02 0.28 0.26
pi[4] 0.54 0.03 0.48 0.60 0.12

p[1,1] 0.37 0.22 0.06 0.92 0.86
p[1,2] 0.85 0.04 0.76 0.92 0.16
p[1,3] 0.45 0.13 0.16 0.74 0.58
p[1,4] 0.04 0.01 0.01 0.07 0.06
p[2,1] 0.62 0.22 0.12 0.96 0.84
p[2,2] 0.96 0.02 0.91 0.99 0.08
p[2,3] 0.60 0.12 0.32 0.87 0.55
p[2,4] 0.09 0.02 0.05 0.13 0.08
p[3,1] 0.34 0.23 0.04 0.88 0.84
p[3,2] 0.89 0.05 0.79 0.98 0.21
p[3,3] 0.25 0.14 0.08 0.71 0.63
p[3,4] 0.03 0.01 0.01 0.05 0.04
p[4,1] 0.23 0.19 0.03 0.78 0.75
p[4,2] 0.61 0.05 0.50 0.72 0.22
p[4,3] 0.15 0.09 0.05 0.39 0.34
p[4,4] 0.02 0.01 0.01 0.04 0.03
p[5,1] 0.63 0.20 0.14 0.94 0.80
p[5,2] 0.94 0.03 0.88 0.98 0.10
p[5,3] 0.76 0.13 0.33 0.94 0.61
p[5,4] 0.06 0.02 0.02 0.11 0.09

4 class
model



How do we choose among models?
• Likelihood Ratio?

– Assumes models are “nested”
– But, 2 class model is not a subset of 3 class 

model
– Parameters have different interpretations

• Other procedures?
– Information Criterion (AIC, BIC)
– Graphical diagnostics



Model Fit: 
How can we compare model to observed data?

• What is observed? patterns frequencies
• Measure “distance” between predicted and observed 

patterns
• Statistics:

-2Log-Likelihood (-2LL) (see next page for note)
Information Criteria:  Pick model with smallest IC

Akaike: AIC = -2LL + 2*s  
Schwarz: BIC = -2LL + s*log(N)

(s = number of parameters in model)
(N = sample size)



Traditional Fit Statistics
“2LL” AIC BIC s

2 class
model

3478.30 3500.30 3551.19 11

3 class
model

3403.71 3437.71 3516.36 17

4 class
model

3413.35 3524.30 3630.71 23

(Note:  LL is not really log-likelihood in this case because ML was not
procedure used for estimation.  It is the log-likelihood based on the
Bayesian parameter estimates.)



Goodness of Fit

• Assumption:
– 2LL is valid goodness of fit statistic assuming 

that cell counts are large
– That is, if the number of individuals reporting 

each pattern is relatively large (at least 5)
• Generally true in LC analysis?
• Also, 2LL has been shown to be best for 

sample sizes around 200-300 (for larger, it 
is conservative).



Another approach:
Estimating Pattern Prevalence
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Example:  Probability of Reporting “Walk”
and “Hhw” in 3 class model

Recall:
P(Yi = 01001|ηi = 1) = (1-0.04)(0.10)(1-0.03)(1-0.02)(0.06) = 0.0055
P(Yi = 01001| ηi = 2) = (1-0.42)(0.58)(1-0.23)(1-0.13)(0.78) = 0.176
P(Yi = 01001| ηi = 3) = (1-0.85)(0.96)(1-0.91)(1-0.60)(0.93) = 0.0048

and P(ηi = m) = πm = (0.56,0.25,0.19)

P(Yi = 01001) = 0.0055*0.56 + 0.176*0.25 + 0.0048*0.19 = 0.05



• That is, 5% of the sample is “predicted”
to report this pattern based on the three 
class model. Recall sample size is 755.

• Observed number:  39
• Expected number:  0.05*755 = 37.75
• FYI:  Two class model  

– Percent expected is 2.7% 
– Expected number: 0.027*755 = 20.38



Pattern (in order of prevalence)
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Guttman Scaling

• A type of latent class model
• Different than what we’ve seen so far
• So far:

– Identify items
– Find structure/definitions of classes

• Guttman
– Define structure
– See if data are consistent with structure



Guttman Scaling

• “Pure” hierarchy
• 756 individuals who 

have used any illicit 
drugs at least 5 times
– 97% used marijuana 
– 24% used cocaine
– 13% used heroin

• K items ► K+1 classes
• Very restrictive latent 

class model.

Marijuana Cocaine Heroin

0 0 0

1 0 0

1 1 0

1 1 1

Guttman Model: 4 classes

Class 1:

Class 2:

Class 3:

Class 4:



Measurement Error
• What if you report only cocaine (010) ?
• 8 possible reporting patterns with 3 binary items (23)
• “Allowed” vs. “Disallowed” patterns

– Allowed:  000, 100, 110, 111
– Disallowed: 010, 001, 101, 011

• Measurement error:
– An “error” in reporting
– An ‘aberrant’ user—one who doesn’t follow the normal 

pattern of use.
• 2 general types of models:

– assume that there is a measurement error associated 
with each drug.

– assume that there is a measurement error associated 
with each class.



What about those with “disallowed”
patterns?

• Based on response pattern, they get posterior 
probabilities of class membership 

• (And so do those with allowed patterns)
• But, class definitions are ‘predefined’
• However, actual values of ‘pkm’ are not defined:  they 

depend on measurement errors. 
• Parameters estimated:

– Class sizes
– Amount of measurement error (either by item (drug), or by 

class).
• Drug use example:  4 class sizes, and three 

measurement error parameters (one for each drug).
– pm = measurement error for marijuana = 0.03
– pc = measurement error for cocaine = 0.04
– ph = measurement error for heroin = 0.04



Guttman Model: Latent Class Presentation

 “Non-
User” 

“Light 
User” 

“Moderate 
User” 

“Heavy 
User” 

 Class 1 
(000) 

Class 2 
(100) 

Class 3 
(110) 

Class 4 
(111) 

Marijuana pm 1-pm 1-pm 1-pm 

Cocaine pc pc 1-pc 1-pc 

Heroin ph ph p3h 1-ph 

π π1 π2 π3 π4 
 

 



Guttman Model: Latent Class Presentation

 “Non-
User” 

“Light 
User” 

“Moderate 
User” 

“Heavy 
User” 

 Class 1 
(000) 

Class 2 
(100) 

Class 3 
(110) 

Class 4 
(111) 

Marijuana 0.03 0.97 0.97 0.97 

Cocaine 0.04 0.04 0.96 0.96 

Heroin 0.04 0.04 0.04 0.96 

π 0.00007 0.78 0.12 0.10 
 

 



Marijuana Cocaine Heroin Predicted 
Prevalence of 

pattern 

Observed 
Prevalence of 

Pattern 
0 0 0 0.02 0.01 

1 0 0 0.70 0.72 

0 1 0 0.004 0.003 

0 0 1 0.001 0.008 

1 1 0 0.14 0.14 

1 0 1 0.03 0.03 

0 1 1 0.003 0.01 

1 1 1 0.10 0.09 
 

 

Fitted Model Results versus Observed Data



What are the posterior class probabilities 
for someone reporting only cocaine?

03.0
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=

P

P
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What are the posterior probabilites of class membership for the pattern 010?

“Non-user”:

“Light user”:

“Moderate user”:

“Heavy user”:



What are the posterior class probabilities 
for someone reporting marijuana and 

cocaine?

03.0
0.14

)10.0)(04.0)(96.0)(97.0()110report |111 true(

77.0
0.14

)12.0)(96.0)(96.0)(97.0()110report |110 true(

21.0
0.14

)78.0)(96.0)(04.0)(97.0()110report |100 true(

00001.0
14.0

)00007.0)(96.0)(04.0)(03.0(
110)P(report 

000) 000)P(true true|110report ()110report |000 true(
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=

P

P

P

PP“Non-user”:

“Light user”:

“Moderate user”:

“Heavy user”:

What are the posterior probabilites of class membership for the pattern 110?
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